CONDITIONS FOR THE YONEDA ALGEBRA
OF A LOCAL RING
TO BE GENERATED IN LOW DEGREES

JUSTIN HOFFMEIER AND LIANA M. ŞEGA

Abstract. The powers m^n of the maximal ideal m of a local Noetherian ring R are known to satisfy certain homological properties for large values of n. For example, the homomorphism $R \to R/m^n$ is Golod for $n \gg 0$. We study when such properties hold for small values of n, and we make connections with the structure of the Yoneda Ext algebra, and more precisely with the property that the Yoneda algebra of R is generated in degrees 1 and 2. A complete treatment of these properties is pursued in the case of compressed Gorenstein local rings.

Introduction

Let (R, m, k) be a local ring, that is, a commutative noetherian ring R with unique maximal ideal m and $k = R/m$. For $n \geq 1$ we let $\nu_n : m^n \to m^{n-1}$ denote the canonical inclusion and for each $i \geq 0$ we consider the induced maps $\text{Tor}^R_i(\nu_n, k) : \text{Tor}^R_i(m^n, k) \to \text{Tor}^R_i(m^{n-1}, k)$.

Using the terminology of [2], we say that m^n is a small submodule of m^{n-1} if $\text{Tor}^R_i(\nu_n, k) = 0$ for all $i \geq 0$. This condition implies that the canonical projection $\rho_n : R \to R/m^n$ is a Golod homomorphism, but the converse may not hold.

Levin [9] showed that m^n is a small submodule of m^{n-1} for all sufficiently large values of n. On the other hand, the fact that m^n is a small submodule of m^{n-1} for small values of n is an indicator of strong homological properties. It is known that m^2 is a small submodule of m if and only if the Yoneda algebra $\text{Ext}^*_R(k, k)$ is generated in degree 1, cf. [12, Corollary 1]. More generally, we show:

Theorem 1. Let (R, m, k) be a local ring. Let $\hat{R} = Q/I$ be a minimal Cohen presentation of R, with (Q, n, k) a regular local ring and $I \subseteq n^t$. Let t be an integer such that $I \subseteq n^t$. The following statements are then equivalent:

1. m^t is a small submodule of m^{t-1};
2. $\rho_t : R \to R/m^t$ is Golod;
3. $\rho_n : R \to R/m^n$ is Golod for all n such that $t \leq n \leq 2t - 2$;
4. $I \cap n^{t+1} \subseteq n^t$ and the algebra $\text{Ext}^*_R(k, k)$ is generated by $\text{Ext}^1_R(k, k)$ and $\text{Ext}^2_R(k, k)$.

If R is artinian, its socle degree is the largest integer s with $m^s \neq 0$. When R is a compressed Gorenstein local ring (see Section 3 for a definition) of socle degree $s \neq 3$, we determine all values of the integer n for which the homomorphism

Research partly supported by NSF grant DMS-1101131 and grants from the Simons Foundation (#20903 and #354594, Liana Sega).
\(\rho_n \) is Golod, respectively for which \(m^n \) is a small submodule of \(m^{n-1} \), and we use Theorem 1 to establish part (3) below.

Theorem 2. Let \((R, m, k)\) be a compressed Gorenstein local ring of socle degree \(s \).

Assume \(2 \leq s \neq 3 \) and let \(t \) denote the smallest integer such that \(2t \geq s + 1 \). If \(n \geq 1 \), then the following hold:

1. \(m^n \) is a small submodule of \(m^{n-1} \) if and only if \(n > s \) or \(n = s + 2 - t \).
2. \(\rho_n : R \rightarrow R/m^n \) is Golod if and only if \(n \geq s + 2 - t \).
3. If \(s \) is even, then \(\text{Ext}_{R}(k, k) \) is generated by \(\text{Ext}^{2}_{R}(k, k) \) and \(\text{Ext}^{2}_{R}(k, k) \).

The conclusion of (3) does not hold when \(s \) is odd, see Corollary 3.7.

Section 1 provides definitions and properties of the homological notions of interest. Theorem 1 is proved in Section 2 and Theorem 2 is proved in Section 3.

1. Preliminaries

Throughout the paper \((R, m, k)\) denotes a commutative noetherian local ring with maximal ideal \(m \) and residue field \(k \). Let \(M \) be a finitely generated \(R \)-module.

We denote by \(\hat{R} \) the completion of \(R \) with respect to \(m \). A minimal Cohen presentation of \(R \) is a presentation \(\hat{R} = Q/I \), with \(Q \) a regular local ring with maximal ideal \(n \) and \(I \) an ideal with \(I \subseteq n^2 \). We know that such a presentation exists, by the Cohen structure theorem.

We denote by \(R^{\#} \) the associated graded ring with respect to \(m \), and by \(M^{\#} \) the associated graded module with respect to \(m \). We denote by \((R^{\#})_j \) the \(j \)-th graded component of \(R^{\#} \). For any \(x \in R \) we denote by \(x^{\#} \) the image of \(x \) in \(m^{j}/m^{j+1} = (R^{\#})_j \), where \(j \) is such that \(x \in m^j \setminus m^{j+1} \). For an ideal \(J \) of \(R \), we denote by \(J^{\#} \) the homogeneous ideal generated by the elements \(x^{\#} \) with \(x \in J \).

