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ABSTRACT. We construct a class of Gorenstein local rings R which admit min-
imal complete R-free resolutions C' such that the sequence {rankp C;} is con-
stant for 7 < 0, and grows exponentially for all 2 > 0. Consequently, over these
rings we show that there exist finitely generated R-modules M and N such
that Ext%, (M, N) = 0 for all 5 > 0, but Ext’, (N, M) # 0 for all ¢ > 0.

INTRODUCTION

Let R be a commutative local Noetherian ring with maximal ideal m and residue
field kK = R/m, and let M,N denote finitely generated R-modules. We write vg(M)
for the minimal number of generators of M.

It is well-known that R is Gorenstein if and only if the following remarkable
symmetry is satisfied: for any module M we have Exty(M, k) = 0 for all i > 0
if and only if Exti(k, M) = 0 for all i > 0 (equivalently, pdz(M) < oo if and
only if idg(M) < o0). A fundamental question is whether this statement still
holds when k is replaced with any module N. More generally, does the Gorenstein
property of R translate into similarities in the asymptotic behavior of the sequences
{vr(Ext}y (M, N))}iso and {vr(Extly (N, M))}iso?

To describe the asymptotic behavior of such sequences, we rely on established
notions of growth. We say that a sequence of positive integers {c; }i>o has polynomial
growth of degree d if there exist polynomials f(t) and g(t), both of degree d and
having the same leading term, such that g(i) < ¢; < f(4) for all i > 0. (We adopt
the convention that the zero polynomial has degree —1.) We say that {c;};>0 has
exponential growth if there exist a,b € R with 1 < a < b such that a* < ¢; < b? for
all ¢ > 0. Throughout this paper, we say that two sequences have the same growth,
or the same asymptotic behavior whenever the following holds: if one of them has
polynomial growth, then the other one has polynomial growth of the same degree,
and if one of them has exponential growth, then the other one has exponential
growth as well.

It is thus meaningful to ask:

Question. If R is a Gorenstein ring, then do the sequences {VR(EXt%(M, N))}iso
and {vr(Extlk(N,M))}i>o have the same growth?

Since complete intersection rings are Gorenstein, a foundation is laid by the
following theorem of Avramov and Buchweitz [2, 5.6]:
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Theorem AB. Suppose R is a complete intersection ring. Then for any pair of
finitely generated R-modules M and N the sequences {vg(Ext(M,N))}i>o and

{VR(EXt%(N, M))}i>o both have polynomial growth of the same degree.

Complete intersection rings R are actually characterized by polynomial growth of
the sequences {vg (Ext% (M, N))}i>o. Therefore, when attempting to extend Theo-
rem AB to arbitrary Gorenstein rings, one needs to keep in mind that the sequences
under consideration often have exponential growth. Although it is known that these
sequences are always exponentially bounded above, it is not known whether inter-
mediate types of growth are possible.

The answer to the question above was not previously known for arbitrary Goren-
stein rings, even in the particular case when N = k. In this case, the notation can
be simplified: the numbers (M) = vg( Exty (M, k)) are called the Betti numbers
of M and the numbers p (M) = vg(Exth(k, M)) are called the Bass numbers of
M (associated to the maximal ideal m). The question becomes thus whether the
Betti and the Bass sequence of M have the same asymptotic behavior.

The purpose of this paper is to give a fairly complete answer to the question
above. In view of the usual reduction by a maximal regular sequence, we may
assume whenever convenient that R is artinian. We first show that if m® = 0 or
codim R < 4 (where codim R in general denotes the number vg(m) — dim R) then
the Betti and the Bass sequence of a finitely generated R-module M have the same
growth. However, the main result of the paper provides a negative answer:

Theorem. There exist Gorenstein rings R with m* = 0 and codim R = 6, and
finitely generated R-modules, such that their Betti sequence is constant (respectively
has exponential growth) and their Bass sequence has exponential growth (respectively
is constant). Moreover, there exist finitely generated R-modules M, N such that

Exto(M,N)=0 foralli>0 and Exth(N,M)#0 foralli>0.

The question above has surfaced in recent literature under various formulations,
as we shall discuss next.

Symmetry in the vanishing of Ext. Theorem AB, restricted to the case of poly-
nomial growth of degree —1, shows that any complete intersection ring R satisfies
the following property:

(ee) If M and N are finitely generated R-modules such that Ext% (M, N) = 0
for all i 3> 0, then Extl (N, M) = 0 for all i > 0.

The authors of [2] asked the question of whether all Gorenstein rings satisfy (ee).
It was subsequently established in [7] and [13] that (ee) holds for certain classes of
Gorenstein local rings (R, m) other than the complete intersection rings, for example
Gorenstein rings with m® = 0, and Gorenstein rings with codim R < 4.

