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Abstract. We consider a finitely generated graded module M over a standard
graded commutative Noetherian ring R =

L

d≥0
Rd and we study the local

cohomology modules Hi

R+
(M) with respect to the irrelevant ideal R+ of R.

We prove that the top nonvanishing local cohomology is tame, and the set
of its minimal associated primes is finite. When M is Cohen-Macaulay and
R0 is local, we establish new formulas for the index of the top, respectively
bottom, nonvanishing local cohomology. As a consequence, we obtain that
the (Sk)-loci of a Cohen-Macaulay R-module M , regarded as an R0-module,
are open in Spec(R0). Also, when dim(R0) ≤ 2 and M is a Cohen-Macaulay
R-module, we prove that Hi

R+
(M) is tame, and its set of minimal associated

primes is finite for all i.

introduction

Let R =
⊕

d≥0 Rd be a positively graded commutative Noetherian ring which

is standard in the sense that R = R0[R1], and set R+ =
⊕

d>0 Rd, the irrelevant
ideal of R. Let M =

⊕

d∈Z
Md be a finitely generated graded R-module. In this

paper we study the graded local cohomology modules Hi
R+

(M).

It is known that each of the graded components Hi
R+

(M)j is finitely generated

over R0 and Hi
R+

(M)j = 0 for all j ≫ 0. Brodmann and Hellus [3] have recently

raised the question whether the modules Hi
R+

(M) are tame (or asymptotically gap

free), meaning that either Hi
R+

(M)j = 0 for all j ≪ 0 or Hi
R+

(M)j 6= 0 for all

j ≪ 0. A positive answer is known in several cases, cf. [1], [3], [9], [12], [13].
In order to understand the finiteness properties of the modules Hi

R+
(M), Huneke

[7] asked whether the set of their associated primes is finite; this was answered
negatively by Singh [17]. However, as noted by Katzman in [8], it is not known
whether the set of minimal associated primes is finite, or in other words, whether
the support of Hi

R+
(M) is Zariski-closed.

When i is the index of the bottom nonvanishing local cohomology, it is known
that the set AssR

(

Hi
R+

(M)
)

is finite, and it follows that Hi
R+

(M) is tame, cf [3].

When i is the index of the top nonvanishing local cohomology and M = R, it is
proved in [9] that Hi

R+
(R) has only finitely many minimal associated primes. In

this paper we prove:

Theorem 1. If Hn
R+

(M) 6= 0 and Hi
R+

(M) = 0 for all i > n, then:

(1) Hn
R+

(M) is tame

(2) Hn
R+

(M) has finitely many minimal associated primes.
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To study local cohomology for all indices i, some particular cases are treated.

Theorem 2. Assume that M is a Cohen-Macaulay R-module, and either dim(R0) ≤
2 or dim(R0) ≤ 3 and R0 is semilocal. The modules Hi

R+
(M) have then finitely

many minimal associated primes for all i.

When R0 is semilocal of dimension at most 2, Brodmann, Fumasoli and Lim [1]
proved that Hi

R+
(M) is tame for all i. Assuming that M is Cohen-Macaulay, we

eliminate the condition that R0 is semilocal. This recovers a result of Lim [13].

Theorem 3. If M is a Cohen-Macaulay R-module and dim(R0) ≤ 2, then Hi
R+

(M)

is tame for all i.

When M is a Cohen-Macaulay R-module and R0 is local we prove:

sup{i | Hi
R+

(M) = 0 for all j < i} = dimR M − dimR0
M

inf{i | Hi
R+

(M) = 0 for all j > i} = dimR M − depthR0
M

Note that the notion of depth of M over R0 is meaningful, cf. [16] for details.
In particular, when R0 is local and M is Cohen-Macaulay over R, the following
statements are equivalent:

(a) depthR0
(M) = dimR0

(M)
(b) Mi is a Cohen-Macaulay R0-module with dimR0

(Mi) = dimR0
(M) for all i.

(c) There exists j ≥ 0 so that Hi
R+

(M) = 0 for all i 6= j.

Another consequence of the formulas is somewhat surprising. Recall that a finite
module N over a commutative Noetherian ring A satisfies the Serre condition (Sk)
if depthAp

(Np) ≥ min{k, dimNp} for all p ∈ Spec(A). When the ring A is excellent,

Grothendieck [6] proved that the set

USk
(N) = {p ∈ Spec(A) | the Ap-module Np satisfies (Sk)}

is open in Spec(A). Noting that the above notions make sense for A = R0 and
N = M , the authors extended this result in [16] and proved that the set

U0
Sk

(M) = {p ∈ Spec(R0) | the (R0)p-module Mp satisfies (Sk)}
is open in Spec(R0) whenever R is excellent. In general, the condition that the
ring is excellent is necessary for the (Sk)-loci to be open. However, when M is
Cohen-Macaulay, it can be removed:

Theorem 4. If M is Cohen-Macaulay over R, then for any k ∈ N the set U0
Sk

(M)
is open in Spec(R0).