Remark 1.1. With \(\hat{R} = Q/I \) as above, the following then hold:

1. \(I \subseteq n^t \) if and only if \(\text{rank}_m(m^{t-1}/m^t) = \left(\frac{e + t - 2}{e - 1} \right) \), where \(e \) denotes the minimal number of generators of \(m \).
2. Assume \(t \geq 2 \) and \(I \subseteq n^t \). Then \(I \cap n^{t+1} \subseteq nI \) if and only if the map
 \[\text{Ext}^{2}_{\rho_t}(k, k) : \text{Ext}^{2}_{R/m^t}(k, k) \rightarrow \text{Ext}^{2}_{R}(k, k) \]
 induced by the canonical projection \(\rho_t : R \rightarrow R/m^t \) is surjective.

To prove (1), note that \((\hat{R})_{e}^{\#} = Q^{\#}/I^{\#} \) and \(Q^{\#} \) is isomorphic to a polynomial ring over \(k \) in \(e \) variables of degree 1. We have that \(I \subseteq n^t \) if and only if \(I^{\#} \subseteq (m^{\#})^t \), which is equivalent to \((Q^{\#})_{t-1} = (Q^{\#}/I^{\#})_{t-1} \) and thus to

\[\text{rank}_m(Q^{\#})_{t-1} = \text{rank}_m((\hat{R})_{t-1}^{\#}) \, . \]

Therefore, (1) follows by noting that \(\text{rank}_m(Q^{\#})_{j} = \left(\frac{e - 1 + j}{e - 1} \right) \) and \(\text{rank}_m((\hat{R})_{j}^{\#}) = \text{rank}_m(m^t/m^{t+1}) \) for each \(j \).

For a proof of (2), see Şega [15, 4.3], noting that the map \(\text{Ext}^{2}_{\rho_t}(k, k) \) is surjective if and only if the induced map

\[\text{Tor}^{2}_{\rho_t}(k, k) : \text{Tor}^{2}_{R}(k, k) \rightarrow \text{Tor}^{2}_{R/m^t}(k, k) \]

is injective.
Definition. Let $\hat{R} = Q/I$ be a minimal Cohen presentation of R. Let $t \geq 2$ be an integer. We say that the local ring R is t-homogeneous if $I \subseteq n^t$ and $I \cap n^{t+1} \subseteq nI$. Remark 1.1 shows that this definition does not depend on the choice of the minimal Cohen presentation.

We set

$$v(R) = \sup \{ t \geq 0 \mid I \subseteq n^t \}.$$

Note that, if R is t-homogeneous and $I \neq 0$, then $t = v(R)$.

Remark 1.2. The terminology of two-homogeneous algebra was previously used by Lőfwall [11], with a different meaning, in the context of augmented graded algebras.

Lemma 1.3. Let $\hat{R} = Q/I$ be a minimal Cohen presentation of R. If the ideal I^* of the polynomial ring Q^k is generated by homogeneous polynomials of degree t, then the ring R is t-homogeneous.

Proof. Assume I^* is generated by homogeneous polynomials of degree t. In particular, it follows that $I \subseteq n^t$. To prove $I \cap n^{t+1} \subseteq nI$, we will show $I \cap n^{t+1} \subseteq nI + n^t$ for all $j \geq 0$. The Krull intersection theorem then gives the conclusion.

Let $x \in I \cap n^{t+1}$ and let $a \geq 1$ be the smallest integer such that $x \notin n^{t+1+a}$. Then x^* is an element of degree $t + a$ of I^*. Since I^* is generated by homogeneous elements of degree t, we can write

$$x^* = \sum y_i^* z_i^*$$

with $y_i^* \in (Q^k)_a$ and $z_i^* \in I^* \cap (Q^k)_t$ for each i, where $y_i \in n^a$ and $z_i \in I \cap n^t$. Set

$$x_1 = x - \sum y_i z_i,$$

and note that $x_1 \in I \cap n^{t+a+1}$ and $x - x_1 \in nI$. In particular $x \in nI + n^{t+a+1}$. Applying the argument above to x_1, we obtain an element a_1 such that $a_1 > a$, and an element x_2 such that $x_2 \in I \cap n^{t+a_1+1}$ and $x_1 - x_2 \in nI$. In particular x_1, and thus x, are elements of $nI + n^{t+a_1+1}$. An inductive argument produces a sequence of integers $1 < a_1 < a_2 < \ldots$ such that $x \in nI + n^{t+a_i+1}$ for all i, and gives the desired conclusion.

Remark 1.4. The converse of the lemma does not hold. This can be seen by considering the 2-homogeneous local ring $R = k[[x,y]]/(x^2 + y^3, xy)$, for which $R^k = k[x,y]/(x^2, y^4, xy)$.

We now proceed to provide definitions for the homological notions of interest, and recall some of their properties.

The Poincaré series $P^R_{M}(z)$ of M is the formal power series

$$P^R_{M}(z) = \sum_{i \geq 0} \text{rank}_k(\text{Tor}^R_i(M, k))z^i.$$

1.5. Golod rings, modules, and homomorphisms. Let (S, s, k) be a local ring and $\varphi: R \rightarrow S$ be a surjective homomorphism of local rings. Following Levin [10], we say that an S-module M is a φ-Golod if the following equality is satisfied:

$$P^S_{M}(z) = \frac{P^R_{M}(z)}{(1 - z(P^R_{S}(z)) - 1))}. $$

We say that φ is a Golod homomorphism if k is a φ-Golod module.
The ring R is said to be a Golod ring if the canonical projection $Q \to \widehat{R}$ is a Golod homomorphism, where $\widehat{R} = Q/I$ is a minimal Cohen presentation. This definition is independent of the choice of representation by [1, Lemma 4.1.3]. Note that this definition is equivalent to the definition given by Avramov in terms of Koszul homology in [1, §5]. A classical example of a Golod ring is Q/n^j for any $j \geq 2$, where (Q, n, k) is a regular local ring, as first observed by Golod [5].

