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Abstract. This article is concerned with graded modules M with linear res-
olutions over a standard graded algebra R. It is proved that if such an M has

Hilbert series HM (s) of the form psd + qsd+1, then the algebra R is Koszul; if,
in addition, M has constant Betti numbers, then HR(s) = 1 + es + (e− 1)s2.

When HR(s) = 1+es+rs2 with r ≤ e−1, and R is Gorenstein or e = r+1 ≤ 3,

it is proved that generic R-modules with q ≤ (e− 1)p are linear.

Introduction

We study homological properties of graded modules over a standard graded com-
mutative algebra R over a field k; recall that this means that R0 equals k and R is
generated over k by finitely many elements of degree one.

Unless R is a polynomial ring, any general statement about R-modules necessar-
ily concerns modules of infinite projective dimension. Various attractive conjectures
have been based on expectations that homological properties of modules of finite
projective dimension extend—in appropriate form—to all modules.

It is remarkable that several such conjectures have been refuted by using modules
M , whose infinite minimal free resolution display the simplest numerical pattern:
the graded Betti numbers βR

i,j(M) are zero for all j 6= i (that is to say, M is Koszul),
and βR

i,i(M) = p for some p ≥ 1 and all i ≥ 0; see [11, 15, 16]. Furthermore, in those
examples both R and M have special properties: R is a Koszul algebra, meaning
that k is a Koszul module, the Hilbert series HR(s) =

∑
j∈Z rankk Rjs

j has the
form 1 + es+ (e− 1)s2, and one has HM (s) = p+ (e− 1)ps.

This is a striking amalgamation of structural and numerical restrictions. The
following result, extracted from Theorems 1.6 and 4.1(1), shows that it is inevitable.

Theorem 1. Let R be a standard graded algebra and M a non-zero R-module.
If Mj = 0 for j 6= 0, 1 and M is Koszul, then R is a Koszul algebra.
If, furthermore, βR

i,i(M) = p for some p and all i ≥ 0, then

HR(s) = (1 + s) · (1 + (e− 1)s) and HM (s) = p · (1 + (e− 1)s) .

The main themes of the paper are to find conditions when such modules actually
exist, and to establish whether they display some “generic” behavior. An important
step is to identify a set-up where similar questions may be stated in meaningful
terms and answers can be tested against existing examples.
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Much of the discussion is carried out in the broader framework of Koszul modules
over Koszul algebras. Conca, Trung, and Valla [7] proved if R is a Koszul algebra
with HR(s) = 1+ es+ rs2, then e2 ≥ 4r holds, and that generic quadratic algebras
R satisfying this inequality are Koszul.

To analyze the restrictions imposed on M by Theorem 1, we fix a Koszul algebra
R with HR(s) = 1 + es + rs2 and use multiplication tables to parametrize the R-
modules with underlying vector space kp ⊕ kq(−1); see Section 2. This identifies
such modules with the points of the affine space Mep×q(k) of ep× q matrices with
elements in k, equipped with the Zariski topology.

We study the following questions concerning the subset Lp,q(R) ⊆ Mep×q(k)
corresponding to Koszul R-modules: When is Lp,q(R) non-empty? When is its
interior non-empty? Recall that, in a topological space, the interior of a subset X
is the largest open set contained in X; in Mep×q(k) every subset with non-empty
interior is dense, because affine spaces are irreducible.

It is not hard to show that 2q ≤ (e+
√
e2 − 4r)p is a necessary condition for Lp,q

to be non-empty; see Corollary 1.7. To establish sufficient conditions, we assume
that e ≥ r + 1 holds. Conca [5] proved that, generically, algebras R satisfying this
inequality contain an element x ∈ R1 with x2 = 0 and xR1 = R2. In an earlier
paper, [2], we called such an x a Conca generator of R and demonstrated that
the existence of one impacts the structure of the minimal free resolutions of every
R-module. The results of [2] are widely used here.

The following statement is condensed from Propositions 5.4, 5.5, and 5.6. Its
proof depends on the study, in Section 3, of the loci Lm

p,q(R) of modules whose
minimal free resolution is linear for the first m steps.

Theorem 2. Let R be a standard graded algebra with a Conca generator.
For p, q ∈ N the linear locus Lp,q(R) of Mep×q(k) is not empty when q ≤ (e−1)p,

and has a non-empty interior when q ≤ max{e− 1 , (e− r)p}.

In the motivating case when HR(s) = 1 + es+ (e− 1)s2, Theorem 2 shows that
generically Lp,(e−1)p(R) is not empty. Computer experiments suggest that even
its interior may be non-empty. Indeed, letting R be a quotient of k[x1, . . . , xe] by(
e+1
2

)
− (e − 1) “random” quadratic forms and M an R-module presented by a

“random” p× p matrix of linear forms in x1, . . . , xe , one gets βR
i,j(M) = 0 for j 6= i

and βR
i,i(M) = p with unsettling frequency and for “large” values of i.

In the next theorem, contained in Propositions 6.3 and 6.4, we describe algebras
with non-empty open sets of linear modules, under mild hypotheses on k.

Theorem 3. Let R be a short standard graded k-algebra.
If R is Gorenstein, then for all pairs (p, q) with p ≥ 1 the set Lp,q(R) is open in

Mep×q(k); it is not empty when q ≤ (e − 1)p and there exists a non-zero element
x ∈ R1 with x2 = 0 (in particular, when k is algebraically closed).

If R is quadratic with HR(s) = 1 + es+ (e− 1)s2 and e ≤ 3, then for all p ≥ 1
the set Lp,(e−1)p(R) is open in Mep×(e−1)p(k), and is not empty if k is infinite.

For R as in the last statement of Theorem 3, the R-modules in Lp,(e−1)p(R) are
described as those that are periodic of period 2, see Section 4. Over rings with
e ≥ 4, these classes may be distinct, and new ones appear; see [11, 16].

The generic behavior of Koszul modules with constant Betti numbers over a
generic Koszul algebra R with HR(s) = 1 + 4s+ 3s2 still is a mystery.
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Notation

Let (R,m, k) be a graded algebra; in this paper, the phrase introduces the fol-
lowing hypotheses and notation: k is a field, R = ⊕j∈ZRj is a commutative graded
k-algebra finitely generated over R0 = k, Rj = 0 for j < 0, and m = ⊕j>1Rj .

Let M = ⊕j∈ZMj be a graded R-module, here always assumed finite. For every
d ∈ Z, we let M(d) denote the graded R-modules M(d)j = Mj+d for each j. Set:

infM = inf{j ∈ Z |Mj 6= 0} ,

HM (s) =
∞∑

j=inf M

(rankk Mj)sj ∈ Z((s)) .

The formal Laurent series above is the Hilbert series of M .
It is implicitly assumed that homomorphisms of graded R-modules preserve de-

grees. In this category, the free modules are isomorphic to direct sums of copies of
R(d), with various d. Every graded R-module M has a minimal free resolution

F = · · · → Fn
∂n−→ Fn−1 → · · · → F1

∂1−→ F0 → 0

with each Fn finite free and ∂n(Fn) ⊆ mFn−1. Computing with it, one gets

Exti
R(M,k) =

⊕
j∈Z

Exti
R(M,k)j = Homk((Fi/mFi)j , k) for each i ≥ 0 .