The paper is organized as follows: In the first section we collect definitions and
several known results on local cohomology that are used throughout the paper.

In the second section we prove Theorem 1(1) as Theorem 2.8. A stronger re-
sult is obtained when R0 is local, with maximal ideal m0. In this case, we prove
that if n denotes the largest integer i with Hi

R+
(M) 6= 0, then the R-module

Hn
R+

(M)/m0H
n
R+

(M) is Artinian; in particular, this shows that the minimal num-

ber of generators of Hn
R+

(M)j has polynomial growth for j ≪ 0.

In the third section we prove that certain subsets of Spec(R0) are open. In
particular, Theorem 1(2) is proved as Theorem 3.5. (See also 1.1.)

In Section 4 we obtain the formulas above for the top and bottom nonvanishing
local cohomology, and prove Theorem 4 as Corollary 4.9.
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In Section 5 we prove Theorem 2 as Theorems 5.3 and 5.4, and Theorem 3 as
Theorem 5.6.

1. preliminaries

Throughout the whole paper, we let R denote a positively graded commutative
Noetherian ring R =

⊕

d≥0 Rd, which is standard in the sense that R = R0[R1],

and set R+ =
⊕

i>0 Ri, the irrelevant ideal of R. Let M =
⊕

d∈Z
Md be a finitely

generated graded R-module.
For any M as above and any integer a we let M [a] denote the a-shift of M ,

defined as the graded R-module with M [a]i = Mi−a.

1.1. As noted in [3, 5.5] there is a bijection between the sets AssR

(

Hi
R+

(M)
)

and

AssR0

(

Hi
R+

(M)
)

given by p + R+ 7→ p. Since over a Noetherian ring the set

of minimal primes of the support of a module coincides with the set of minimal
associated primes of the module, the following statements are equivalent:

(a) The R-module Hi
R+

(M) has finitely many minimal associated primes.

(b) The R0-module Hi
R+

(M) has finitely many minimal associated primes.

(c) The set SuppR

(

Hi
R+

(M)
)

is closed in Spec(R).

(d) The set SuppR0

(

Hi
R+

(M)
)

is closed in Spec(R0).

1.2. We set

gR(M) = grade(R+, M)

Recall that grade(R+, M) = ∞ if and only if R+M = M . In our case, this is
equivalent to M = 0.

The following relation is known, cf. [4, 6.2.7]:

(1.2.1) gR(M) = sup{i | Hj
R+

(M) = 0 for all j < i}
When R0 is local with maximal ideal m0 we set

nR(M) = dimR(M/m0M)

We make the convention that dimR(0) = −∞, and note that nR(M) = −∞ if and
only if M = 0. By [3, 3.4], we have

(1.2.2) nR(M) = inf{i | Hj
R+

(M) = 0 for all j > i}

1.3. We recall the following properties (see for example [4]) :

1.3.1. (Homogeneous Prime Avoidance Lemma) If P1, . . . , Ps are prime ideals in
Spec(R) and R+ is not contained in Pi for all i, then there exists a homogeneous
element in R+ r (P1 ∪ · · · ∪ Ps).

In particular, if 0 < gR(M) < ∞, then there exists a homogeneous element
x ∈ R+ which is M -regular.

1.3.2. Hi
R+

(M) ∼= Hi
R+

(

M/ΓR+
(M)

)

for all i > 0.

1.3.3. (Flat Base Change) If R → R′ is a flat homomorphism of Noetherian rings,
then Hi

R+
(M) ⊗R R′ ∼= Hi

R+R′(M ′) for all i, where M ′ = M ⊗R R′.

In particular, if Hi
R+Rq

(Mq) = 0 for some q ∈ Spec(R0), then Hi
R+Rp

(Mp) = 0

for all p ∈ Spec(R0) with p ⊆ q.
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1.3.4. (Independence Theorem) If R → R′ is a homomorphism of Noetherian
rings and N is a finite R′-module (with the induced structure of R-module) then
Hi

R+R′(N) ∼= Hi
R+

(N) for all i.

Moreover, when R0 is local with maximal ideal m0 we have, cf. [3]:

1.3.5. nR(M) ≤ 0 if and only if M = ΓR+
(M).

1.3.6. nR(M) = nR

(

M/ΓR+
(M)

)

, provided that nR(M) > 0.

1.3.7. If nR(M) > 0, then there exists a homogeneous element x ∈ R+ such that
nR(M/xM) = nR(M) − 1. This follows from 1.3.1, by choosing x to avoid all the
minimal primes of (m0M :R M). Moreover, if gR(M) > 0, then the element x may
be chosen to be also M -regular.

2. the top local cohomology is tame

The assumptions on R and M are as in the first section.

2.1. Theorem. Assume that R0 is local with maximal ideal m0.

If n = nR(M), then the R-module Hn
R+

(M)/m0H
n
R+

(M) is Artinian.

Proof. We will prove the statement by induction on nR(M).
Assume that nR(M) = 0. By 1.3.5, we have then M = ΓR+

(M). It follows that
SuppR(M/m0M) = {m0 + R+}. Since M is finitely generated as an R-module, we
conclude that that M/m0M is Artinian.

