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Abstract. The paper investigates a special class of quasi-local rings. It is
shown that these rings are coherent and regular in the sense that every finitely
generated submodule of a free module has a finite free resolution.

1. Introduction

In a series of papers, W. Heinzer, S. Wiegand and C. Rotthaus investigated a
class of quasi-local rings which can be described as a peculiar class of birational
extensions of polynomial rings over fields. The construction method used for these
rings has been introduced by Akizuki and Nagata in order to produce specific
examples of Noetherian local rings. Roughly these rings can be described as follows:

Let K be a field and x, y1, . . . , yn be variables overK and let τ1, . . . , τm ∈ xK[[x]]
be power series in x which are algebraically independent over K(x). Fix an element

f ∈ K[x, y1, . . . , yn, τ1, . . . , τm]

which is algebraically independent over K(x, y1, . . . , yn). The polynomial f can be
considered as an element of the (x)-adic completion K[y1, . . . , yn](y1,...,yn)[[x]] of the
localized polynomial ring R = K[x, y1, . . . , yn](x,y1,...,yn) and thus can be approxi-
mated in a natural way by polynomials rn ∈ R so that f−rn ∈ xnK[y1, . . . , yn][[x]]
for all n ∈ N. The elements

fn = x−n(f − rn) ∈ K[y1, . . . , yn][[x]]

are the so-called endpieces of f . The rings B under investigation in this paper are
obtained by adjoining f and all its endpieces fn to R and by localizing at the max-

imal ideal which is the contraction of the maximal ideal of R̂ = K[[x, y1, . . . , yn]].
In a way the ring B can be understood as a birational extension of the polynomial
ring in n + 2 variables x, y1, . . . , yn, f over K. Moreover, B can be written as a
direct limit of localized polynomial rings in the n+ 2 variables x, y1, . . . , yn and fn
over K.

In [3], Heinzer, Wiegand, and Rotthaus showed that a simple flatness criterion
on rings essentially of finite type over the field K decides if the constructed ring
B is Noetherian or not. In previous papers an emphasis has been put on the
construction of Noetherian rings and in a way these examples are well understood.
In the Noetherian case B is a regular local ring of dimension n+1 with completion

R̂ = K[[x, y1, . . . , yn]]. An appropriate choice of f allows the construction of rings
with strange formal fibers. For example, if f is not reduced in the completion
K[[x, y1, . . . , yn]] the quotient ring B/(f) is an analytically ramified domain.
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Not very much is known in the non-Noetherian case. If B is not Noetherian,
the maximal ideal m of B is still n + 1 generated by x, y1, . . . , yn and the m-adic

completion ofB equals the formal power series ring R̂ = K[[x, y1, . . . , yn]]. However,
if B is not Noetherian then B has Krull dimension n+2. The purpose of this paper
is to show that B is a coherent regular quasilocal ring in the sense that every
finitely generated submodule of a free B-module has a finite free resolution. Our
proof makes use of the fact that B is the nested union of localized polynomial rings
Bn in n+ 2 variables over K.

The paper is organized as follows. In section 1 we discuss the construction
method and the main properties of B. In section 2 we prove a main result which
shows that every finitely generated submodule of a free B-module is of finite pre-
sentation. Since B is the nested union of localized polynomial rings of dimension
n+2, and thus of regular local rings, we show in the last section that every finitely
generated submodule of a free B-module has projective dimension at most n+ 1.

2. The rings under consideration

2.1. Construction. Let K be a field, x, y1, . . . , yn variables in degree 1 over K
and let R0 = K[x, y1, . . . , yn] be the polynomial ring in n + 1 variables over K.
Set R = (R0)(x,y1,...,yn), the localized polynomial ring with maximal ideal mR =
(x, y1, . . . , yn). Let τ1, . . . , τm ∈ xK[[x]] be power series over K and assume that
the set {τ1, . . . , τm} is algebraically independent over K(x). Assume also that the
τ ′is can be represented as:

τi =

∞∑

i=1

aijx
j ∈ xK[[x]]

where aij ∈ K. Let

f(x, y1, . . . , yn, τ1, . . . , τm) ∈ K[x, y1, . . . , yn, τ1, . . . , τm]

be a polynomial in these variables. It can be considered as a power series in
K[y1, . . . , yn][[x]]. Throughout the paper we assume that f is transcendental over
L = Q(R), the fraction field of R. Since only the variables τ1, . . . , τm are of interest
for our investigation we write:

f(τ1, . . . , τm) = f(x, y1, . . . , yn, τ1, . . . , τm).