In [7], Huneke and Jorgensen introduce a class of Gorenstein rings, called AB
rings, and prove that any AB ring satisfies (ee). In [8], the authors constructed
Gorenstein rings which are not AB, but these examples failed to disprove (ee).

Betti numbers versus Bass numbers; complete resolutions. In the special
case when N = k, the Question has been previously posed in the more general
context of complete resolutions. A complete resolution of the R-module M is a
complex C of finitely generated free R-modules with differentials d;: C; — C;—1
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such that the complexes C and Hompg(C, R) are both exact, and such that Cso =
Fso for some free resolution F' of M. The complex C is said to be minimal if
d;(C;) C mC;_q for all 4 € Z. If R is Gorenstein, then every finitely generated
R-module M has a minimal complete resolution C. Moreover, any two minimal
complete resolutions of M are isomorphic, cf. [3, 8.4], hence the numbers rankg C;
are uniquely determined. We say that C has symmetric growth if the sequences
{rankg C;}i>0 and {rankg C_;};>0 have the same growth.

If R is Gorenstein and C' is a minimal complete resolution of a maximal Cohen-
Macaulay R-module M, then Bf(M) = rankg C; and pi* (M) = rankg C_; for
all ¢ > 1, where d = dim R. Therefore the initial question can be translated to
the question of whether C' has symmetric growth. Similar versions of the latter
have been previously posed in [3, 9.2] and in [9], without the assumption that R is
Gorenstein. In [9] we constructed doubly infinite minimal exact complexes of free
modules which had asymmetric growth; however, the ring was not Gorenstein and
these complexes were not complete resolutions.

The paper is organized as follows: In Section 1 we use results of Avramov [1]
and Sun [17] to prove that any complete resolution has symmetric growth over
Gorenstein rings with m3 = 0 or codim R < 4.

In Section 2 we prove that there exist Gorenstein rings R with m* = 0 and
codim R = 6 which admit complete resolutions C for which {rankg C;}i>o is con-
stant (respectively, grows exponentially), and {rankr C_;};>0 grows exponentially
(respectively, is constant). We do not know whether such asymmetric complete
resolutions exist when codim R = 5.

Using the results of Section 2, we prove in Section 3 that there exist finitely
generated modules M, N which give counterexamples to (ee); the ring is the same
as in Section 2. The module N has minimal possible length for such a counterex-
ample, namely length 2. The results of this section are stated in terms of Tate
(co)homology: we show that the Tate cohomology groups Extﬁz(M ,N) vanish for
all ¢ > 0, but do not vanish for all 7 < 0.

In Appendix A we establish the structure and relevant properties of the rings R
from Sections 2 and 3. These rings are similar to those constructed in [6], [8], [9]-

1. SYMMETRIC GROWTH OF COMPLETE RESOLUTIONS

In this section we show that there exist certain classes of Gorenstein rings, other
than the class of complete intersection rings, for which all complete resolutions have
symmetric growth.

Let (R, m, k) be a local ring as in the introduction. If R is Gorenstein, then a
complete resolution of a finitely generated R-module M has symmetric growth if
and only if the Betti sequence {3(M)}; and the Bass sequence {u%(M)}; have
the same growth. For the convenience of the reader, we prove this in Lemma 1.2.

1.1. The asymptotic behavior of the Betti sequences remains unchanged upon pass-
ing to syzygies. When the ring is Gorenstein, the same is true for the Bass sequences.
We may thus assume, whenever convenient, that M is a maximal Cohen-Macaulay
module over R.

We let M* denote the R-module Homg(M,R). If D is a complex, then D*
denotes the complex with (D*); = (D_;)* for each i, and with induced differentials.
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1.2. Lemma. Let R be a Gorenstein local ring of dimension d, let M be a finitely
generated mazimal Cohen-Macaulay R-module, and C o minimal complete resolu-
tion of M. The following equalities then hold:

(1) BE(M) = rankg C; for all i >0, and piy* (M) = rankg C—; for all i > 1;
(2) BE(M*) = piF*(M) for alli > 0.

Proof. (1) If d = 0, the statement is clear: C'»¢ is a minimal free resolution of M
over R, and C¢_; is a minimal injective resolution of M over R. If d > 0, then
let £ = x1,...,24 be a maximal regular sequence for both R and M. Note that
C/(z)C = C®g R/(z) is a minimal complete resolution of M = M/(x) M over the
zero-dimensional Gorenstein ring R = R/(z). The conclusion then follows from the
isomorphisms Ext% (M, k) = Ext%(ﬁ, k) and Extt?(k, M) = Ext%(k,ﬂ), which
hold for for all ¢ > 0 cf. for example [11, p. 140].