Composition products turn E =
⊕

i>0,j>0 Exti
R(k, k)j into a bigraded k-algebra,

andM =
⊕

i>0,j∈Z Exti
R(M,k)j into a bigraded E-module.

The (i, j)th graded Betti number of M is defined to be

βR
i,j(M) = rankk Exti

R(M,k)j .

The graded Poincaré series of M over R is the formal power series

PR
M (s, t) =

∑
i∈N,j∈Z

βR
i,j(M) sjti ∈ Z[s±1][[t]] .

We also use non-graded versions of these notions, namely

βR
i (M) =

∑
j∈Z

βR
i,j(M) and PR

M (t) =
∑
i∈N

βR
i (M)ti = PR

M (1, t) ∈ Z[[t]] .

1. Short linear modules and Koszul algebras

In this section (R,m, k) is a graded algebra. We recall the definitions of the
algebras and modules of principal interest for this paper; see [9] or [19] for details.

1.1. We say that an R-module M is linear if it is graded and βR
i,j(M) = 0 holds for

all j− i 6= d and some d ∈ Z; in case M 6= 0 one has d = infM , and M is generated
in degree d. It is well-known that M is linear if and only it satisfies

(1.1.1) PR
M (s, t) ·HR(−st) = (−t)−dHM (−st) .

A linear module M with infM = 0 is also called a Koszul module.

1.2. The algebra R is Koszul if k is a linear R-module; the equalities βR
0,j(m) =

βR
1,j(k) show that then R is standard ; that is, it is generated over k by elements of

degree 1. It is well-known, see [3, 1.16], that R is Koszul if and only if it satisfies

(1.2.1) PR
k (t) ·HR(−t) = 1 ,
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if and only if the k-algebra E is generated by E1,1; see [18, Thm. 1.2] or [19, Ch. 2, §1].

We frequently refer to the following criterion:

1.3. If Q is a standard graded k-algebra and g is a non-zero-divisor in Q1 or Q2,
then Q and Q/(g) are Koszul simultaneously, see [3, Thm. 4(e)(iv)] or [19, 6.3].

To link linearity of M to linearity of k, we recall a construction.

1.4. Let M 6= 0 be a graded R-module, and set d = infM . The trivial extension
RnM has R⊕M(d− 1) as graded k-spaces, and

(r1,m1) · (r2,m2) = (r1r2, r1m2 + r2m1) for all rj ∈ R and mj ∈M(d− 1) .

Setting m nM = m⊕M(d− 1), we get a graded k-algebra (RnM,m nM,k).
One has RnM = Rn (M(n)) for every n ∈ Z, and the following equality holds:

(1.4.1) HRnM (s) = HR(s) + s1−dHM (s) .

The graded version of a result of Gulliksen, see [14, Thm. 2], reads

(1.4.2) PRnM
k (s, t) =

PR
k (s, t)

1− s1−dtPR
M (s, t)

The implication (i) =⇒ (ii) in the next proposition is obtained in [19, Ch. 2, 5.5]
by a different argument, which works also in a non-commutative situation.

Proposition 1.5. Let (R,m, k) be a graded algebra and M a graded R-module.
The following statements then are equivalent:
(i) R is a Koszul algebra and M is linear.
(ii) RnM is a Koszul algebra.
(iii) R is a Koszul algebra, and for some d ∈ Z one has

PR
M (t) ·HR(−t) = (−t)−dHM (−t) .

Proof. (i) =⇒ (iii). The desired equality is obtained from (1.1.1) by setting s = 1.
(iii) =⇒ (ii). Comparing the orders of the formal Laurent series in (iii), one gets

d = infM . In the following string of equalities, the first one comes from setting
s = 1 in (1.4.2), the second from the hypothesis, the last one from (1.4.1).

PRnM
k (t) = PR

k (t) · 1
1− tPR

M (t)

=
1

HR(−t)
· 1
1− t · (−t)−dHM (−t)HR(−t)−1

=
1

HR(−t) + (−t)1−dHM (−t)

=
1

HRnM (−t)
.

By (1.2.1), the composite equality implies that RnM is Koszul.
(ii) =⇒ (i). The evident homomorphisms R → R n M → R of graded alge-

bras compose to the identity. As Exti
?(k, k)

j is a functor of the ring argument,
Exti

R(k, k)j is a direct summand of Exti
RnM (k, k)j . Thus, R is Koszul, so both

PR
k (s, t) and PRnM

k (s, t) can be written as formal power series in st. The equality

PR
M (s, t) = sd · 1

st

(
1− PR

k (s, t)
PRnM

k (s, t)

)
,
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which comes from (1.4.2), gives βR
i,j(M) = 0 for j − i 6= d; thus, M is linear. �

A graded R-module M is short if HM (s) = (p + qs)sd for some d ∈ Z. Koszul
algebras have short linear modules, for k is one, by definition. Conversely:

Theorem 1.6. Let R be a standard graded algebra.
If R has a linear module M 6= 0 that is short, then R is Koszul.

Proof. Let ε : R/m2 → k denote the canonical surjection. Roos [20, Cor. 1, p. 291]
proves that Ker(Ext∗R(ε, k)) is the subalgebra of E = Ext∗R(k, k) generated by
Ext1R(k, k), so it suffices to prove that Exti

R(ε, k)j = 0 holds for all i, j; see 1.2.
Replacing M with M(d), we may assume that M is Koszul. In an exact sequence

0→ N → Rb →M → 0

of graded modules with mN ⊆ Rb, one has mN = N>2 = Rn
>2 = m2Rn because N1

generates N and M2 = 0. Thus, we get a commutative diagram with exact rows

0 // mN //

��

Rb // (R/m2)b //

��

0

0 // N // Rb // M // 0

It induces the square in the following commutative diagram, where the factorization
(R/m2)b →M → kb of εb : (R/m2)b → kb induces the triangle:

Exti
R((R/m2)b, k)j

OO

oo
∼= Exti−1

R (mN, k)j

OO

0Exti
R(kb, k)j

Exti
R(εb,k)j 22

.. Exti
R(M,k)j oo

∼= Exti−1
R (N, k)j

One has Exti−1
R (N, k)j = 0 for j 6= i by isomorphism in the bottom row, and

Exti−1
R (mN, k)i = 0 because inf(mN) = 2, so the vertical map on the right is zero.

Now the diagram implies Exti
R(εb, k) = 0, whence Exti

R(ε, k) = 0. �

We say that an algebra R is short when Ri = 0 for i ≥ 3.
Existence of linear modules imposes numerical constraints on short algebras.

Corollary 1.7. Let R be a standard graded with HR(s) = 1 + es+ rs2, and set

u = (e−
√
e2 − 4r)/2 and v = (e+

√
e2 − 4r)/2 .

If there exists a non-free linear R-module, then R is Koszul and e2 ≥ 4r holds.
If M is a linear R-module with HM (s) = psd + qsd+1 and p 6= 0, then q ≤ vp.
If, furthermore, q = vp, then u and v are integers, and there is an equality

PR
M (s, t) =

psd

1− ust
.