The end pieces ft of f are defined as follows: For all t ∈ N set

ft = x−t
(
f − f(

t∑

i=1

a1jx
j , . . . ,

t∑

i=1

amjx
j)

)

where f(
∑t

i=1 a1jx
j , . . . ,

∑t
i=1 amjx

j) is obtained from f(τ1, . . . , τm) by replacing

each τi by its front piece
∑t

j=1 aijx
j . By the Taylor formula ft is again an element

of K[y1, . . . , yn][[x]]. Moreover, for all t, k ∈ N the end pieces ft and ft+k are related
as follows:

(2.1.1) ft = xkft+k + rt,k

where rt,k ∈ K[x, y1, . . . , yn]. In this paper we have fixed the definition of the
remainder rt,k. It has been shown in [6, 4.3 Proposition] that for the subsequent
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construction of B we could have chosen any element rt,k ∈ R so that ft−rt,k ∈ xkR̂
and defined the end pieces ft+k accordingly. For all t ∈ N set

Bt = R[ft](mR,ft).

This ring can be considered as a polynomial ring in n+2 variables over K, localized
at the irrelevant maximal ideal. It is naturally a subring of the power series ring

R̂ = K[[x, y1, . . . , yn]]. For all t ∈ N the inclusion:

ιt,1 : Bt →֒ Bt+1

is induced by the identity on R and by ft 7→ xft+1 + rt,1. The ring of interest is
given by the union:

B =
∞⋃

t=1

Bt = lim
−→
t∈N

Bt.

This ring B has been studied in [3]. It is relatively easy to decide if B is Noetherian
or not. Consider the homomorphism of algebras essentially of finite type over K:

ϕ : R[f ] −→ (R[τ1, . . . , τn](mR,τ1,...,τm))x

and let

ψ : (R[τ1, . . . , τn](mR,τ1,...,τm))x −→ R̂x = K[[x, y1, . . . , yn]]x

denote the naturally embedding. The homomorphism ψ is always faithfully flat [3].
According to [3, Theorem 3.2], B is a Noetherian ring if and only if ϕ is flat at

all prime ideals of (R[τ1, . . . , τn](mR,τ))x which lie under prime ideals of R̂x via ψ.
Equivalently B is Noetherian if and only if the composition:

R[f ]
ϕ

−−−−→ (R[τ1, . . . , τn](mR,τ))x
ψ

−−−−→ R̂x

is flat. In all cases the maximal ideal mB of B is generated by x, y1, . . . , yn, every
ideal of B which contains the element x is finitely generated, and the completion

of B with respect to the maximal ideal mB of B equals R̂. The equation (2.1.1)
shows that for all t, k ∈ N we have (Bt)x = (Bt+k)x. In particular, Bx = (Bt)x
for all t ∈ N, and the rings B and Bt have the same field of quotients. Another
interesting property of the ring B has been studied in [7]. As a consequence of [7,
Theorem 2.1] we obtain that B is Noetherian if and only if the Krull dimension of
B equals n+ 1. In the non-Noetherian case B has dimension n+ 2.

Our aim is to show that the ring B defined above is a coherent regular quasi-local
domain. In the Noetherian case this is a well known fact about regular local rings.
Our proof does not distinguish between the Noetherian and the non-Noetherian
case, that is, we will not make use of the nature of the map ϕ.