(2) Note that (C¢—1)* is a minimal free resolution of M* over R, hence for all
i > 0 we have B (M*) = rankg(C_;_1)* = rankg C_;_;. By part (1), the last
expression is equal p&*(M). O

1.3. If R is a Gorenstein ring with codim R > 2, then R has multiplicity at least
codim R + 2. Otherwise, when codim R < 1, the multiplicity is at least codim R +
1. In either case, when equality holds we say that R is Gorenstein of minimal
multiplicity. If R is furthermore Artinian, then R has minimal multiplicity if and
only if m® = 0.

14. If R is Gorenstein of minimal multiplicity with codim R > 3, then for each
finitely generated R-module M either M has finite projective dimension, or the
sequence {3f(M)}; has exponential growth. Indeed, if dim R = 0, then m3 = 0
and the result is proved by Sjoédin [15], cf. also Lescot [10]. If dim R > 0, then the
reduction to the zero dimensional case can be done as described in [13, 1.7].

1.5. Assume now that R is Gorenstein and codim R < 4. Avramov [1] and Sun
[17] classified the possible behavior of the Betti numbers of a finitely generated
R-module M. They show that the Betti sequence has either polynomial growth,
or exponential growth. Note that Avramov and Sun use the terminology of strong
polynomial /exponential growth for describing the same concepts that we are con-
cerned with, only that we omit the word “strong”. The classification involves the
notion of virtual projective dimension. We recall this notion for the reader’s con-
venience: let M be a finitely generated module over a local ring R (not necessarily
Gorenstein). If the residue field k of R is infinite, set R= }AZ, the m-adic completion
of R; if k is finite, set R to be the maximal-ideal-adic completion of R[Y]mg[v],

where Y is an indeterminate. We say that a map of local rings R+ @ is an embed-
ded deformation of R if its kernel is generated by a @)-regular sequence contained
in the square of the maximal ideal of (). The virtual projective dimension of M is
the number

vpdp M = min{pdg (M ®g R) | R + Q is an embedded deformation of R}

A similar invariant, called virtual injective dimension and denoted vidg M, can be
defined by replacing pdg (M ®r R) with ido(M ®gr R) in the formula above. In [1]
and [17] it is shown that if R is Gorenstein with codim R < 4, then the Betti numbers
of M fall into one of two categories, each described by equivalent conditions:
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(1) {BE(M)}; has polynomial growth of degree ¢ if and only if vpdy M =
depth R — depth M + ¢ + 1;
(2) {BE(M)}; has exponential growth if and only if vpdz M = oo.
Using Lemma, 1.2(2), we see that the Bass numbers of M have the same behavior:
they either have polynomial growth or else they have exponential growth.

We are now ready to prove the main result of this section, which is an assemblage
of the results of [1] and [17] listed above.

1.6. Theorem. Assume that R is Gorenstein, and either R has minimal multi-
plicity, or codimR < 4. If M is a finitely generated R-module, then one of the
following statements is satisfied:
(1) Both sequences {BE(M)}i>o and {u(M)}i>o have polynomial growth of the
same degree.
(2) Both sequences {BE(M)}i>0 and {u%(M)}i>o have ezponential growth.

Proof. Assume first that R has minimal multiplicity. If codim R < 2, then R is a
complete intersection, and Theorem AB in the introduction shows that M satisfies
(1). Assume now codim(R) > 3. If pdy M = oo, then idg M = oo as well, and
it can be immediately seen from 1.2(2) and 1.4 that M satisfies condition (2). If
pdgp M is finite, then idg M is also finite, and M satisfies (1).

Assume codim R < 4. Since R is Gorenstein, the same is true for any ring @ in an
embedded deformation R < @, and so it is clear that vidg M = vpdg M +depth M.
It follows then from [1, 1.8] and 1.5 that M satisfies (1) whenever vpdy M and
vidg M are finite and M satisfies (2) whenever they are infinite. O

Lemma 1.2 and 1.1 now yield:

1.7. Corollary. Assume R is Gorenstein. If R has minimal multiplicity, or codim R <
4, then any minimal complete resolution over R has symmetric growth. O

2. ASYMMETRIC GROWTH OF COMPLETE RESOLUTIONS

In this section we show that complete resolutions need not be symmetric when
m* =0 and codim R = 6.

Let k be a field which is not algebraic over a finite field and let a € k be an
element of infinite multiplicative order. Throughout the whole section we consider
the ring R to be defined as follows.