1.6. Small homomorphisms. Let $\varphi : R \to S$ be a surjective ring homomorphism as above and consider the induced maps

$$\text{Ext}^i_{\varphi}(k, k) : \text{Ext}^i_S(k, k) \to \text{Ext}^i_R(k, k)$$

and

$$\text{Tor}^i_{\varphi}(k, k) : \text{Tor}^i_R(k, k) \to \text{Tor}^i_S(k, k).$$

We say that φ is small if $\text{Ext}^*_\varphi(k, k)$ is surjective or, equivalently, if $\text{Tor}^*_\varphi(k, k)$ is injective. Note that $\text{Tor}^1_{\varphi}(k, k)$ can be identified with the canonical map $m/m^2 \to s/s^2$ induced by φ. Thus $\text{Tor}^1_{\varphi}(k, k)$ is an isomorphism if and only if $\text{Ker}(\varphi) \subseteq m^2$.

For convenience we collect below a few known facts about small homomorphisms:

1. If φ is Golod then φ is small, see Avramov [2, 3.5].
2. If S is a Golod ring and φ is small, then φ is Golod, see Šega [14, 6.7].

1.7. Inert modules. Let $\kappa : P \to R$ be a surjective homomorphism of local rings. Following Lescot [7], we say that an R-module M is inert by κ if the following equality holds:

$$P_R k_m(z) P_P k_m(z) = P_P k_m(z) P_R M(z).$$

If κ is a Golod homomorphism the following are equivalent:

1. M is κ-Golod;
2. $\text{Tor}^i_{\kappa}(M, k)$ is injective for all i;
3. M is inert by κ.

The equivalence of (1) and (3) is a direct consequence of the definitions and the equivalence of (1) with (2) is given by Levin [10, 1.1].

1.7.1. Consider a sequence of surjective homomorphisms of local rings

$$R \xrightarrow{\alpha} S \xrightarrow{\beta} T.$$

Lescot [7, Theorem 3.6] shows that a T-module M is inert by $\beta \circ \alpha$ if an only if M is inert by β and M is inert by α, when considered as an S-module.

1.7.2. Let Q be a regular local ring with maximal ideal n and an ideal J such that $J \subseteq n^t$ with $t \geq 2$. Set $S = Q/J$ and $\overline{n} = n/J$. If a finitely generated S-module N is annihilated by \overline{n}^{t-1} then N is inert by the natural projection $\kappa : Q \to S$, see [7, 3.7 and 3.11].

We end this section with introducing some more notation.

1.8. If (R, m, k) is a local ring and M is a finite R-module, we let $\nu_M : mM \to M$ denote the canonical inclusion and consider the induced maps

$$\text{Tor}^i_R(\nu_M, k) : \text{Tor}^i_R(mM, k) \to \text{Tor}^i_R(M, k).$$

They fit into the long exact sequence

$$\cdots \to \text{Tor}^i_R(mM, k) \xrightarrow{\text{Tor}^i_R(\nu_M, k)} \text{Tor}^i_R(M, k) \to \text{Tor}^i_R(M/mM, k) \to \cdots.$$
If \(\Lambda \) is a graded vector space over \(k \), we set \(H_\Lambda(z) = \sum_{i \geq 0} \) rank\(_i(\Lambda)\)z\(^i\); this formal power series is called the Hilbert series of \(\Lambda \). Since rank is additive on exact sequences, a rank count in the exact sequence above gives

\[
P_M^R(z) - aP_M^R(z) + zP_M^R = (1+z)H_{\text{Im}(\text{Tor}_{P(\nu_M,k)})}(z)
\]

where \(a = \text{rank}_k(M/mM) \). We set

\[
T_M^R(z) = H_{\text{Im}(\text{Tor}_{P(\nu_M,k)})}(z).
\]

2. Homological properties of powers of the maximal ideal

The purpose of this section is to prove Theorem 1 in the introduction, restated as Theorem 2.5 below.

For each integer \(j \) let

\[
\rho_j : R \to R/m^j \quad \text{and} \quad \nu_j : m^j \to m^{j-1}
\]
denote the canonical projection, respectively the inclusion, and consider the induced maps

\[
\text{Tor}_i^P(R/m^{j-1}, k) : \text{Tor}_i^R(R/m^{j-1}, k) \to \text{Tor}_i^R(R/m^{j-1}, k)
\]

\[
\text{Tor}_i^R(\nu_j, k) : \text{Tor}_i^R(m^j, k) \to \text{Tor}_i^R(m^{j-1}, k).
\]

Using the terminology in the appendix of [2], we say that \(m^j \) is a small submodule of \(m^{j-1} \) if \(\text{Tor}_i^R(\nu_j, k) = 0 \) for all \(i \geq 0 \).

Remark 2.1. For \(i, j \geq 0 \) let

\[
\eta_i^j : \text{Tor}_i^R(R/m^j, k) \to \text{Tor}_i^R(R/m^{j-1}, k)
\]
denote the map induced by the canonical projection \(R/m^j \to R/m^{j-1} \).