Proof. Let N be a non-free linear R-module, and set j = inf(N). One then has
0 6= ΩR

1 (N) ⊆ mRn(−j), so N is short, non-zero, and linear. Theorem 1.6 shows
that R is Koszul, and then e2 ≥ 4r holds by Conca, Trung, and Valla [7, 3.4].
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When HM (s) = psd + qsd+1, from formula (1.1.1) we get

PR
M (s, t) =

sd(p− qst)
1− est+ rst2

=
sd(p− qst)

(1− ust)(1− vst)
.

Prime fraction decomposition yields real numbers a and b, such that

PR
M (s, t) =

{
sd

∑∞
i=0(au

i + bvi)(st)i when e2 > 4r ,
sd

∑∞
i=0(av

i + b(i+ 1)vi)(st)i when e2 = 4r .

As M is not free, the coefficient of sd(st)i is positive for each i ≥ 0, hence b ≥ 0.
When e2 > 4r one has a+b = p and av+bu = q, and hence pv = q+b(v−u) ≥ q.

When e2 = 4r holds, a+ b = p and av = q give pv = q + bv ≥ q.
Assume pv = q. In both cases one then has b = 0, which means PR

M (s, t) =
psd(1− ust)−1. This implies that u is an integer, and hence so is v = e− u. �

We illustrate the tightness of the hypotheses in the last two results:

Example 1.8. Let k be a field and set R = k[x, y]/(x2, y3).
The algebra R satisfies Ri = 0 for i ≥ 4, and the R-module M = R/xR is

non-free, linear, with Mn = 0 for n 6= 0, 1, 2. However, R is not Koszul.

Remark 1.9. If V is a generic k-subspace of codimension r in the space of quadrics
in k[x1, . . . , xe]. By [7, 3.1], e2 ≥ 4r implies that k[x1, . . . , xe]/(V ) is short and
Koszul; the converse also holds, due to Fröberg and Löfwall [10, 7.1].

Partial versions of the Koszul property are also of interest.
We say that an R-module M is m-step linear for some integer m ≥ 0 if it satisfies

βR
i,j(M) = 0 for all j 6= i + infM with i ≤ m. Thus, 0-step linear means that M

is generated in a single degree, and 1-step linear means that, in addition, it has a
free presentation with a presenting matrix of linear forms.

Proposition 1.10. Let R be a Koszul algebra and M an R-module with infM = 0.
For every non-negative integer m the following conditions are equivalent.
(i) M is m-step linear.
(ii) PR

M (s, t) ≡ HM (−st) ·HR(−st)−1 (mod tm+1)
When R is short, they are also equivalent to

(iii) βR
m,m+1(M) = 0

Proof. (i) =⇒ (ii). By hypothesis, there is an exact sequence

0→ L→ R(−m)bm → · · · → R(−1)b1 → Rb0 →M → 0

of R-modules with bi = βR
i,i(M) for i ≤ m, and Lj = 0 for j ≤ m. It yields

HM (s) =
m∑

i=0

(−1)ibis
iHR(s) + (−1)m+1HL(s) .

Dividing this equality by HR(s) and replacing s with −st, one gets (ii).
(ii) =⇒ (i) =⇒ (iii). These implications hold by definition.
(iii) =⇒ (ii). Let E be the bigraded algebra Ext∗R(k, k) andM its bigraded mod-

ule Ext∗R(M,k). Write (M0)∗ for the bigraded k-vector space with Homk(M0, k) in
bidegree (0, 0) and 0 elsewhere, and (M1)∗ for that with Homk(M1, k) in bidegree
(1, 1) and 0 elsewhere. Graded versions of [2, 2.4, 2.5] yield an exact sequence

0 −→ F −→ E ⊗k (M1)∗ −→ (E ⊗k (M0)∗)⊕ ΣF −→M −→ 0
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of bigraded E-modules, where F is free, and (ΣF)i,j = F i+1,j .
One has E i,j = 0 for i 6= j, because R is Koszul, and F i,j = 0 for i 6= j, because

of the inclusion F ⊆ E ⊗k (M1)∗. Set rl = rankk F l,l. The exact sequence gives

PR
M (s, t) = HM (−st) · PR

k (s, t) +
(

1 +
1
t

)
·
∞∑

l=0

rl (st)l .

Since R is Koszul, (1.1.1) gives PR
k (s, t) = HR(−st)−1, so the formula above yields

PR
M (s, t)−HM (−st) ·HR(−st)−1 =

∞∑
l=0

(rl + srl+1) (st)l .

As E i 6= 0 for i ≥ 0 and F is a free E-module, rl = 0 means ri = 0 for i ≤ l. �

2. Parametrizing short modules

In this section R is a standard graded algebra with R1 6= 0 and x1, . . . , xe a fixed
k-basis of R1. Let p be a positive integer and q a non-negative one. The goal here
is to describe a convenient parameter space for modules with Hilbert series p+ qs.

2.1. Let {un}n∈N and {vh}h∈N be the standard bases of the vector spaces k(N) and
k(N)(−1), respectively. For each pair (p, q) of non-negative integers, let kp,q denote
the k-linear span in k(N) ⊕ (k(N)(−1)) of {u1, . . . , up} ∪ {v1, . . . , vq}.

Note that one has kp,q ⊆ kp′,q′ for p ≤ p′ and q ≤ q′.

2.2. Let [1, p] denote the set {1, . . . , p} of natural numbers with the natural order,
and order the elements of [1, e]× [1, p] lexicographically:

(2.2.1) (l, n) < (l′, n′) ⇐⇒ l < l′ or (l = l′ and n < n′) .

For q ≥ 1 we let Mep×q(k) denote the set of ep × q matrices with entries in k,
with rows indexed by the elements of [1, e] × [1, p] and columns by those of [1, q].
We identify Mep×q(k) with the affine space Aepq

k over k, endowed with the Zariski
topology ; by convention, we extend this identification to the case q = 0.

For every subset s ⊆ [1, e] × [1, p] and C ∈ Mep×q(k), let Cs denote the |s| × q
submatrix of C with rows indexed by s; thus C(l,n) is the (l, n)th row of C.

When |s| = q, we form the following collection of matrices:

(2.2.2) Mep×q(k)(s) = {C ∈ Mep×q(k) | det(Cs) 6= 0} .
This is a basic open subset of Mep×q(k), which is empty when q > ep. The subset

(2.2.3) L0
p,q = {C ∈ Mep×q(k) | rankC = q}

is open Mep×q(k), and is covered by the basic open subsets above:

(2.2.4) L0
p,q =

⋃
s⊆[1,e]×[1,p]

|s|=q

Mep×q(k)(s) .

We parametrize short R-modules by means of their multiplication tables.

2.3. To each R-moduleM with underlying vector space kp,q we associate the matrix
CR = (c(l,n),h) in Mep×q(k), with (l, n)th row defined by the equality

xlun =
q∑

h=1

c(l,n),hvh for each (l, n) ∈ [1, e]× [1, p] .
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Conversely, each matrix C = (c(l,n),h) ∈ Mep×q(k) defines, through the formula
above, an action of R on kp,q that turns it into an R-module, called RC .