2.2. Example. The following example has been studied extensively in [4] and [5].
As above, letK be a field and consider the localized polynomial ring in 2 variables

R = K[x, y](x,y). Let τ ∈ xK[[x]] be an algebraically independent element over
K(x):

τ =

∞∑

i=1

aix
i ; ai ∈ K.

For all t ∈ N let

τt =

∞∑

i=t+1

aix
i−t
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be the end pieces of τ in K[[x, y]] and let q = p1 . . . ps ∈ (x, y)R be a product of
finitely many mutually not associated prime elements pi ∈ R \ (x). Set f = q · τ .
Then for all t ∈ N the end pieces of f are given by:

ft = q · τt = q
( ∞∑

i=t+1

aix
i−t

)
.

For all t, k ∈ N, notice that there is the following formula relating ft and ft+k:

(2.2.1) ft = xkft+k + q
( t+k∑

j=t+1

ajx
j−t

)
.

In this case the remainders are given by: rt,k = q
( ∑t+k

j=t+1 ajx
j−t

)
. Set Bt =

R[ft](x,y,ft) and B =
⋃

t∈N

Bt ⊆ Q(R)(τ).

Next we show that the map

ϕ : R[f ] −→ (R[τ ](x,y,τ))x

is not flat. For every prime ideal Pi = (pi)(R[τ ](x,y,τ))x (which is the contraction

of Qi = piK[[x, y]]x) we have that ϕ−1(Pi) = (pi, f) is a prime ideal of height 2 in
R[f ]. In [4] and [5] it has been shown that B is a 3- dimensional quasi-local domain
with maximal ideal mB = (x, y). Moreover, B has exactly s prime ideals of height
2. These prime ideals are exactly the non-finitely generated primes of B.

2.3. Let now B and Bt be as defined in 2.1, with B ⊆ K[[x, y1, . . . , yn]] and with
f(x, y1, . . . , yn, τ1, . . . , τm) ∈ K[x, y1, . . . , yn, τ1, . . . , τm]. Recall that the inclusion
ιt,k : Bt →֒ Bt+k is the identity on R and maps ft into xkft+k + rt,k. It induces a
surjective map

ψt,k : Bt[Zt,k] → Bt+k

given by

ψt,k|Bt
= ιt,k and ψt,k(Zt,k) = ft+k.

Since Bt is a regular local ring of dimension n + 2, the kernel of ψt,k is the
principal prime ideal generated by the polynomial:

ht,k = xkZt+k + rt,k − ft

and the map ψt,k induces an isomorphism:

ψt,k :
Bt[Zt,k]

(ht,k)

∼=
−−→ Bt+k

For each triple (t, k,m) ∈ N
3 we have the following commutative diagram:

0 // (ht,k+m) //

eϕ

��

Bt[Zt,k+m]
ψt,k+m

//

ϕ

��

Bt+k+m // 0

0 // (ht+k,m) // Bt+k[Zt+k,m]
ψt+k,m

// Bt+k+m // 0

where ϕ = ϕt,k,m : Bt[Zt,k+m] → Bt+k[Zt+k,m] is defined by

ϕ|Bt
= ιt,k and ϕ(Zt,k+m) = Zt+k,m
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and the map ϕ̃ is the restriction of ϕ. Notice that we can write the ring Bt+k+m
as a homomorphic image of the ring Bt[Zt,m+k] and as a homomorphic image of
Bt+k[Zt+k,m] and that ϕ is an extension of the natural map: ιt,k : Bt −→ Bt+k. ϕ
maps the kernel of ψt,k+m into the kernel of ψt+k,m.

It is crucial for the proof in Section 3 to understand how ht,k+m relates to ht+k,m
under the map ϕ.

2.4. Lemma. The following relation holds for all t, k,m:

ϕ̃(ht,m+k) = xkht+k,m

Proof. First note that

rt,m+k = ft − xk+mft+m+k

= ft − xkft+k + xkft+k − xk+mft+m+k

= rt,k + xkrt+k,m.