2.1. Let P = k[T,U,V,X,Y, Z] be the polynomial ring in six variables (each of
degree one) and set R = P/I, where I is the ideal generated by the following fifteen
quadratic polynomials:

72, UZ-TX —aUV, U?, YZ+VY, UY, Y?-TX — (a — 1)UV,
XZ+aVX,UX, XY, X2-TX -TV, TZ+TY +aVX, TU,
TY - VX +TV, T?> + (a+ 1)UV = VY, V2

Let t,u,v,x,y,z denote the residue classes of the variables modulo I, and m
denote the ideal they generate.

2.2. Proposition. The ring R is local, with mazimal ideal m, and satisfies the
following properties:
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(1) R has Hilbert series Hr(t) = 1 + 6t + 6t> + 3. More precisely, a basis of R
over k is given by the following fourteen elements:

1,t, u,v, z, vy, 2, tv, wv, vz, VY, V2, tT, VT

(2) R is Gorenstein, with Socle(R) = (tvz).
(3) R is a Koszul algebra.

Proposition 2.2 is proved in the appendix as Proposition A.4. A multiplication
table for R is given in A.1 (via the isomorphism ¢ defined in A.3.)

2.3. For each i < 0 we let d;: R? = R? denote the map given with respect to the
standard basis of R? by the matrix

N vy
di : (al_’a: z)

Also, let di: R® — R? denote the map represented with respect to the standard
bases of R® and R? by the matrix

. (v y O
dl'(wztv)

Consider a minimal free resolution of Cokerd; with d; as the first differential:
B di Bi—1 Bs d2 3 di 2
-+ = R S R -+ R? SR> — R

2.4. Remark. Looking at the multiplication table of R in A.l, one sees that the
following elements are part of a minimal system of generators for Kerd;:

(07 O’t)7 (07 07“)7 (07 071)), (0707 y)’ (0, 07 z)
Thus B2 > 5.

2.5. Theorem. The sequence of homomorphisms
C: - RP % psdyped,prdon prde g

is a minimal complete resolution such the following hold:

(1) The sequence {rank C;};>0 has exponential growth.
(2) rank C; = 2 for all i <O0.

Proof. We postpone the proof of (1) to the end of the section. The minimality of C
is clear from the definition of the differentials d;. Moreover, the defining equations
of R guarantee d;d;1; = 0 for all ¢ < 0, hence C is a complex. Since the ring R is
Gorenstein, the exactness of C also implies that the complex Homg(C, R) is exact.
Therefore it remains to show that C is exact.

Let (a,b) denote an element of R? written in the standard basis of R? as a free
R-module. One may check that for each ¢ < 0 the k-vector space Imd; has the
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following fourteen linearly independent elements:

di(1,0) = (v,a'"ix) d;(tv,0) = (0,a'~*tvz)

di(t,0) = (tv, o' "itz) d;(tz,0) = (tvzx,0)

di(u,0) = (uv,0) di(0,1) = (y,2)

di(v,0) = (0,a'"tvx) d;(0,t) = (vz — tv,tv — (a + 1)vx)
di(x,0) = (vz, o'~ (tv + tx)) di(0,u) = (0, quv + tx)

di(y,0) = (vy,0) di(0,v) = (vy,vz)

di(2,0) = (vz, —a® vz) d;(0,9) = ((a — Duw + tx, —vy).

We thus have rank; Imd; > 14 for all 4 < 0. Since rank; R = 28, it follows
that rank, Kerd; < 14 for all 4 < 0. We conclude that H;(C) = 0 for i < —1 and
rank; Kerdy = 14

For ¢ = 1 the images above are also those of dy, by replacing d;(1,0) with
d;(1,0,0) and so on. Here (a, b, c) denotes an element of R? in its standard basis as
a free R-module. Not more than thirteen of these images are linearly independent,
since we have the relation

(vz,tv + tx) = (tv, tz) + (v — tv,tv — (a + Dvz) + (a + 1)(0,vz) .

One can check that we are left with precisely thirteen linearly independent elements,
and a fourteenth element in Imd; can be chosen to be d;(0,0,1) = (0,¢v). Thus
rank; Imd; > 14 and it follows that Ho(C) = 0. The definition of C'>; gives that
H;(C) =0 for all i > 1, and therefore C is exact. O

Next we provide the necessary background for the proof of part (1) of the The-
orem.

2.6. If 7: A — B is a ring homomorphism, D is an A-module, F is a B-module
(with the A-module structure induced by «) and ¢: D — E is a homomorphism of
A-modules, then for each B-module L one has a natural homomorphism

Tor™ (L, ¢): Tor*(L, D) — Tor® (L, E)

which may be computed as follows: Let D be a free A-resolution of D and E a
free B-resolution of E. Let gZ: B ®4 D — E be a lifting of ¢ to a homomorphism
of complexes of B-modules. The homomorphism Tor™ (L, ¢) is then induced in
homology by the following homomorphism of complexes, which is unique up to
homotopy:

LoaD=Los(BoiD) L% Loy B

We say that a positively graded ring A = @,- A; is standard graded if A is a
field and A is generated over Ag by A;. B

2.7. Proposition. Let A be a standard graded algebra over a field £ and set n =
P>, Ai- Letm: A — B be a surjective homomorphism of graded rings with Kerm C
n2. Assume that D is a finitely generated graded A-module with a linear graded free
resolution and that E is a finitely generated graded B-module.