The maps described above clearly are mutually inverse.

The correspondence in 2.3 allows one to shuttle between R-module structures
on kp,q and ep× q matrices with elements in k. In particular, we identify L0

p,q with
the set of 0-step linear module structures on kp,q.

Graded R-modules are often parametrized in terms of their minimal presenta-
tions over R. This format is not used below, but we pause to show that results on
non-empty open loci faithfully translate between parametrizations.

2.4. For every matrix B = (b(l,n),h′) in Mep×(ep−q)(k), let κB
1 : kep−q → R1 ⊗k k

p

denote the homomorphism of k-vector spaces given by the formula

wh′ 7→
∑

(l,n)∈[1,e]×[1,p]

b(l,n),h′ xl ⊗ un for h′ = 1, . . . , ep− q ,

where w1, . . . , wep−q denote the standard basis of kep−q.
For every matrix C = (c(l,n),h) in Mep×q(k), let λC

1 : R1 ⊗k k
p → kq denote the

homomorphism of k-vector spaces given by the formula

xl ⊗ un 7→
q∑

h=1

c(l,n),hvh for (l, n) ∈ [1, e]× [1, p] .

Define an open subset of Mep×(ep−q)(k) by setting

K0
p,q = {B ∈ Mep×(ep−q)(k) | rankk(B) = ep− q} .

The assignments B 7→ Im(κ(B)) and C 7→ Ker(λ(C)) define morphisms of alge-
braic varieties to the Grassmannian of (ep− q)-dimensional subspaces of R1⊗k k

p:

κ : K0
p,q −→ Grass(ep−q)(R1 ⊗k k

p)←− L0
p,q :λ

By construction, these maps above are morphisms of algebraic varieties.
An important point here is that κ and λ are open. This follows from a classical

theorem of Chevalley, because both maps are dominant (being surjective), the closed
fibers of each one have constant dimension (being isomorphic to some fixed affine
space), and Grassmann varieties are normal (being smooth). Modern proofs of
Chevalley’s Theorem are not easy to find. Instead, we refer to a much more general
statement proved by Grothendieck in [13, 14.4.4(c)], which contains the one used
here; see [12, 6.15.1]. We thank Joseph Lipman for help with these references.

Every matrix B = (b(l,n),h′) in Mep×(ep−q)(k) yields a homomorphism of graded
R-modules κB : R⊗k k

ep−q(−1)→ R⊗k k
p, equal to κB

1 in degree 1. The subsets

K1
p,q(R) = {B ∈ Mep×(ep−q)(k) | κB

1 is injective and κB
2 is surjective}

L1
p,q(R) = {C ∈ Mep×q(k) | λC

1 is injective} ,

of Mep×(ep−q)(k) are open. One hasHCoker(κB)(s) = p+qs, so K1
p,q(R) and L1

p,q(R)
parametrize the same set of R-modules. The parametrizations are interchangeable:

Lemma 2.5. When k is an algebraically closed field and R a standard graded k-
algebra the maps in 2.4 restrict to open morphisms of algebraic varieties

κ : K1
p,q(R) −→ Grass(ep−q)(R1 ⊗k k

p)←− L1
p,q(R) :λ
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with the same image, so U ⊆K1
p,q(R) (respectively, U ⊆ L1

p,q(R)) is open or non-
empty if and only if λ−1κ(U) ⊆ L1

p,q(R) (respectively, κ−1λ(U) ⊆K1
p,q(R)) is.

Proof. Only the assertion concerning the images needs validation. For each matrix
C in Mep×q(k), let λC : R(−1)⊗k Ker(λ(C))→ R⊗k k

p be the R-linear map, equal
to λC

1 in degree 1. One has C ∈ L1
p,q(R) if and only if λC

1 is injective and λC
2 is

surjective. Comparison of definitions gives λ(L1
p,q(R)) = κ(K1

p,q(R)). �

3. Linear loci

Let R be a standard graded k-algebra, and set

e = rankk R1 and r = rankk R2 .

3.1. Fix positive integers p and q. The linear locus of R in Mep×q(k) is the subset

Lp,q(R) = {C ∈ Mep×q(k) | the R-module RC is Koszul} ,

where RC is the graded R-module defined in 2.3.

Our goal is to identify conditions for Lp,q(R) to have a non-empty interior ; that
is, for it to contain a non-empty open subset.

Theorem 3.2. Let R be a Koszul algebra and p′ ∈ [1, p] and q′ ∈ [q, ep] be integers.
If Lp′,q(R) or Lp,q′(R) has a non-empty interior, then so does Lp,q(R).

In the proof we use the functoriality of the correspondence in 2.3:

3.3. For p′ ∈ [1, p], let ι : kp′,q ↪→ kp,q denote the inclusion map.
As kp′,q is a submodule for every R-module structure on kp,q, we get a map

(3.3.1) ι∗ : Mep×q(k)→ Mep′×q(k)

of affine spaces over k, which is linear and surjective: It sends each ep × q matrix
to the (ep′)× q submatrix with rows indexed by the pairs (l, n) with n ∈ [1, p′].

For q′ ∈ [q, ep], let π : kp,q′ � kp,q be the projection with π(vh) = 0 for h ≥ q+1.
Since Ker(π) is a submodule for every R-module structure on kp,q′ , we get a map

(3.3.2) π∗ : Mep×q′(k)→ Mep×q(k)

of affine spaces over k, which is linear and surjective: It sends every ep× q′ matrix
to its ep× q submatrix, whose columns are indexed by the elements in [1, q].

Lemma 3.4. When R is a Koszul algebra the maps (3.3.1) and (3.3.2) satisfy

π∗(Lp,q′(R)) ⊆ Lp,q(R) ⊇ (ι∗)−1(Lp′,q(R))

Proof. For C ∈ Mep×q(k), the construction in 3.3 gives an exact sequence

0→ Rι∗(C) → RC → N → 0

where Nj = 0 for j 6= 0. If Rι∗(C) Koszul, then in the induced exact sequence

Exti
R(N, k)j → Exti

R(RC , k)j → Exti
R(Rι∗(C), k)j

both extremal terms are zero for j 6= i, because R is Koszul.
For C ′ ∈ Mep×q′(k), the construction in 3.3 gives an exact sequence

0→ L→ RC′
→ Rπ∗(C

′) → 0
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where Lj = 0 for j 6= 1. When RC′
is Koszul, in the induced exact sequence

Exti−1
R (L, k)j → Exti

R(Rπ∗(C
′), k)j → Exti

R(RC′
, k)j

both extremal terms are zero for j 6= i, because R is Koszul. �

Proof of Theorem 3.2. Let U ⊆ Lp′,q(R) be non-empty and open in Mep′×q(k).
The subset (ι∗)−1(U) of Mep×q(k) is open, because ι∗ is continuous, and not empty,
because ι∗ is surjective. By Lemma 3.4, it is contained in Lp,q(R).