Note that \(\text{Tor}_i^R(\nu_j, k) = 0 \) if and only if \(\eta_i^{j+1} = 0 \). Indeed, this is a standard argument, using the canonical isomorphisms \(\text{Tor}_i^R(R/m^j, k) \cong \text{Tor}_i^R(m^j, k) \) which arise as connecting homomorphisms in the long exact sequence associated to the exact sequence

\[
0 \to m^n \to R \to R/m^n \to 0,
\]

with \(n = j \) and \(n = j - 1 \).

2.2. We state here a needed result of Rossi and Sèga [13, Lemma 1.2]:

Let \(\pi : (P, p, k) \to (R, m, k) \) be a surjective homomorphism of local rings. Assume there exists an integer \(a \) such that

1. The map \(\text{Tor}_i^P(R, k) \to \text{Tor}_i^P(R/m^a, k) \) induced by the natural projection \(R \to R/m^a \) is zero for all \(i > 0 \).

2. The map \(\text{Tor}_i^P(m^{2a}, k) \to \text{Tor}_i^P(m^a, k) \) induced by the inclusion \(m^{2a} \hookrightarrow m^a \) is zero for all \(i \geq 0 \).

Then \(\pi \) is a Golod homomorphism.

Proposition 2.3. Let \((R, m, k) \) be a local ring and let \(j \geq 2 \) be an integer. The following are equivalent:

1. \(m^j \) is a small submodule of \(m^{j-1} \);

2. \(\text{Tor}_i^P(R/m^{j-1}, k) \) is injective for all \(i \geq 0 \);

3. \(\rho_j \) is Golod and \(R/m^{j-1} \) is inert by \(\rho_j \).

If these conditions hold, then \(\rho_j \) is Golod for all integers \(l \) with \(j \leq l \leq 2j - 2 \).
Proof. (1)⇒(2): Let \(i \geq 0 \). Set \(\mathfrak{m}^{i-1} = \mathfrak{m}^i / \mathfrak{m}^j \). Consider long exact sequences associated to the exact sequence

\[
0 \to \mathfrak{m}^{i-1} \to R / \mathfrak{m}^i \to R / \mathfrak{m}^{i-1} \to 0
\]

and create the following commutative diagram with exact columns.

\[
\begin{array}{ccc}
\text{Tor}^R_{i+1}(R / \mathfrak{m}^{i-1}, k) & \longrightarrow & \text{Tor}^R_{i+1}(R / \mathfrak{m}^{i}, k) = 0 \\
\eta_{i+1} & \downarrow & \\
\text{Tor}^R_{i+1}(R / \mathfrak{m}^{i-1}, k) & \longrightarrow & \text{Tor}^R_{i+1}(R / \mathfrak{m}^{i-1}, k) \\
\Delta_i & \downarrow & \\
\text{Tor}^R(\mathfrak{m}^{i-1}, k) & \longrightarrow & \text{Tor}^R(\mathfrak{m}^{i-1}, k)
\end{array}
\]

By Remark 2.1, the hypothesis that \(\text{Tor}^R_i(\nu_j, k) = 0 \) implies that \(\eta_{i+1} = 0 \), and thus the connecting homomorphism \(\Delta_i \) is injective.

Levin’s proof of [9, 3.15] shows \(\text{Tor}^R_i(\nu_j, k) = 0 \) for all \(i \) implies \(\rho_j \) is Golod. (This also follows from the last part of the proof.) In particular, the map \(\rho_j \) is small by 1.6(1). Since \(\mathfrak{m}^{i-1} \) is a direct sum of copies of \(k \), it follows that \(\text{Tor}^R_i(\mathfrak{m}^{i-1}, k) \) is injective.

The bottom commutative square yields that \(\text{Tor}^R_{i+1}(R / \mathfrak{m}^{i-1}, k) \) is injective.

(2)⇒(1): Assuming that \(\text{Tor}^R_{i+1}(R / \mathfrak{m}^{i-1}, k) \) is injective, the top square in the commutative diagram above gives that \(\eta_{i+1} = 0 \), and thus \(\text{Tor}^R_i(\nu_j, k) = 0 \) by Remark 2.1.

(1)⇒(3): As mentioned above, \(\text{Tor}^R_i(\nu_j, k) = 0 \) for all \(i \) implies that \(\rho_j \) is Golod. Since we already proved (1)⇒(2), we know that \(\text{Tor}^R_i(R / \mathfrak{m}^{i-1}, k) \) is injective for all \(i \). By 1.7, \(R / \mathfrak{m}^{i-1} \) is then inert by \(\rho_j \).

(3)⇒(2): see 1.7.

Fix now \(l \) such that \(j \leq l \leq 2j - 2 \). We prove the last assertion of the proposition by applying 2.2, with \(\alpha = \rho_l \) and \(a = j - 1 \). Set \(\overline{R} = R / \mathfrak{m}^l \) and \(\overline{\mathfrak{m}} = \mathfrak{m} / \mathfrak{m}^l \). Let

\[
\overline{p}_{j-1} : \overline{R} \to \overline{R} / \overline{\mathfrak{m}}^{i-1}
\]

denote the canonical projection. To satisfy the first hypothesis of 2.2, we will show that the induced map

\[
\text{Tor}^R_i(\overline{p}_{j-1}, k) : \text{Tor}^R_i(\overline{R}, k) \to \text{Tor}^R_i(\overline{R} / \overline{\mathfrak{m}}^{i-1}, k)
\]

is zero for all \(i > 0 \). Since \(l \geq j \), we have \(\overline{R} / \overline{\mathfrak{m}}^{i-1} = R / \mathfrak{m}^{i-1} \) and \(\text{Tor}^R_i(\overline{p}_{j-1}, k) \) factors through

\[
\eta'_i : \text{Tor}^R_i(R / \mathfrak{m}^{j}, k) \to \text{Tor}^R_i(R / \mathfrak{m}^{i-1}, k).
\]

Since \(\text{Tor}^R_i(\nu_j, k) = 0 \) for all \(i \geq 0 \) by assumption, we have that \(\eta'_i = 0 \) for all \(i > 0 \) by Remark 2.1. Hence \(\text{Tor}^R_i(\overline{p}_{j-1}, k) = 0 \) for all \(i > 0 \).