Thus

ϕ̃(ht,m+k) = ϕ(ht,m+k)

= ϕ(xm+kZt,m+k + rt,m+k − ft)

= xm+kZt+k,m + rt,m+k − ft

= xm+kZt+k,m + rt,k + xkrt+k,m − ft.

Using the equation (2.1.1), we further have:

ϕ̃(ht,m+k) = xm+kZt+k,m + rt,k + xkrt+k,m − ft

= xm+kZt+k,m + xkrt+k,m − xkft+k

= xkht+k,m.

�

3. Coherence

A ring B is said to be coherent if every finitely generated ideal of B is of finite
presentation. We refer to [2] for basic results concerning this notion.

In this section we show that the ring B defined in 2.1 is coherent. Since the proof
will also be used in the next section, we show a more general statement, namely
that every finitely generated submodule of a finitely generated free B-module is of
finite presentation.

3.1. Theorem. Let B ⊆ K[[x, y1, . . . , yn]] be a ring as in 2.1. If r ∈ N and

M =
∑s

i=1 Bmi ⊆ Br is finitely generated submodule of Br, then M is of finite

presentation.

The lemma used in the proof of the Theorem is independent of the more complex
structure of the ring in 2.1, hence we prove it in greater generality, for a ring B as
described below.

3.2. Let B be a commutative ring, {Bn}n≥0 a sequence of Noetherian subrings of
B with Bn ⊆ Bn+1 for all n ∈ N and such that B = ∪n≥0Bn.
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Let M =
∑s
i=1 Bmi ⊆ Br be a finitely generated submodule of the finite free

B-module Br and let q ∈ N be an integer so that

mi ∈ Brn for all n ≥ q .

For all n ≥ q set

Mn =

s∑

i=1

Bnmi ⊆ Brn .

Let χ : Bs → M denote the B-module homomorphism which sends the standard
basis of Bs to m1, . . . ,ms. For each n ≥ q let χn : Bsn → Mn denote the similarly
defined Bn-homomorphism which is the restriction of χ. Set Ln = Ker(χn) and
L = Ker(χ). Note that L = ∪n≥qLn. For each pair i, t with i ≥ t ≥ q the following
diagram is commutative:

0 // Lt //
� _

��

Bst
χt

//
� _

��

Mt
//

� _

��

0

0 // Li //
� _

��

Bsi
χi

//
� _

��

Mi
//

� _

��

0

0 // L // Bs
χ

// M // 0

For i, t as above we let

βt,i : Lt ⊗Bt
Bi → Li

denote the map induced by the inclusion Lt →֒ Li and we let

βt : Lt ⊗Bt
B → L

denote the map induced by the inclusion Lt →֒ L.

3.3. Lemma. With the notation in 3.2, the following hold:

(1) The map βt,i is surjective if and only if TorBt

1 (Bi, B
r
t /Mt) = 0.

(2) If there exists an increasing sequence of integers {tn}n≥q such that βtn,tn+1
is

surjective for all n ≥ q, then βt is surjective for all t ≥ tq and the B-module

M is of finite presentation.

Proof. (1) For i, t with i ≥ t ≥ q we have a commutative diagram, with vertical
maps induced by the inclusions Mt →֒Mi, B

s
t →֒ Bri , respectively Lt →֒ Li.

Lt ⊗Bt
Bi //

βt,i

��

Bst ⊗Bt
Bi //

∼=
��

Mt ⊗Bt
Bi //

αt,i

��

0

0 // Li // Bsi
χi

// Mi
// 0

.

The map βt,i is surjective if and only if αt,i is injective. In order to understand the
latter map, consider the short exact sequence:

0 →Mt → Brt → Brt /Mt → 0

and the induced sequence:

0 → TorBt

1 (Brt /Mt, Bi) →Mt ⊗Bt
Bi → Bri .

Notice that the image of the rightmost map is precisely Mi and we have a short
exact sequence:

0 → TorBt

1 (Brt /Mt, Bi) →Mt ⊗Bt
Bi

αt,i

−−→Mi → 0.
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In consequence, the map βt,i is surjective whenever TorBt

1 (Bi, B
r
t /Mt) = 0.