Let σ : Mep×q(k)→ Mep×q′(k) be the map that sends every C ∈ Mep×q(k) to the
ep× q′ matrix, obtained by the addition of zero columns with indices q + 1, . . . , q′.
Let U ′ ⊆ Lp,q′(R) be non-empty and open in Mep×q′(k), and pick C ′ ∈ U ′. In
the affine subspace W = C ′ + σ(Mep×q(k)) of Mep×q′(k), the set U ′ ∩W is non-
empty and open. Since π∗|W : W → Mep×q(k) is a homeomorphism, π∗(U ′ ∩W ) is
non-empty and open in Mep×q(k). By Lemma 3.4, it is contained in Lp,q(R). �

Within a given parameter space Mep×q(k), it is sometimes possible to transfer
information between linear loci of different k-algebras. We give an example.

Proposition 3.5. Let ρ : R′ → R be a homomorphism of graded k-algebras.
If ρ is a Golod homomorphism and R′ is Koszul, then for all p and q one has

Lp,q(R) ⊇ Lp,q(R′) .

Proof. This follows from [2, 3.3], where it is proved that if an R-module M is Koszul
when considered as a module over R′ via ρ, then M is Koszul over R. �

3.6. We approximate the linear locus of R, from above, by the sets

Lm
p,q(R) = {C ∈ Mep×q(k) | RC is m-step linear} ,

defined for every integer m ≥ 0. The following inclusions are evident:

(3.6.1) Lm
p,q(R) ⊇ Lm+1

p,q (R) and Lp,q(R) =
⋂

m>0

Lm
p,q(R) .

For completeness, we include the proof of a folklore result; stronger ones have
been communicated to us by David Eisenbud, Anthony Iarrobino, and Clas Löfwall.

Lemma 3.7. When R is Koszul Lm
p,q(R) is open in Mep×q(k) for every m ≥ 0.

Proof. Pick a matrix C in Mep×q(k).
One has βR

i,j(R
C) = rankk TorR

i (RC , k)j , so we fix m ≥ 0 and prove that the
subset of Mep×q(k), defined by TorR

i (RC , k)j = 0 for j 6= i ≤ m, is open.
Let G be a minimal free resolution of k over R. As R is Koszul, we may assume

Gi = R(−i)bi with bi = βR
i (k). As RC is short, one has (RC ⊗R Gi)j = 0 for

j 6= i, i+ 1. This yields TorR
i (RC , k)j = 0 for j 6= i, i+ 1, and an exact sequence

0→ TorR
i (RC , k)i → (RC

0 )bi
δi−−→ (RC

1 )bi−1 → TorR
i−1(R

C , k)i → 0

of k-vector spaces for every i ≥ 0, where δi = (RC
0 ⊗R ∂G

i )i.
For each i, let G(i) denote the standard basis of R(−i)bi over R. In these bases

∂G
i is given by a matrix of linear forms in x1, . . . , xe. In the k-bases

{un ⊗ g(i) | n = 1, . . . , p ; g(i) ∈ G(i)} and

{vh ⊗ g(i−1) | h = 1, . . . , q ; g(i−1) ∈ G(i−1)}
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of (RC
0 )bi of (RC

1 )bi−1 , respectively, the map δi then is given by a matrix of linear
forms in the elements c(l,n),j from the multiplication table in 2.3. The condition
TorR

i (RC , k)i+1 = 0 for i ≤ m is equivalent to the surjectivity of δi for i ≤ m+ 1.
The latter condition means that some maximal minor of the matrices δ1, . . . , δm+1

is different from 0, and so determines an open subset of Mep×q(k). �

4. Periodic linear modules

In this section R denotes a standard graded k-algebra. We say that a graded
R-module M is linear of period 2 if there is an exact sequence of graded R-modules

(4.0.1) 0→M(−2)→ Rp(−d− 1)→ Rp(−d)→M → 0

Splicing suitable shifts of the exact sequence above, one sees that M is linear.
We explore the interplay of periodicity, linearity, and shortness. When N is an

R-module, ΩR
i (N) denotes the ith module of syzygies in a minimal free resolution

of N . Assuming R3 = 0, Lescot [17, 3.4] established part (1) of the next theorem.

Theorem 4.1. Let R be standard graded k-algebra with rankk R1 = e ≥ 1, let M
be a non-zero R-module with infM = d, and p a positive integer.

(1) The following conditions are equivalent.
(i) PR

M (s, t) = psd · (1− st)−1 and M is short.
(ii) M is linear over R with HM (s) = (1 + (e− 1)s) · psd, and one has

HR(s) = (1 + (e− 1)s) · (1 + s).
They imply that R is Koszul.

(2) If Q is a standard graded k-algebra with rankk Q1 = e and ψ : Q→ R is a sur-
jective homomorphism of algebras, then the following conditions are equivalent.

(iii) PQ
M (s, t) = psd ·(1−(st)c+1) ·(1−st)−1 for some c ≥ 1, and M is short.

(iv) M is linear over Q with HM (s) = (1 + (e− 1)s) · psd, and one has
HQ(s) = (1 + (e− 1)s) · (1− s)−1.

(v) PQ
M (s, t) = psd · (1 + st) and HQ(s) = (1 + (e− 1)s) · (1− s)−1.

They imply that Q is Koszul, Golod, and Cohen-Macaulay of dimension 1.

(3) If g ∈ Q2 is a non-zero-divisor and Ker(ψ) = (g) in (2), then the condition

(vi) M is linear of period 2 over R and HR(s) = (1 + (e− 1)s) · (1 + s) .

satisfies the implications (v) =⇒ (vi)⇐⇒ (i), and also (v)⇐⇒ (vi) if e 6= 2.

Proof. When M is short we write HM (s) in the form sd(a+ bs).
(1) (i) =⇒ (ii). The algebra R is Koszul by Theorem 1.6, so using (1.1.1) we get

pHR(st) =
pHM (st)

td · PR
M (s,−t)

= (a+ bst)(1 + st) .

The expressions for HM (s) and HR(s) follow by comparing degrees and coefficients.
(ii) =⇒ (i). This implication follows directly from (1.1.1).

(2) (iii) =⇒ (iv). The algebra Q is Koszul by Theorem 1.6, so (1.1.1) gives

pHQ(st) =
pHM (st)

td · PQ
M (s,−t)

=
(a+ bst)(1 + st)

1− (−st)c+1
.



12 L. L. AVRAMOV, S. B. IYENGAR, AND L. M. ŞEGA

Recall that HQ(s) can be written as h(s)/(1 − s)n with h(s) in Z[s] satisfying
h(1) 6= 0, and n = dimQ. Setting t = 1 in the formula above, we obtain

ph(s)(1− (−s)c+1) = (a+ bs)(1 + s)(1− s)n ∈ Z[s] .

Comparing orders of vanishing at s = 1, we get c = 1 = n, hence ph(s) = a+bs. The
desired expressions for HM (s) and HQ(s) follow, along with PQ

M (s, t) = (1+st)·psd.
Thus, M has projective dimension 1, which entails depthQ ≥ 1. The expression
for HM (s) yields dimQ = 1, so Q is Cohen-Macaulay; it also shows that Q has
multiplicity e; as edimQ = e and dimQ = 1, this is the minimal possible value.

(iv) =⇒ (v) =⇒ (iii). These implications follows directly from (1.1.1).

(3) The isomorphism R ∼= Q/(g) with g a non-zero-divisor in Q2 implies

(4.1.1) HR(s) = (1− s2)HQ(s) .