To satisfy the second hypothesis of 2.2, we need to show that the induced map

\[
\text{Tor}^R_i(\overline{\mathfrak{m}}^{(j-1)}, k) \to \text{Tor}^R_i(\overline{\mathfrak{m}}^{i-1}, k)
\]

induced by the inclusion \(\overline{\mathfrak{m}}^{(j-1)} \to \overline{\mathfrak{m}}^{i-1} \) is zero for all \(i \geq 0 \). In fact, this map is trivially zero since the inclusion \(\overline{\mathfrak{m}}^{2j-2} \subseteq \mathfrak{m}^l \) (given by the inequality \(l \leq 2j - 2 \)) implies \(\overline{\mathfrak{m}}^{2j-2} = 0 \). Hence \(\rho_l \) is Golod by 2.2. \(\square \)
Lemma 2.4. Let \((R, m, k)\) be a local ring. If an integer \(t\) satisfies \(2 \leq t \leq v(R)\), then \(R/m^{t-1}\) is inert by \(\rho_t\).

Proof. We may assume that \(R\) is complete. Let \(R = Q/I\) be a minimal Cohen presentation, with \((Q, n, k)\) a regular local ring. Since \(t \leq v(R)\), we have \(I \subseteq n^t\). We can make thus the identification \(R/m^j = Q/n^j\) for all \(j \leq t\). Let \(\pi : Q \to R\) and \(\alpha_t : Q \to Q/n^t\) denote the canonical projections. Since \(\alpha_t = \rho_t \circ \pi\), 1.7.1 shows that it suffices to prove that \(R/m^{t-1}\) is inert by \(\alpha_t\). This can be seen by applying 1.7.2 with \(J = n^t, S = Q/n^t, \pi = n/n^t\) and \(M = S/\pi^{t-1} = Q/n^{t-1}\). \(\square\)

Theorem 2.5. Let \((R, m, k)\) be a local ring and let \(t\) be an integer satisfying \(2 \leq t \leq v(R)\). The following are equivalent:

1. \(m^t\) is a small submodule of \(m^{t-1}\);
2. \(\rho_t\) is small;
3. \(\rho_j\) is small for all \(j \geq t\);
4. \(\rho_t\) is Golod;
5. \(\rho_j\) is Golod for all \(j\) such that \(t \leq j \leq 2t - 2\);
6. \(R\) is \(t\)-homogeneous and the algebra \(\text{Ext}^*_R(k, k)\) is generated by \(\text{Ext}^1_R(k, k)\) and \(\text{Ext}^2_R(k, k)\).

Proof. The homological properties under consideration are invariant under completion. We may assume thus \(R\) is complete. Hence \(R = Q/I\) with \((Q, n, k)\) a regular local ring and \(I \subseteq n^t\), with \(t \geq 2\). In particular, we can make the identification \(R/m^t = Q/n^t\).

(2)\(\Rightarrow\)(3): This follows immediately from the definition of small homomorphism.

(3)\(\Rightarrow\)(4): Since \(R/m^t = Q/n^t\) is Golod (see 1.5), we can apply 1.6(2).

(4)\(\Rightarrow\)(2): See 1.6(1).

(4)\(\Rightarrow\)(1): By assumption \(\rho_t\) is Golod. By Lemma 2.4, \(R/m^{t-1}\) is inert by \(\rho_t\). Hence \(m^t\) is a small submodule of \(m^{t-1}\) by Proposition 2.3.

(1)\(\Rightarrow\)(5): See Proposition 2.3.

(5)\(\Rightarrow\)(4): Clear.

(2)\(\Rightarrow\)(6): Assume \(\rho_t\) is small, hence \(\text{Ext}^*_R(k, k)\) is a surjective homomorphism of graded algebras. In [8, 5.9], Levin shows \(\text{Ext}^{1}_{Q/n^t}(k, k)\) is generated by elements in degree 1 and 2. It follows that \(\text{Ext}^*_R(k, k)\) is also generated in degrees 1 and 2. To see that \(R\) is \(t\)-homogeneous, use Remark 1.1(2).

(6)\(\Rightarrow\)(2): Assume \(R\) is \(t\)-homogeneous and the Yoneda algebra \(\text{Ext}^*_R(k, k)\) is generated by \(\text{Ext}^1_R(k, k)\) and \(\text{Ext}^2_R(k, k)\). To show that \(\text{Ext}^*_R(k, k)\) is surjective, it suffices to show that \(\text{Ext}^1_R(k, k)\) and \(\text{Ext}^2_R(k, k)\) are surjective. Since \(t \geq 2\), we have that \(\text{Ker}(\rho_t) \subseteq m^2\), hence \(\text{Ext}^1_R(k, k)\) is an isomorphism, as discussed in 1.6. The fact that \(\text{Ext}^2_R(k, k)\) is surjective is given by Remark 1.1(2). \(\square\)

We say that \(R\) is a complete intersection if the ideal \(I\) in a minimal Cohen presentation \(\widehat{R} = Q/I\) is generated by a regular sequence. For such rings, the structure of the algebra \(\text{Ext}^*_R(k, k)\) is known, see Sjödin [16, §4]. In particular, it is known that this algebra is generated in degrees 1 and 2.