(2) Under the given hypothesis, if {l1, . . . , ld} is a generating set of the Btn -
module Ltn for some n ≥ q, then l1, . . . , ld also generate the Btk -module Ltk for
all k ≥ n. Since L = ∪k≥nLtk , it follows that L is generated by l1, . . . , ld. In
particular, this shows that βtn is surjective for all n ≥ q. Note that for t ≥ tq
we have βtq = βt ◦ (βtq ,t ⊗Bt

B). Since βtq is surjective, it follows that βt is
surjective. �

In order to prove that a given finitely generated module M is of finite presen-
tation, our approach will be to show that there exists an increasing sequence of

integers {tn}n≥q such that Tor
Btn

1 (Btn+1
, Brtn/Mtn) = 0 for all n ≥ q. This will be

achieved by using certain maps between homology modules. The purpose of the
next paragraph is to define and set up notation for these maps.

3.4. Let π : A → A′ be a ring homomorphism, M,N be A-modules, M ′, N ′ be
A′-modules and let f : M → M ′ and g : N → N ′ be A-module homomorphisms.
(We make the convention that an A′-module inherits a structure of A-module via
π.) Let F , respectively G, be a free A-resolution of M , respectively N , and let F ′,
respectively G′, be a free A′-resolution of M ′, respectively N ′.

Note that the map f induces a map M ⊗A A
′ → M ′, which lifts (uniquely, up

to homotopy) to a homomorphism of complexes of A′-modules F ⊗A A′ → F ′.
By composing with the natural homomorphism F → F ⊗A A

′, we obtain thus a

homomorphism of complexes of A-modules f̃ : F → F ′. Similarly, we can define
g̃ : G→ G′.

With TorA(M,N) = H(F ⊗A G) and TorA
′

(M ′, N ′) = H(F ′ ⊗A′ G′), we define

Torπ(f, g) : TorA(M,N) → TorA
′

(M ′, N ′)

to be the map induced in homology by the map f̃ ⊗A g̃ : F ⊗A G→ F ′ ⊗A′ G′.
When M = M ′ and f is the identity map M → M , we will write Torπ(M, g)

instead of Torπ(f, g).

Proof of Theorem 3.1. Let B ⊆ K[[x, y1, . . . , yn]] be defined as in 2.1 and let M =∑s
i=1 Bmi ⊆ Br be a finitely generated submodule of the finite free module Br.

We use the notation introduced in 3.2, with this choice of B and M .
Fix an integer t with t ≥ q and choose an integer m = mt such that

(3.1.1) (Mt : x
m)Br

t
= (Mt : x

n)Br
t

for all n ≥ m.

We will show that Tor
Bt+k

1 (Bt+k+m, B
r
t+k/Mt+k) = 0 for all k ≥ m. Then

Lemma 3.3 implies that M has a finite presentation.
Let t, k,m be as above and set p = t + k + m. Recall that ιt,k : Bt → Bt+k

denotes the natural inclusion, as in Section 1. Since we fixed the indices t and k,
for the remaining of the proof we will simply denote this map by ι. Consider the
commutative diagram

0 // Mt
//

� _

ε

��

Brt //
� _

ιr

��

Brt /Mt
//

π
��

0

0 // Mt+k
// Brt+k // Brt+k/Mt+k // 0

Now apply TorBt(Bp,−), respectively TorBt+k(Bp,−), to these short exact se-
quences and write the long exact sequences in homology. Basic homological algebra
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arguments, as in [1, V 4.3, VI 4.4], show that the following diagram is commutative.
(The horizontal maps on the left are the connecting homomorphisms.)

0 // TorBt

1 (Bp, B
r
t /Mt) //

Torι
1(Bp,π)

��

Bp ⊗Bt
Mt

//

Torι
0(Bp,ε)

��

Mp
// 0

0 // Tor
Bt+k

1 (Bp, B
r
t+k/Mt+k) // Bp ⊗Bt+k

Mt+k // Mp
// 0

.