(v) =⇒ (vi). By hypothesis, there is an exact sequence of Q-modules

0→ Qp(−1)→ Qp →M → 0

The resolution 0→ Q(−2)
g−→ Q→ 0 of R over Q yields TorQ

1 (R,M) ∼= M(−2), so
application of TorQ(R,−) to the exact sequence above yields an exact sequence of
the form (4.0.1). The expression for HR(s) comes from formula (4.1.1).

(vi) =⇒ (i). From the exact sequence (4.0.1) we obtain

HM (s) = HR(s) · psd(1 + s)−1 = (1 + (e− 1)s) · psd .

It follows that M admits no direct summand isomorphic to R, so the linear free
resolution of M over R, obtained by splicing suitable shifts of (4.1.1), is minimal.

(i) =⇒ (v) when e 6= 2. If e = 1, then one has Q ∼= k[x] and M ∼= kp.
Assume e ≥ 3. From [1, 3.3.4], one gets βQ

i (M) ≤ 2p for each i. The ring Q is
Cohen-Macaulay of dimension 1. One gets HQ(s) = (1 + (e − 1)s)(1 − s)−1 from
(4.1.1), so Q has embedding dimension e and multiplicity e. Thus, Q has minimal
multiplicity, and so is Golod; see [1, 5.2.8]. This implies that M has finite projective
dimension over Q; see [1, 5.5.3(5)]. As depthQ = 1, there is an exact sequence

0→
n⊕

j=1

Qrj (−j)→ Qp(−d)→M → 0

The expressions for HQ(s), noted above, and for HM (s), from (ii), then yield

psd(1 + (e− 1)s) = HM (s) =
(
psd −

n∑
j=1

rjs
d+j

)
1 + (e− 1)s

1− s
.

We get psd(1− s) = psd −
∑n

j=1 rjs
j , whence rj = 0 for j 6= d+ 1 and rd+1 = p.

(i) =⇒ (vi) when e = 2. We may assume d = 0.
By (1) the algebra R is Koszul, hence quadratic, and thus R ∼= k[x, y]/(f, g) with

f, g a regular sequence of quadrics.
The hypothesis on PR

M (s, t) give an exact sequence

0→ N → Rp(−3) α−→ Rp(−2)
β−→ Rp(−1)

γ−→ Rp →M → 0

As R is complete intersection, one has N ∼= Coker(α)(−2) by [8, 4.1].
Set (−)∗ = HomR(−, R). Since R is self-injective, we get an exact sequence

0→M∗ → Rp γ∗−→ Rp(1)
β∗−→ Rp(2) α∗−−→ Rp(3)→ N∗ → 0
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and an isomorphism Ker(α∗) ∼= N∗(−2). From these data, we obtain

M∗ ∼= Ω2
R(Ker(α∗)) ∼= Ω2

R(N∗(−2)) ∼= N∗(−4)

As all R-modules are reflexive, we get M ∼= N(4) ∼= Coker(α)(2) ∼= Ker(γ)(2) . �

We use modules of period 2 to study the linear locus Lp,(e−1)p(R).

4.2. We approximate the linear locus of R, from below, by the set

P 2
p,q(R) = {C ∈ Lp,q(R) | RC is of period 2} .

Corollary 4.3. Assume HR(s) = 1 + es + (e − 1)s2 with e ≥ 1, and R ∼= Q/(g)
for some standard graded algebra Q and non-zero-divisor g ∈ Q2.

For each positive integer p the set L2
p,(e−1)p(Q) is open in Mep×(e−1)p(k) and

there the following inclusions hold, with equality when e 6= 2:

Lp,(e−1)p(R) = P 2
p,(e−1)p(R) ⊇ Lp,(e−1)p(Q) = L2

p,(e−1)p(Q) .

If Q1 contains a non-zero-divisor (e.g., if k is infinite), then Lp,(e−1)p(Q) 6= ∅.

Proof. Every short Q-module is annihilated by g, for degree reasons, and so is
also an R-module. With this remark, Theorem 4.1 implies the inclusion and the
equalities. The set L2

p,(e−1)p(Q) is open by Lemma 3.7.
If h ∈ Q1 is a non-zero divisor, then for N = (Q/(h))p one has an exact sequence

0→ Q(−1)p h−→ Qp → N → 0

that gives HN (s) = (p− ps)HQ(s) = p+ (e− 1)ps; thus, N is in L2
p,(e−1)p(Q). �

When e = 2, neither the implication (v) =⇒ (vi) in Theorem 4.1, nor the
inclusion in Corollary 4.3 can be reversed in general:

Example 4.4. Set Q = k[x, y]/(x2) and R = Q/(y2). The R-module M = R/(x)
then is linear of period 2, as demonstrated by the exact sequence

0→M(−2)→ R(−1) x−→ R→M → 0

However, as a Q-module M has infinite projective dimension and is not linear.

For cyclic modules, we have an additional criterion for openness.

Proposition 4.5. If R is a Koszul algebra with HR(s) = 1 + es+ (e− 1)s2, then
L1,e−1(R) is an open subset of Me×(e−1)(k), and there are equalities

L1,e−1(R) = P 2
1,e−1(R) = L2

1,e−1(R) .

Proof. In view of (3.6.1), it suffices to show that if L2
1,e−1(R) is not empty, then

it is contained in P 2
1,e−1(R). Pick C in L2

1,e−1(R) and set M = RC . One then
has HM (s) = 1 + (e − 1)s, which implies PR

M (s, t) ≡ 1 + st + (st)2 (mod t3), by
Lemma 1.10. Thus, for appropriate a, b ∈ R1 there is an exact sequence

R(−2) b−→ R(−1) a−→ R→M → 0

It gives bR = (0 : a) and hence aR ⊆ (0 : (0 : a)) = (0 : b). The resulting relations

rankk(aR) ≤ rankk(0 : b) = rankk(R/bR) = rankk(aR)

imply (0 : b) = aR, hence bR ∼= R/aR. As a result, we obtain an exact sequence

0→M(−2)→ R(−1) a−→ R→M → 0 �
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5. Algebras with Conca generators

In this section R is a standard graded algebra, and we set

e = rankk R1 and r = rankk R2 .

A Conca generator of R is a non-zero element x ∈ R1 with xR1 = R2 and x2 = 0,
cf. [2]. We collect relevant facts about algebras containing such an element.

5.1. When k is algebraically closed, generic quadratic algebras with r ≤ e− 1 have
a Conca generator; see the proof of [5, Thm. 10].

5.2. If x is a Conca generator for R, then one clearly has r ≤ e− 1 and R3 = 0.
Furthermore, the algebra R then is Koszul by [6, 2.7], see also [5, Lem. 2] or [2,

1.1], and every R-module M with xM = 0 is linear by [2, 4.2].

5.3. The algebra R has a Conca generator if and only if it has a presentation
R = k[x1, . . . , xe]/I with defining ideal I generated by

xlxe for r + 1 ≤ l ≤ e ,(5.3.1)

xlxl′ −
r∑

h=1

al,l′;hxhxe for 1 ≤ l ≤ l′ ≤ e− 1 .(5.3.2)

The class of xe is thus a Conca generator for R.