Corollary 2.6. If \(R\) is a \(t\)-homogeneous complete intersection, then conditions (1)-(5) of the Theorem hold. \(\square\)
Remark 2.7. Connected k-algebras satisfying the condition that the Yoneda algebra is generated in degrees 1 and 2 are called K_2 algebras by Cassidy and Shelton [4]. Since Koszul algebras are characterized by the fact that their Yoneda algebras are generated in degree 1, the notion of K_2 algebra can be thought of as a generalization of the notion of Koszul algebra.

3. Compressed Gorenstein local rings

Compressed Gorenstein local rings have been recently studied by Rossi and Şega [13]; we recall below the definition given there. We consider this large class of rings as a case study for the homological properties of interest.

3.1. Compressed Gorenstein local rings. Let (R, m, k) be a Gorenstein artinian local ring. The embedding dimension of R is the integer $e = \text{rank}_k(m/m^2)$, and the socle degree of R is the integer s such that $m^s \neq 0 = m^{s+1}$. Since R is complete, a minimal Cohen presentation of R is $R = Q/I$ with (Q, n, k) a regular local ring and $I \subseteq n^2$. Set

$$\varepsilon_i = \min \left\{ \left(e - 1 + s - i \right), \left(e - 1 + i \right) \right\} \quad \text{for all } i \text{ with } 0 \leq i \leq s.$$

According to [13, 4.2], we have

$$\lambda(R) \leq \sum_{i=0}^{e} \varepsilon_i,$$

where $\lambda(R)$ denotes the length of R. We say that R is a compressed Gorenstein local ring of socle degree s and embedding dimension e if R has maximal length, that is, equality holds in (3.1.1).

If R as above is compressed, we set

$$t = \left\lceil \frac{s + 1}{2} \right\rceil \quad \text{and} \quad r = s + 1 - t,$$

where $\lceil x \rceil$ denotes the smallest integer not less than a rational number x.

As discussed in [13, 4.2], we have $t = v(R)$. Note that if s is even then $s = 2t - 2$ and $r = t - 1$. If s is odd then $s = 2t - 1$ and $r = t$.

Remark 3.2. It is shown in [13, 4.2(c)] that if R is a compressed Gorenstein local ring, then R^e is Gorenstein, and it is thus a compressed Gorenstein k-algebra. Note that compressed Gorenstein algebras can be regarded as being generic Gorenstein algebras, see the discussion in [13, 5.5].

Let R be a compressed Gorenstein local ring of socle degree s. When s is even, the minimal free resolution of R^e over Q^e is described for example by Iarrobino in [6, 4.7]; in particular, it follows that I^* is generated by homogeneous polynomials of degree t. According to Lemma 1.3, it follows that R is t-homogeneous.

When s is odd, I^* can be generated in degrees t and $t + 1$; see [3, Proposition 3.2]. It is conjectured in [3, 3.13] that I^* is generated in degree t, and thus it is t-homogeneous, when R^e is generic in a stronger sense.

For the remainder of the section we use the assumptions and notation below.

3.3. Let (R, m, k) be a compressed Gorenstein local ring of embedding dimension e and socle degree s, with $2 \leq s \neq 3$. We consider a minimal Cohen presentation $R = Q/I$ with (Q, n, k) a regular local ring and $I \subseteq n^2$. Since $t = v(R)$ we have
I \subseteq n^t and I \nsubseteq n^{t+1}. Let h \in I \cap n^t \setminus n^{t+1}. Set \(P = Q/(h) \) and p = n/(h). Let
\[\kappa : P \rightarrow R \]
denote the canonical projection. The following properties shown in \[13\]
will be useful for our approach:
(1) \(m^{t+1} \) is a small submodule of \(m^r \) ([13, Theorem 3.3]);
(2) \(R/m^r \) is a Golod ring for \(2 \leq j \leq s \) ([13, Proposition 6.3]);
(3) \(\kappa : P \rightarrow R \) is a Golod homomorphism ([13, Theorem 5.1]).
(4) \(P_R(z) \cdot d_R(z) = P_R^Q(z) \) (see [13, Theorem 5.1]), where
\[d_R(z) = 1 - z(P_R^Q(z) - 1) + z^{e+1}(1 + z). \]

Remark 3.4. Let \(\eta : Q \rightarrow P \) denote the canonical projection. If \(M \) is an \(R \)-module
with \(m^{t-1}M = 0 \), then 1.7.2 shows that \(M \) is inert by \(\kappa \circ \eta \), since \(I \subseteq n^t \). It follows that
\(M \) is also inert by \(\kappa \), by 1.7.1.

Note that the condition \(m^{t-1}M = 0 \) is satisfied for \(M = R/m^j \) with \(j \leq t-1 \)
and also for \(M = m^r \) with \(j \geq r+1 \) (since \(t-1 + r+1 = s+1 \)), and thus \(M \) is
inert by \(\kappa \) and by \(\kappa \circ \eta \), by the above. The case \(M = m^r \) is treated below.