The map Torι0(Bp, ε) sends 1⊗Bt
mi to 1⊗Bt+k

mi, for all i with 0 ≤ i ≤ s. Recall
that for n ≥ q the Bn-module Mn is generated by m1, . . .ms. In consequence,
Torι0(Bp, ε) is surjective and the Snake Lemma gives that the map Torι1(Bp, π) is
surjective.

In order to prove Tor
Bt+k

1 (Bp, B
r
t+k/Mt+k) = 0, we will show that the surjective

map Torι1(Bp, π) is equal to zero.
To compute the map Torι1(Bp, π), we use the commutative diagram in 2.3. We

apply TorBt(−, Brt /Mt), respectively TorBt+k(−, Brt /Mt), to the exact sequences in
this diagram and we write the induced long exact sequences. As above, we obtain
the following commutative diagram:

0 // TorBt

1

(
Bp,

Brt
Mt

)
//

Torι
1(Bp,π)

��

(ht,k+m) ⊗Bt

Brt
Mt

//

Torι
0(eϕ,π)

��

Bt[Zt,k+m]r

M∗
t

Torι
0(ϕ,π)

��

0 // Tor
Bt+k

1

(
Bp,

Brt+k
Mt+k

)
// (ht+k,m) ⊗Bt+k

Brt+k
Mt+k

//
Bt+k[Zt+k,m]r

M∗
t+k

Here M∗
t and M∗

t+k are the submodules of Bt[Zt,k+m]r, respectively Bt+k[Zt+k,m]r,
which are generated by m1, . . . ,ms. The vertical map in the middle sends the
element ht,k+m ⊗Bt

ēj to the element ϕ̃(ht,m+k) ⊗Bt+k
ēj where ēj denotes the

image of the canonical basis element ej in Brt /Mt, respectively Brt+k/Mt+k.

An element in TorBt

1 (Bp, B
r
t /Mt) has the form

ω =

n∑

i=0

(
biZ

i
t,m+kht,k+m ⊗ ui

)
, with bi ∈ Bt and ui ∈ Brt /Mt.

By Lemma 2.4 we have ϕ̃(ht,m+k) = xkht+k,m and we obtain

Torι1(Bp, π)(ω) =

n∑

i=0

(
biZ

i
t+m,kx

kht+k,m ⊗ ui
)
.

We claim that xkui = 0 for each i. In order to see this, first note that the ideal
(ht,k+m) is a free Bt-module with basis {ht,k+mZ

i}i≥0. Thus

(ht,k+m) ⊗Bt
Brt /Mt

∼=

∞⊕

i=0

(
ht,k+mZ

i ⊗Brt /Mt

)
∼=

∞⊕

i=0

Brt /Mt.

Since (Bt+k)x = (Bt)x, we have

TorBt

1 (Bt+k, B
r
t /Mt)x = 0

and ω is equal to zero when regarded as an element of
(
(ht,k+m) ⊗Bt

Brt /Mt

)
x
.
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This implies that for each i we have uix
si ∈Mt for some si ∈ N, hence:

ui ∈ (Mt : xm)Br
t

for all i

Since we have chosen k such that k ≥ m, it follows from (3.1.1) that xkui = 0 for
all i, and hence Torι1(Br, π)(ω) = 0. We have thus Torι1(Br, π) = 0 and this finishes
the proof, as discussed above. �

4. Regularity

A coherent ring is said to be regular if every finitely generated submodule of a
finitely generated free B-module has a finite free resolution. In this section we show
that the rings B in 2.1 are regular.

4.1. Theorem. Let B ⊆ K[[x, y1, . . . , yn]] be a ring as in 2.1. If M is a finitely

generated submodule of a finitely generated free B-module, then pdBM ≤ n+ 1. In

particular, B is regular.