Theorem 2 from the introduction is contained in Propositions 5.4, 5.5, and 5.6.
In their proofs, we use the order on [1, e]× [1, p] defined in (2.2.1).

Proposition 5.4. Let R be a standard graded algebra with a Conca generator.
For all positive integers p, q with q ≤ (e− 1)p one has Lp,q(R) 6= ∅.
If r = e−1, then Lp,q(R) 6= ∅ implies q ≤ (e−1)p, one has P 2

p,(e−1)p(R) 6= ∅ for
each p ≥ 1, the set P 2

1,e−1(R) is open in M1×e−1(k), and P 2
1,e−1(R) = L1,e−1(R).

Proof. Let s be the set consisting of the q smallest elements of [1, e] × [1, p], and
C ∈ Mep×q(k) the matrix with Cs equal to the q × q unit matrix and C(l,n) = 0
for (l, n) /∈ s. The condition q ≤ (e− 1)p implies (e, n) /∈ s for n = 1, . . . , p, hence
xeR

C = 0. Now recall that every R-module M with xeM = 0 is linear, see 5.2.
Assume r = e− 1. When Lp,q(R) 6= ∅, Corollary 1.7 yields q ≤ (e− 1)p. If x is

a Conca generator, a rank count gives (0 : x) = xR, so (R/xR)p is in P 2
p,(e−1)p(R).

The sets L1,e−1(R) and P 2
1,e−1(R) are equal and open by Proposition 4.5. �

Proposition 5.5. Let R be a standard graded algebra with a Conca generator.
If q ≤ e− 1, then the interior of Lp,q(R) is not empty.

Proof. Assume first r = e − 1. Now R is Koszul, see 5.2, so L1,e−1(R) is open
and non-empty by Propositions 5.5 and 5.4. Using Theorem 3.2 we extend this
conclusion first to Lp,e−1(R) for arbitrary p, then to all Lp,q(R) with q ≤ e− 1.

Assume next r < e−1. Set R′ = k[x1, . . . , xe]/I ′ where I ′ is generated by x2
e and

the polynomials in (5.3.2). One has HR′(s) = (1+(e−1)s) · (1+ s) and the class of
xe in R′ is a Conca generator, so R′ is Koszul; see 5.2. The map R′ → R is Golod;
see the proof of [2, 3.2]. In Mep×q(k) this gives Lp,q(R) ⊇ Lp,q(R′), by Proposition
3.5, and Lp,q(R′) has a non-empty interior by the case already settled. �

Proposition 5.6. Let R be a standard graded algebra with a Conca generator.
If p, q ∈ N satisfy q ≤ (e − r)p, then Lp,q(R) contains the non-empty open set

L1
p,q(R) ∩Mep×q(k)(s), where s consists of the q largest elements of [1, e]× [1, p].
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Proof. Both Mep×q(k)(s) and L1
p,q(R) are open and nonempty, see 2.2 and Lemma

3.7, so their intersection in the affine space Mep×q(k) has the same properties. It
remains to prove that each R-module M = RC in this intersection is Koszul.

By definition, the rows of the matrix C ∈ Mep×q(k)(s) form a basis of the row
space of C, so they determine elements d(l,n),(l′,n) ∈ k, such that

C(l,n) =
∑

(l′,n′)∈s

d(l,n),(l′,n′)C(l′,n′) for all (l, n) ∈ [1, e]× [1, p] .

In degrees 0 and 1 the following sequence of graded R-modules

1⊗ un 7−→ un

R⊗k

⊕
(l,n)/∈s

(kxl)⊗k (kun) −→ R⊗k

⊕
n∈[1,p]

kun −→M −→ 0

1⊗ xl ⊗ un 7−→ xl ⊗ un −
∑

(l′,n′)∈s

d(l,n),(l′,n′)(xl′ ⊗ un′)

is exact by construction, so it is exact because M has a linear presentation.
The presentation of M described above yields one for S = RnM , in the form

S ∼= k[x1, . . . xe, y1, . . . yp]/J ,

where J is generated by the polynomials in (5.3.1), (5.3.2), and by those below:

ynyn′ for 1 ≤ n, n′ ≤ p ,(5.6.1)

xlyn −
∑

(l′,n′)∈s

d(l,n),(l′,n′)xlyn for (l, n) /∈ s .(5.6.2)

For monomials in x1, . . . , yp we use the reverse degree-lexicographic order with

y1 > · · · > yp > x1 > · · · > xe .

Thus, xlyn > xl′yn′ is equivalent to (l, n) < (l′, n′), so the choice of s implies:

xlyn > xl′yn′ holds when (l, n) /∈ s and (l′, n′) ∈ s .

For the chosen generators of J , this gives the following list of initial terms:

xlxl′ for 1 ≤ l ≤ l′ ≤ e− 1 , xlyn for (l, n) /∈ s ,

xlxe for r + 1 ≤ l ≤ e , ynyn′ for 1 ≤ n, n′ ≤ p .

Set T = k[x1, . . . , xe, y1, . . . , yp]/L, where L denotes the ideal generated by the
monomials listed above. We claim that L contains all monomials of degree 3. Only
those of the form xlxl′yn with l ≤ l′ need attention. Unless l ≤ r and l′ = e hold,
xlxl′ is in L, hence so is xlxl′yn. For l ≤ r the hypothesis q ≤ (e − r)p and the
choice of s imply (l, e) /∈ s, so xlyn is L, hence so is xlxeyn.

We just proved that T3 is zero. Counting non-zero monomials in T , we get
HT (s) = 1+(e+ p)s+(e− 1+ q)s2. This gives HT (s) = HS(s), which implies that
the polynomials in (5.3.1), (5.3.2), and (5.6.1), (5.6.2) form a Gröbner basis for S.
It follows that S is Koszul, see [9, §4], hence so is M , by Proposition 1.5. �
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6. Open sets of linear modules

As before, R denotes a standard graded k-algebra, and we set

e = rankk R1 and r = rankk R2 .

We assume e ≥ 1, and let p ≥ 1 and q ≥ 0 denote integers.
Here our goal is to record various instances when the linear locus Lp,q(R) is open

and non-empty. The minimal admissible values of r and e are easily disposed of:

6.1. If e = 1 and r = 1, then Lp,q(R) = ∅ for all p and q.
Indeed, these conditions imply R ∼= k[x] or R ∼= k[x]/(xn) for some n ≥ 3.

6.2. When e ≥ 1 and r = 0 R is Koszul, Lp,q(R) = L0
p,q(R), and this set is open

in Mep×q(k) for all p and q; one has Lp,q(R) 6= ∅ if and only if q ≤ ep.

In view of the preceding remarks, we henceforth focus on the case e ≥ 2.
The proofs of the next two propositions draw on most results in the paper.

Proposition 6.3. If e ≥ 2 and R is short and Gorenstein, then it is Koszul.
When e = 2, for each pair (p, q) one has Lp,q(R) = Lq−1

p,q (R), this set is open in
Mep×q(k), and Lp,q(R) 6= ∅ if and only if q ≤ p.