Lemma 3.5. The \(R \)-module \(m^r \) is inert by \(\kappa \).

Proof. Let \(i \geq 0 \). Consider the commutative diagram:

\[
\begin{array}{ccc}
\text{Tor}^P_1(m^{r+1}, k) & \xrightarrow{\text{Tor}^P_1(\nu_{r+1}, k)} & \text{Tor}^P_r(m^r, k) \\
\downarrow{\beta} & & \downarrow{\gamma} \\
\text{Tor}^R_1(m^{r+1}, k) & \xrightarrow{\beta} & \text{Tor}^R_r(m^r, k) \\
\end{array}
\]

where \(\beta = \text{Tor}^P_1(m^r, k) \) and \(\gamma = \text{Tor}^P_1(m^r/m^{r+1}, k) \). Since \(\text{Tor}^P_1(\nu_{r+1}, k) = 0 \) by
3.3(1), \(\alpha \) is injective. Since \(\kappa \) is Golod, it is in particular small by 1.6(1), and
it follows that \(\gamma \) is injective, since \(m^r/m^{r+1} \) is a direct sum of copies of \(k \). The
commutative square on the right shows that \(\beta \) is injective as well, hence \(m^r \) is inert
by \(\kappa \) by 1.7.

We now prove Theorem 2 in the introduction. We restate it below, with some
more detail in part (1).

Theorem 3.6. Let \(2 \leq s \neq 3 \) and let \(R \) be a compressed Gorenstein local ring of
socle degree \(s \). Let \(n \geq 1 \). The following hold:
(1) \(m^r \) is a small submodule of \(m^{n-1} \) if and only if \(n > s \) or \(n = r+1 \). Further-
more, if \(n \neq r+1 \) and \(n \leq s \), then \(\text{Tor}_1^R(\nu_n, k) \neq 0 \) for infinitely many
values of \(i \).
(2) \(\rho_n : R \rightarrow R/m^n \) is Golod if and only if \(n \geq r+1 \).

Corollary 3.7. With \(R \) as in the theorem, the following hold:
(1) If \(s \) is even, then \(\Ext^n_R(k, k) \) is generated by \(\Ext^n_1(k, k) \) and \(\Ext^n_2(k, k) \).
(2) If \(s \) is odd and \(R \) is \(t \)-homogeneous, then \(\Ext^n_R(k, k) \) is not generated by
\(\Ext^n_1(k, k) \) and \(\Ext^n_2(k, k) \).

Proof. If \(s \) is even, then \(r = t-1 \) and Theorem 3.6(1) gives that \(m^t \) is a small
submodule of \(m^{r-1} \). If \(s \) is odd, then \(r = t \), and Theorem 3.6(1) gives that
Since we know that \(\text{Tor}_r^R \) is a Golod homomorphism, and furthermore a small homomorphism (see Section 2). Let \(n \geq r + 1 \). The homomorphism \(\rho_n \) factors through \(\rho_{r+1} \), and it is thus small as well. Since \(R/m^j \) is Golod by 3.3(2), it follows by (2) in 1.6 that \(\rho_j \) is Golod. If \(n \leq r \), then we also have \(n \leq t \), since \(r = t \) or \(r = t - 1 \). In view of Theorem 2.5, the fact that \(\text{Tor}_n^R(\nu_n, k) \neq 0 \) in this case implies that \(\rho_n \) is not Golod.

We now prove (1). Let \(j \geq 0 \). We use the notation introduced in 1.8, noting that \(\nu_m = \nu_{j+1} \). We have

\[
\text{Tor}_i^R(\nu_{j+1}, k) = 0 \iff T_{m^i}^R(z) = 0
\]

and \(\text{Tor}_i^R(\nu_{j+1}, k) \neq 0 \) for infinitely many \(i \) if and only if \(T_{m^i}^R(z) \notin \mathbb{Z}[z] \).

The conclusion will be established through a concrete computation of \(T_{m^i}^R(z) \).

Using (1.8.1) we have:

\[
(3.7.1) \quad P_{m^i}^S(z) - a_j P_{m^i+j}^S(z) + z P_{m^i+j+1}^S(z) = (1 + z)T_{m^i}^S(z)
\]

where \(a_j = \text{rank}_k(m^j/m^{j+1}) \) and \(S = R \) or \(S = P \) or \(S = Q \). There are four distinct cases to be considered:

Case 1. Assume \(j = r \). Recall that \(m^{r+1} \) and \(m^r \) and \(k \) are all inert by \(\alpha \), by 3.5 and 3.4. Using the definition of inertness for each of these modules, an application of the formula (3.7.1) for \(j = r \), with \(S = R \) and then with \(S = P \), gives:

\[
T_{m^r}^R(z) = T_{m^r}^P(z) \cdot \frac{P_{k}^R(z)}{P_{k}^P(z)}
\]

Since we know that \(\text{Tor}_i^P(\nu_{r+1}, k) = 0 \), see 3.3(1), we have that \(T_{m^i}^P(z) = 0 \), hence \(T_{m^i}^R(z) = 0 \) and thus \(\text{Tor}_i^R(\nu_{r+1}, k) = 0 \).