Suppose there exists a homomorphism of A-modules ¢: D — E such that the
induced map ¢: D/nD — E/nE is injective. Then the induced homomorphisms

TorT (¢, ¢): Tor(¢, D) — Tor?(¢, E)
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are injective for each 1.

Proof. Consider a linear resolution (D, §) of D, together with an augmentation map
€: Dy — D. We will construct inductively a minimal graded free resolution E of
E, with an augmentation map n: Ey — E, and a map of complexes of A-modules
¢: D — E such that the induced map B®4 ¢: B®4 D — FE is a split injection
in each homological degree.

Let eg, . - ., e, denote the standard basis of Dg = A®. The elements e(e1), - - .,&(eq)
form then a homogeneous minimal system of generators for D. Since the induced
map ¢: D/nD — E/nE is injective, the elements ¢(e(e1)), .- ., #(e(eq)) are part of
a minimal system of generators for E. This shows that we can choose Ey = BY,
with b > a, and the map n: B® — E can be chosen so that n(f;) = ¢(e(e;)) for each
i with 1 <4 < a, where f1,..., fs is the standard basis of B®.

If we define the A-module homomorphism g: A% — B® such that g (e;) = fi,
then the right-hand part of the diagram below is commutative. We set D' =
Ker(e) and E' = Ker(n), and we let ¢': D' — E' denote the induced A-module
homomorphism, which makes entire diagram commutative:

0—D' ——=A*—>D—0

T

0—F ——=B——=E—0

We want to prove that the induced map ¢': D'/nD’ — E'/nE' is injective.
Let g1, - . ., go be the standard basis of D; = A% . The elements &; (g1),---,01(gar)
form a minimal system of generators for D'. Let a; € A be such that

@o(@101(g1) + -+ + awdi(ga)) € nE' C B’

Since the matrix representing d; has linear entries, we can think of d;(g;) as column
vectors with components in A; and hence of ¢¢(d1(g;)) as column vectors with
components in B;. Thus, the degree one part of the above expression is equal to
7ero, so we get

%o (Z az‘<51(9z')> = Z@Mo(&(gi)) =0

where @; denotes the degree zero component of ;. Since the homomorphism
m: A = B has Kerm C n?, we conclude that ), @;d1(g;) € n?A®, hence, by de-
gree considerations, Y, @;01(g;) = 0. Since the elements d;(g;) in this sum are part
of a homogeneous minimal system of generators for D', it follows that a@; = 0 for
all i. Therefore a; € n for all i, and this shows ¢’ is injective.

Using the construction above as the induction step, we obtain then a resolution E
and a homomorphism of complexes ¢: D — E. The homomorphism of complexes
¢~> =@ ®aB: D®4 B — F is then a lifting of ¢ and is a split injection in each
degree. This gives the desired conclusion. O

Recall that P denotes the polynomial ring k[T, U, V, X,Y, Z] and that the mono-
mials U2 and UY are among the generators of the ideal I defining R as P/I.

2.8. Lemma. Consider the ring A = P/(U?,UY), the A-module D = (U,Y)A,
and the R-module E = Tmd,. Let m: A — R denote the canonical projection. The
following then hold:
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(1) The A-module D has a linear resolution and its Poincaré series is equal to
2+t)(1—t—t)"".

(2) There exists a homomorphism of A-modules ¢: D — E such that the induced
map Tor™(k,¢): Tor (k, D) — TorZ(k, E) is injective for each i.

Proof. (1) Set Q = k[U,Y]/(U?,UY) and let G denote a minimal free resolution of
the residue field Q/(U,Y)Q over Q). Note that A = Q®k[T,V, X, Z], and a minimal
free resolution of A/D over A is given by the complex D = G ®;, k[T,V, X, Z].

Since @ is a Koszul algebra (see for example [5]), the resolution G is linear, and
the Poincaré series of A/D over A is

1 1+t
A _ pQ — =
PA/p(t) =P5 vyt = Ho(—t) 1—t—1¢2"

The Poincaré series of D is then equal to ¢~ (P4 /p(t) —1).