When e ≥ 3, for each pair (p, q) one has Lp,q(R) = Lm
p,q(R) for some m, and

this set is open in Mep×q(k); if there exists an non-zero element x ∈ R1 with x2 = 0
(in particular, if k is algebraically closed), then Lp,q(R) 6= ∅ for q ≤ (e− 1)p.

Proof. For a proof that R is Koszul see, for instance, [6, 2.7], or [2, 4.1].
The set Lm

p,q(R) is open in Mep×q(k) for all m, p, and q, see Lemma 3.7. In
particular, the openness of Lp,q(R) follows from the other assertions.

For each i ∈ Z, set bi = βR
i (k) and M(i) = HomR(Ωi

R(k), R)(1− i). One has:
(1) bi > bi−1 for every i ≥ 0; moreover, bi = i+ 1 when e = 2.
(2) HM(i)(s) = bi−1 + bis.
(3) If N is an indecomposable non-Koszul module, thenN ∼= M(i) for some i ≥ 1.

Indeed, the recurrence relation bi+1 = ebi− bi−1, for i ≥ 2, given by (1.2.1), implies
(1). Parts (2) and (3) are contained in [2, 4.6](2). Next we prove:

(4) M(i) is (i− 1)-step linear, but not i-step linear.
Indeed, since R is Koszul one obtains an exact sequence

0→ Ωi
R(k)→ R(−i+ 1)bi−1 → · · · → R(−1)b1 → R

ε−→ k → 0 ,

from a minimal free resolution of k over R. Now HomR(−, R) is exact because R
is Gorenstein, and HomR(k,R) ∼= k(−2) as R2

∼= k, so we get an exact sequence

0→ k(−2)
η−→ R→ R(1)b1 → · · · → R(i− 1)bi−1 → HomR(Ωi

R(k), R)→ 0

It gives for M(i) a minimal free resolution depicted below, which proves (4):

· · · → R(−i− 1)→ R(−i+ 1)→ R(−i+ 2)b1 → · · · → Rbi−1 → 0

Choose now, by (1), an integer m so that bi > q holds for i > m; by the same
token, pick m = q − 1 when e = 2. If Lm

p,q(R) contains a module M that is not
Koszul, then some indecomposable direct summand N of M is not Koszul. By (3),
we have N ∼= M(i) for some i ≥ 1, so M(i) is m-step linear. Now (4) implies i > c,
hence bi > q by the choice of m. On the other hand, for the submodule M(i) of M
we get bi ≤ q from (2). The contradiction implies Lp,q(R) = Lm

p,q(R), as desired.
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When e = 2, Corollary 1.7 gives Lp,q(R) = ∅ when q > p. Thus, we assume
q ≤ p and set out to prove Lp,q(R) 6= ∅. In view of Lemma 3.4, we may restrict
to the case q = p. Since R is Koszul, we have R ∼= k[x, y]/(f, g) with f, g a regular
sequence in Q2. Set Q = k[x, y]/(f). Corollary 4.3 shows that it suffices to exhibit
a non-zero-divisor h ∈ Q1. If f is irreducible, then Q is an integral domain; take
h = x. Else, f is a product of two linear forms, so after a change of variables we
may assume (f) = (x2) or (f) = (xy); in either case, pick h = x+ y.

Finally, as R is Gorenstein every non-zero element x ∈ R1 with x2 = 0 evidently
is a Conca generator; such an x exists when k is algebraically closed, see for instance,
[5, Lem. 3]. Now Proposition 5.4 gives Lp,q(R) 6= ∅ for q ≤ (e− 1)p. �

Proposition 6.4. Assume that R is quadratic, with HR(s) = 1 + es+ (e− 1)s2.
If e = 2, or if e = 3 and k is infinite, then the following hold.

(1) There is an isomorphism R ∼= Q/(g) for a Koszul k-algebra Q and a non-zero-
divisor g ∈ Q2; in particular, R is Koszul.

(2) For every positive integer p one has Lp,(e−1)p(R) = P 2
p,(e−1)p(R), this set is

open in Mep×(e−1)p(k), and is not empty.

Proof. (1) When e = 2 one has R ∼= k[x, y]/(f, g) with f, g a regular sequence of
quadrics; take Q = k[x, y]/(f).

When e = 3, write R ∼= k[x, y, z]/I with I an ideal minimally generated by 4
quadrics. Assuming hR1 = 0 for some h ∈ R1 with h 6= 0, we get a quadratic algebra
S = R/(h) with HS(s) = 1+2s+2s2; this is impossible, and so we get (0 : m) = R2.
Thus, R is an almost complete intersection of codimension 3 and type 2. In the local
case, such rings are described by a structure theorem of Buchsbaum and Eisenbud,
see [4, 5.4]. This is a corollary of [4, 5.3], whose proof refers to a general position
argument to find generators f1, f2, f3, f4 of I, every 3 of which form a regular
sequence. The hypothesis that k is infinite allows one to find the fi as k-linear
combinations of the original quadrics. The rest of the proof of [4, 5.3] and that of
[4, 5.4] now yield {i1, i2, i3} ⊂ [1, 4] and f ∈ Q2, such that I = (fi1 , fi2 , fi3 , f) and
fi1 is a non-zero-divisor on the algebra Q = k[x, y, z]/(fi2 , fi3 , f).

(2) In view of (1), Corollary 4.3 applies. It yields Lp,(e−1)p(R) = P 2
p,(e−1)p(R),

shows that this set is open in Mep×(e−1)p(k), and also that it is non-empty when
e = 3. When e = 2, we get Lp,p(R) 6= ∅ from Proposition 6.3. �

To finish, we show that when R needs more that 3 generators, there exists no
similar description of the locus of modules with constant Betti numbers, and we
isolate the smallest case, when it is not known whether this set has an open interior.

Remark 6.5. Choose an element a ∈ k r {0,±1} and set R = k[x1, x2, x3, x4]/I,
where I is the ideal generated by the following quadratic forms in four variables:

x2
1 , ax1x3 + x2x3 , x1x4 + x2x4 , x2

2 , x2
3 , x3x4 , x2

4 .

Since x4 is a Conca generator for R, Proposition 5.4 shows that the sets L1,3(R)
and P 2

1,3(R) are equal, open, and non-empty. On the other hand, [11, 3.4] and
Proposition 5.4 give, respectively, the strict inclusion and the inequality below:

L2,6(R) ) P 2
2,6(R) 6= ∅ .

We do not know whether either set above has a non-empty interior in M8×6(k).
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[9] R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997), 337–350,

Lecture Notes in Pure and Appl. Math. 205, Dekker, New York, 1999
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schémas et des morphismes de schémas (Troisième partie), Publ. Math. IHES 28, 1966.
[14] T. H. Gulliksen, Massey operations and the Poincaré series of certain local rings, J. Algebra
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Liana M. Şega, Department of Mathematics and Statistics, University of Missouri,
Kansas City, MO 64110, U.S.A.

E-mail address: segal@umkc.edu


	Introduction
	Notation
	1. Short linear modules and Koszul algebras
	2. Parametrizing short modules
	3. Linear loci
	4. Periodic linear modules
	5. Algebras with Conca generators
	6. Open sets of linear modules
	References