Case 2. Assume \(r + 1 \leq j < s \). We know that \(m^{j+1}, m^j \) and \(k \) are all inert by \(\alpha \odot \eta: Q \to R \) by 3.4. Proceeding as above, we obtain:

\[
T_{m^i}^R(z) = T_{m^i}^Q(z) \cdot \frac{P_{k}^R(z)}{P_{k}^Q(z)} = \frac{T_{m^i}^Q(z)}{dR(z)}
\]

where the second equality is obtained using 3.3(4).

In [13, Lemma 4.4] it is proved that the map \(\text{Tor}_i^Q(\nu_{r+1}, k) \) is zero for all \(i \neq e \) and is bijective for \(i = e \). The argument given in the proof there, with a minor adjustment, shows that the following more general statement holds: For any \(j \) with \(r \leq j \leq s \), the map \(\text{Tor}_i^Q(\nu_{j+1}, k) \) is zero for all \(i \neq e \) and is bijective for \(i = e \).

Note that \(\text{Tor}_i^Q(m^j, k) \cong \text{Soc}(m^j) \), the socle of \(m^j \). Since \(R \) is Gorenstein, \(\text{rank}_k \text{Soc}(m^j) = \text{rank}_k \text{Soc}(R) = 1 \). It follows that

\[
T_{m^i}^Q(z) = z^e
\]

and thus \(T_{m^i}^R(z) \) is a quotient of a polynomial of degree \(e \) by a polynomial of degree \(e + 2 \). We conclude that \(T_{m^i}^R(z) \) is not a polynomial and thus \(\text{Tor}_i^R(\nu_{j+1}, k) \neq 0 \) for infinitely many \(i \). (On the other hand, note that \(T_{m^i}^R(z) \) is a multiple of \(z^e \) in \(\mathbb{Z}[[z]] \), and this implies that \(\text{Tor}_i^R(\nu_{j+1}, k) = 0 \) for all \(i < e \).)
Case 3. Assume $j = t - 1$ and $j < r$. Since $r = t - 1$ when s is even, this case can happen only when s is odd. In this case, one has $r = t$, hence $j = r - 1$ as well.

In particular, $j + 1 = r$ and we use the already established fact that $T_{m_i}^R(z) = 0$ in the second line below, in order to replace $P_{m_{j+1}}^R(z)$.

$$z(1 + z)T_{m_{j+1}}^R(z) = zP_{m_{j+1}}^R(z) - a_jzP_k^R(z) + z^2P_{m_{j+1}}^R(z)$$

$$= (P_{R/m_{j+1}}^R(z) - 1) - a_jzP_k^R(z) + z^2(a_{j+1}P_k^R(z) - zP_{m_{j+1}}^R(z))$$

$$= \left(P_{R/m_{j+1}}^Q(z) - (a_jz - a_{j+1}z^2)P_k^Q(z) - z^3P_{m_{j+1}}^Q(z)\right) \cdot \frac{P_k^R(z)}{P_k^Q(z)} - 1$$

For the last equality, we have used the definition of inertness and the fact that the R-modules R/m^3, m^{j+2} and k are all inert by $\times \circ \eta$; this can be seen using again 3.4, since $j = t - 1$ and $j + 2 = r + 1$. Using 3.3(4), we have

$$T_{m_{j+1}}^R(z) = \frac{P_{R/m_{j+1}}^Q(z) - (a_jz - a_{j+1}z^2)P_k^Q(z) - z^3P_{m_{j+1}}^Q(z) - d_{R}(z)}{z(z + 1)\delta_{R}(z)}$$

Since $d_{R}(z)$ has degree $e + 2$ and $P_{m_{j+1}}^Q(z)$ is a polynomial of degree e (note that $m^{j+2} = m^{j+1} \neq 0$), the outcome of this computation is that $T_{m_{j+1}}^R(z)$ is a quotient of a polynomial of degree $e + 3$ by a polynomial of degree $e + 4$. Again, it is clear that $T_{m_{j+1}}^R(z)$ cannot be a polynomial.

Case 4. Assume $j \leq t - 2$. We have:

$$z(1 + z)T_{m_{j+1}}^R(z) = zP_{m_{j+1}}^R(z) - a_jzP_k^R(z) + z^2P_{m_{j+1}}^R(z)$$

$$= (P_{R/m_{j+1}}^R(z) - 1) - a_jzP_k^R(z) + z\left(P_{R/m_{j+1}}^R(z) - 1\right)$$

$$= \left(P_{R/m_{j+1}}^Q(z) - a_jzP_k^Q(z) + zP_{R/m_{j+1}}^Q(z)\right) \cdot \frac{P_k^R(z)}{P_k^Q(z)} - 1 - z$$

where the third equality is due to the fact that R/m^3, R/m^{j+1} and k are all inert by $\times \circ \eta$, in view of 3.4. Using 3.3(4) as above, one sees that $T_{m_{j+1}}^R(z)$ can be written as a quotient of a polynomial of degree $e + 3$ by a polynomial of degree $e + 4$, and thus it is not a polynomial.

Since $\text{Tor}_{s}^R(\nu_j, k) = 0$ is clearly zero when $j > s$, we exhausted all cases for j. \hfill \Box

4. Acknowledgement

We would like to thank Frank Moore for a useful discussion about K_2 algebras, and Luchezar Avramov and the referee for suggestions regarding the exposition.

References

Justin Hoffmeier, Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468, U.S.A.
E-mail address: jhoff@nwmissouri.edu

Liana M. Šega, Department of Mathematics and Statistics, University of Missouri, Kansas City, MO 64110, U.S.A.
E-mail address: segal@umkc.edu