(2) Set p = (0,0,u) and ¢ = (0,0,y), considered as elements of R®. It can be
easily checked that p,q € Kerd;, hence Rp+ Rq C E. We define ¢: D — E as the
following composition:

¢: D = Rp+ Rq— E,
where the leftmost map is the restriction of the map ¢: A — R? given by o(r) =
(0,0,7(r)). Note that ap + bg € mE for some a,b € R implies ap + bg € m?R3,
and hence a,b € m by degree considerations. This shows that the induced map
¢: D/nD — E/nE is injective, where n denotes the maximal ideal of A. We can
then apply Proposition 2.7. O

Proof of Theorem 2.5(1). We use the notation in the statement of the Lemma above.
Part (1) of the Lemma shows that the sequence {ranky Tors(k, D)}; has exponen-
tial growth. From part (2) we conclude that the sequence {ranky, Torf(k, E)}; has
exponential growth, as well. Note that a minimal free resolution of the R-module
E is given by the truncation Cso, hence ranky Cj o = ranky, Torj (k, E) for all
1> 0. (|

3. ASYMMETRY IN THE VANISHING OF EXT

We will use the notation introduced in the second section. In particular, the ring
R is the one defined in 2.1. Recall that R is zero-dimensional and Gorenstein.

3.1. If T is a complete resolution of the R-module X, and Y is an R-module, then
for each i the Tate (co)homology groups are defined by

Exth(X,Y) = H_;Hom(T,Y) and Tor®(X,Y)=Hy(T ®gY).

Since the ring R is zero-dimensional Gorenstein, the complete resolution T' can be
chosen to agree with a minimal free resolution of X in all nonnegative degrees, cf.
[3, 3.1], for example. Thus for all ¢ > 0 there are isomorphisms

Exti(X,Y) & Exth(X,Y) and Torf(X,Y) = Tor®(X,Y).
Also, for all 7 one has
Ext;" '(X,Y) = TorF(X*,Y).
Matlis duality yields for all ¢ the following isomorphisms:
Tor? (Y, X*)* = Exth (Y, X).
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Recall that d; denotes the differential of the complex C defined in Section 2.

3.2. Theorem. Set M = Cokerd§ and N = R/(t,u,v — x,y — z,2 — z). The
following then hold:

(1) Exth(M,N) =0 for all i >0

(2) Eftg(M, N) #0 for alli <O0.

(3) Tor®(M,N) =0 for all i > 0.

(4) Tor®(M,N) # 0 for all i < 0.

In view of the isomorphisms in 3.1, we conclude the Gorenstein ring R does not
have the property (ee):

3.3. Corollary. For R,M and N as above one has:
Exth(M,N) =0 for all i > 0;
Exti(N, M) # 0 for all i > 0.

The proof of the Theorem is given at the end of the section. We present below
one of the ingredients of the proof.

3.4. Lemma. Set E =Imd,. If L is an R-module of length two, then the following
hold:

(1) Tor[(E,L) # 0 for alli > 0.
(2) Extm(E,L) #0 for all i > 0.

Proof. (1) Since L has length two, there is an exact sequence
0=2k—=>L—>k—0.

Using the notation of Lemma 2.8, and the naturality of the maps defined in 2.6,
the short exact sequence above induces long exact sequences both over R and over
A, and they can be embedded in a commutative diagram as follows:

AL
-+ —= Tor(k, D) —= Tor(L, D) —= Tor(k, D) —> Tor{* , (k,D) —= -

Tor] (k,¥) lTorf (L) Torf (k,¥) Tor_, (k,¥)
R

R R R A R
-+ — Tor;*(k, E) — Tor;'(L, E) — Tor;'(k, E) —> Tor;" | (k,E) — -+~

Counting from the left we have: the first, third and fourth vertical maps are in-
jective, cf. Lemma 2.8(2). If Tor?(E, L) = 0 for some i > 0, then the connecting
homomorphism AZf is injective, so the commutativity of the rightmost square im-
plies that A;-‘l is injective. However, this is not possible, because Lemma 2.8(1)
shows that the Betti numbers of D over A are strictly increasing.

(2) By Matlis duality, the R-module L* has length two. We can then apply
part (1) to conclude Tor®(E,L*) # 0 for all i > 0 and then use the isomorphism
Exth(E, L)* = Torj'(E, L*). O

Proof of Theorem 3.2. (1) A complete resolution of M is given by the complex
Hompg(C, R). We have

Exth (M, N) = H_;(Hompg(Homg(C, R), N)) 2 H_;(C ®g N)

In negative degrees C ®g N is the complex

N2 ((fwgl\ N2 (a%z§l> N2 (agxil\ NZ—)"'
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Since N = k[z]/(x?), this complex is acyclic, hence Ext% (M, N) = 0 for all i > 0.