Proof. Let M =
∑s

i=1Bmi ⊆ Br be a finitely generated submodule of the finite
free module Br. Let Bn = R[fn](mR,fn) be the localized polynomial rings in n+ 2
variables as in 2.1. Then B = ∪∞

n=1Bn and we will further use the notation in 3.2.
We set L1 = L, L1

n = Ln and s0 = s, where L, Ln are as in 3.2.
In the proof of Theorem 3.1 we showed that the ring B in 2.1 satisfies the

hypothesis of Lemma 3.3(2) for a certain strictly increasing sequence {tn}n≥q. In
particular, by renaming Btn as Bn, we may assume that the maps βn,n+1 : Ln⊗Bn

Bn+1 → Ln+1 are surjective for all n ≥ q, while the equalities B = ∪∞
n=qBn

and L1 = ∪∞
n=qL

1
n still hold. Note that Lemma 3.3 also implies that the map

βq : Lq ⊗Bq
B → L is surjective.

Since L1
q is a finitely generated Bq-module, we have

L1
q =

s1∑

i=1

Bqℓ1i with ℓ1i ∈ L1
q .

The surjectivity of the maps βq,n and βq implies that we also have:

L1
t =

s1∑

i=1

Btℓ1i and L1 =

s1∑

i=1

Bℓ1i.

We will use next the constructions in 3.2, only with L1 =
∑s1

i=1Bℓ1i ⊆ Bs0

instead of M =
∑s0

i=1Bmi ⊆ Br. For all t ≥ q we obtain thus exact sequences:

0 → L2
t → Bs1t → L1

t → 0

and

0 → L2 → Bs1 → L1 → 0

with L2 = ∪∞
n=qL

2
n. As above, we may assume L2 =

∑s2
i=1 Bℓ2i is a finitely gen-

erated B-module, and L2
t =

∑s2
i=1Btℓ2i for each t ≥ q. Repeating this process we

obtain for t ≥ q resolutions of Mt:

0 → Ln+1
t → Bsn

t → B
sn−1

t → · · · → Bs1t → Bs0t →Mt → 0

and for the B-module M :

0 → Ln+1 → Bsn → Bsn−1 → · · · → Bs1 → Bs0 →M → 0.
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Again Ln+1 = ∪t≥qL
n+1
t and Ln+1 =

∑sn+1

i=1 Bℓn+1,i is a finitely generated B-

module and Ln+1
t =

∑sn+1

i=1 Btℓn+1,i for each t ≥ q. Each Bt is a Noetherian
regular local ring of dimension n+ 2. For each t, the Bt-module Mt has depth at
least 1 (because it is contained in a free module), hence the projective dimension of
Mt is at most n+ 1. Thus all n+ 1th syzygies Ln+1

t are free Bt-modules. Since for
all t ∈ N the quotient fields Q(Bt) and Q(B) are identical and since for sufficiently
large t ∈ N the generators of Ln+1

t generate the B-module Ln+1, we conclude that
Ln+1 is a free B-module. The B-module M has thus a finite free resolution:

0 → Bsn+1 → Bsn → · · · → Bs0 →M → 0 . �

4.2. A projective resolution for the residue field. Let B ⊆ K[[x, y1, . . . , yn]]
be again as in 2.1. Recall that B is a local ring with maximal ideal mB =
(x, y1, . . . , yn)B. If B is Noetherian, then a minimal projective resolution of the
residue field K is the Koszul complex KB on the sequence x, y1, . . . , yn. We claim
that this remains the case when B is assumed non-Noetherian (and hence the Krull
dimension of B is n+ 2).

Proposition. The Koszul complex KB on the sequence x, y1, . . . , yn is a free res-

olution of K over B. In particular, pdBK = n+ 1.

Proof. The construction in 3.2 applied to the module M := mB = (x, y1, . . . , yn)B
gives that Mt is the Bt-ideal generated by the regular sequence x, y1, . . . , yn. The
Koszul complex KBt on this sequence represents a free resolution of Bt/Mt over Bt,

and hence KBt

>1 is a free resolution of Mt. The argument in the proof of Theorem

4.1 then shows that KB>1 is a free resolution of M(= mB) over B, hence KB is a

free resolution of K = B/mB. �
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