(2) By the isomorphisms in 3.1 we need to show that Tor?(M* N) # 0 for all
i > 0. Note that M* = Cokerd,, hence the module E in Lemma 3.4 is the first
syzygy of M*. Since N has length 2, the Lemma then shows TorZR(M*, N) #0 for
all ¢ > 2. To show that Torf(M *,N) # 0, consider the short exact sequence

0>k—>N->Ek—0.
and the induced long exact sequence
Tor{'(M*,N) — Torf(M*,k) > M* ®rk - M*®r N - M*®rk — 0

If Torf(M*, N) = 0, then 85 = dimy, Tor;(M*, N) < dimy(M* ®g k) = 3, and this
contradicts Remark 2.4.
The proofs of (3) and (4) are similar. O

3.5. Remark. In [8] we gave an example of a codimension five Gorenstein ring
R' which provides counterexamples to a conjecture of Auslander. More precisely,
we proved that there exist finitely generated R'-modules M' and {N;},>1, such
that Ext’, (M',N,) = 0 if and only if i # 0,¢ — 1,g. We also showed there exist

finitely generated R’-modules I’ such that Tor,Rl (M',L") =0 for all 4 > 1, and
Extl, (M',L') # 0 for all i > 1.

For the ring R and the module M defined in this section it is easy to define
R-modules N, and L which give an analogous behavior. Indeed, the corresponding
R-modules are N, = R/(t,u,v — a%z,v — y,v — 2), and L the cokernel of the map
R0 — R? defined with respect to the standard bases of R'® and R? by the matrix

z 0 v gy 2 0t uw 00
-z z —y 0 0 v 0 0 ¢t w)"~

The ring R of this paper gives thus all the counterexamples to reverse implications
in the right-hand side of the diagram in 4.6 in [8]. We reproduce this diagram
below, with the added improvement given by this paper, namely that (gor) does
not imply (ee). Here (ci) denotes the class of local complete intersection rings,
(gor) the class of local Gorenstein rings, (ee) is the class of rings satisfying the
property with the same name defined in the introduction, (te) is the class of rings
for which Tor(M, N) = 0 for all i > 0 implies Ext (M, N) = 0 for all i > 0, and
(ab) is the class of local Gorenstein rings for which Ext’ (M, N) = 0 for all i 3> 0
implies Ext’ (M, N) = 0 for all i > dim R.

__ (et) & (te) < (te)\\(\I

V= DN ) o
@ o (o) == (g
| |/
T (gap) — s (ab) &

We established thus that the homologically defined class (ee) is strictly contained
between (ci) and (gor). We do not know whether the implications (4), (5), or (6)
are reversible.

3.6. Remark. Subsequent to [8], Smalg [16], and independently Mori [12], gave a very
simple non-commutative counterexample to the conjecture of Auslander, involving
the ring A = k(z,y)/(z% y?, vy — ayz), where a € k has infinite multiplicative
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order. However, this ring fails to supply counterexamples to (ee). Indeed, all the
indecomposable modules over A have been classified, see for example [14, Section
4]. They are A, syzygies and cosyzygies of k, modules of periodicity one, and non-
periodic modules having bounded resolutions. The differentials in the resolutions
of the latter type are described as follows: there exists a square matrix M (t) with
entries in A[t], with ¢ an indeterminate, such that the ith differential of the resolution
is represented by M (a'). An argument similar to that of [8, 3.13] may be used to
see that the ring A satisfies (ee).

APPENDIX A
Let S denote the 14-dimensional k-vector space, with basis
{1,a,b,¢c,d,e, f,l,m,n,p,q,r,s}.
We set

h=—-(a+1)m+p
i=—(a+1)n+1
j=(a—1)m+r
w=7r-+am

A.1. On the above basis we define a multiplication table as follows.

1 a b ¢ d e f I m n p g r s
1|1 a b ¢ d e f I m n p g r s
a | a h 0 I T n—1 i 0 0 s 0 O 0 0
b|b 0 0 m O 0 w 0 0 0 0 s 0 O
c | c l m 0 n p q 0 0 0 0 O s 0
d| d r 0 n I+r 0 —an s 0 s 0 0 0 0
ele n—1 0 p 0 j -p 0 0 0 s O 0 0
flr i w q —an —p 0 0 s 0 0 0 —as 0
L1 0 0 0 s 0 0 0 0 000 0 O
m | m 0 0 0 0 0 s 0 0 000 0 O
n|n s 0 0 s 0 0 0 0 000 0 O
p|p 0 0 0 0 s 0 0 0 000 0 O
q | q 0 s 0 0 0 0 0 0 000 0 O
r|r 0 0 s 0 0 —as 0 0 0 O O 0 O
s | s 0 0 0 0 0 0 0 0 000 0 O

We then define on S a multiplication by extending this operation by linearity.
We want to prove that this operation defines a ring structure on S.

A.2. Lemma. The vector space S, equipped with the multiplication described above,
18 a commutative Ting.
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Proof. Tt is clear that the element 1 satisfies the identity axiom. Also, the operation
is commutative, since the table in A.1 is symmetric. To prove that S is a ring, we
only need to verify that the multiplication is associative.

We need to check that g;(g293) = (g192)gs for all g;, g2, g3 among the 14 basis
elements. Note that we may assume ¢; # 1, g2 # 1, g3 # 1. If one of ¢1,92,9s3
is equal to an element in the set {I,m,n,p,q,r, s}, then g1(g9293) = (g192)g3 = 0.
Thus we only need to verify the associativity relation when g1, g2, g3 are among the
elements a, b, c,d,e, f.

Consider the ordering a < b < c¢<d < e < f. In view of the commutativity
relations, it suffices to show that g1(g293) = (9192)93 = (9193)g2 for all g1 < go <
gs. Since this is trivially satisfied when gy = g» = g3, we only need to check 50
associations.

Note that we have the following relations:

ab=b0=bd=be=c?=de=f>=0
Also, table A.1 yields the table below:

a b ¢ d e f
a? 0 0 0 0 s (a+1)s
ac 0 0 0 ] 0 0
ad 0 0 s 0 0 —as
ae s 0 0 0 0 0
af | —(ae+1)s 0 0 —-as 0 0
be 0 0 0 0 0 s
bf 0 0 s 0 0 0
cd s 0 0 s 0 0
ce 0 0 0 0 ] 0
cf 0 s 0 0 0 0
d? 0 0 s s 0 —as
af —as 0 0 —as O 0
e’ 0 0 s 0 0 —s
ef 0 0 0 0 —s 0

Using the table and the relations above, we see that, among the 50 triples
(91,92, 93) that need to be checked for associativity, 42 of them give:

91(9293) = (9192)93 = (9193)92 = 0

The remaining 8 are as follows:

a(ae) = a’e = (ae)a = s blef) = (be)f = (bf)c=s
a(af) = a®f = (af)a=—(a+1)s c(d?) = (cd)d = (cd)d = s
a(df) = (a ) = (af)d = —as c(e?) = (ce)e = (ce)e = s
d(df) = & f = (df)d = —as elef) =€’f = (ef)e=—s
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We now make the connection with the ring R defined in 2.1.

A 3. Analyzing the defining equations of R given there, one can check that the
elements

1, t, u,v, z, ¥, 2, tv, uv, v, VY, VZ, tr, ViT
generate R as a vector space over k, hence the elements ¢, u,v, z,y, 2 generate R as
a k-algebra. Let ¢: R — S denote the k-algebra homomorphism defined by

Y(t) = a, Y(u) = b, P(v) = ¢, Y(z) =d, P(y) =€, P(2) = f
Note that we also have:
Y(tv) =1, Y(uwv) = m, Y(vz) = n, Y(vy) = p, Y(v2) = g, Y(tz) =1, Y(viz) = 5.
A 4. Proposition. The following hold:

(1) The ring S is a Gorenstein local ring with mazimal ideal n = (a,b,¢,d, e, f),
Hilbert series 1 + 6t + 6t> + 3, and Socle S = (s).

(2) The homomorphism of k-algebras: R — S defined above is an isomorphism.

(3) The elements listed in A.3 form a basis of R over k.

(4) The graded ring R is a Koszul algebra.

Proof. (1) Note that n?> = (I,m,n,p,q,r), n®> = (s) and n* = 0. Since S/nS=kisa
field, we know that n is a maximal ideal, and since it is nilpotent, it is unique. We
have (s) C Socle(S) and the multiplication table in A.1 shows that equality holds.
Since its socle is 1-dimensional, the ring S is Gorenstein.

(2) The map ® is clearly surjective. Recall that the elements listed in A.3 generate
R as a vector space over k. Noting that the images of these elements through ¢ are
linearly independent, we conclude that 1 is injective.

(3) This is now clear.

(4) In 2.1 we have written the generators of I so that the first monomial occurring
in each generator is its initial term with respect to reverse lexicographic order
associated to the variable ordering Z > U >Y > X > T > V. Let J denote
the ideal generated by these initial terms:

J=(Z*,UZ,U*YZ UY, Y3 XZ UX, XY, X%, TZ TU,TY,T?, V?).

It is easy to check that the Hilbert series of P/J is equal to 1 + 6t + 6t + ¢2,
and hence it is equal to the Hilbert series of R. It follows that the initial ideal of T
equals J, and this shows that the generators of I listed above are a Grobner basis
for I. By [5] this shows that R is a Koszul algebra. a
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