Now assume that we proved the statement for any finitely generated graded R-
module N with nR(N) = k − 1 ≥ 0. We want to prove it for nR(M) = k. In view
of 1.3.2 and 1.3.6 we may replace M with M/ΓR+

(M), so that we may assume
ΓR+

(M) = 0. Let x ∈ R+ be a homogeneous M -regular element with deg(x) = a
such that nR(M/xM) = nR(M) − 1 = k − 1 (see 1.3.7).

The short exact sequence

0 → M
x−→ M [−a] →

(

M/xM
)

[−a] → 0

yields a long exact sequence

· · · → Hk−1
R+

(M/xM) → Hk
R+

(M)
x−→ Hk

R+
(M)[−a] → Hk

R+
(M/xM)[−a] → · · ·

Since nR(M/xM) = k − 1, we have Hk
R+

(M/xM) = 0 by (1.2.2). Let L denote

the kernel of the multiplication by x on Hk
R+

(M). The induction hypothesis yields

that the R-module Hk−1
R+

(M/xM)/m0H
k−1
R+

(M/xM) is Artinian. As a homomor-

phic image of this module, L/m0L is also Artinian.
We have then an exact sequence

L/m0L → Hk
R+

(M)/m0H
k
R+

(M)
x−→ Hk

R+
(M)/m0H

k
R+

(M)[−a] → 0

which shows that the kernel of multiplication by x on Hk
R+

(M)/m0H
k
R+

(M) is an

Artinian R-module. Since Hk
R+

(M)/m0H
k
R+

(M) is an (x)-torsion R-module, we

conclude that it is Artinian using for example a result of Melkersson [15, 1.3]. �

2.2. Recall from [4, 15.1.5] that for all i and n the R0-module Hn
R+

(M)i is finitely

generated. When (R0, m0) is local, it makes thus sense to introduce the numbers

ℓn
R(M)i := lengthR0

(

Hn
R+

(M)/m0H
n
R+

(M)
)

i

Recall also that Hn
R+

(M)i = 0 for i ≫ 0.
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2.3. Since R is finitely generated (in degree 1), it is isomorphic to a quotient of a
polynomial ring S = R0[x1, . . . xs], with variables in degree 1. By 1.3.4, we have
Hi

R+
(M) ∼= Hi

S+
(M) for all i.

When (R0, m0) is local, it follows from 1.2.2 that nR(M) = nS(M). Note that
for every i and n we also have ℓn

R(M)i = ℓn
S(M)i.

2.4. Corollary. Set n = nR(M) and assume that R is generated over R0 by s
elements. There exists then a polynomial q(t) ∈ Q[t] of degree at most s such that

ℓn
R(M)i = q(i) for all i ≪ 0 .

Proof. By 2.3 we may assume R = R0[x1, . . . xs]. The existence of the polynomial
q(t) is given for example by [10, 2], using Theorem 2.1. �

We recall a terminology introduced in [3]: A graded R-module T = ⊕d∈ZTd is
said to be tame (or asymptotically gap free) if the set

{d ∈ Z | Td 6= 0, Td+1 = 0}
is finite. Clearly, all Artinian and Noetherian R-modules are tame. Theorem 2.1
shows thus that the R-module Hn

R(M)/m0H
n
R(M) is tame when n = nR(M). Using

Nakayama’s Lemma, we note:

2.5. Corollary. If n = nR(M), then Hn
R+

(M) is tame. �

We note that the top local cohomology module is almost never Noetherian:

2.6. Remark. Assume that R0 is local and set n = nR(M). If n > 0, then
Hn

R+
(M)j 6= 0 for all j ≪ 0.

Indeed, by 1.3.2, we may assume ΓR+
(M) = 0 and thus gR(M) > 0. By 1.3.7

there exists then a homogeneous M -regular element x ∈ R+ with deg(x) = a such
that nR(M/xM) = nR(M) − 1. In particular, this implies that Hn

R+
(M/xM) = 0.

The long exact sequence in homology

· · · → Hn
R+

(M)
x−→ Hn

R+
(M)[−a] → Hn

R+
(M/xM)[−a] → · · ·

shows that multiplication by x on Hn
R+

(M) is surjective, hence there exist infinitely

many indices j with Hn
R+

(M)j 6= 0. In view of Corollary 2.5, we have Hn
R+

(M)j 6= 0

for all j ≪ 0. (Alternatively, this result can be proved by reducing to the case when
the residue field of R0 is infinite, in which case we may assume a = 1.)

For the rest of the section we remove the assumption that R0 is local.

2.7. Remark. Let n be an integer such that Hi
R+

(M) = 0 for all i > n and

Hn
R+

(M) 6= 0. Using (1.2.2) and 1.3.3 we see that nRp
(Mp) ≤ n for all p ∈ Spec(R0).

In particular, this implies that Hn
R+Rp

(Mp) 6= 0 if and only if n = nRp
(Mp). If

n 6= nRp
(Mp) for all p, then Hn

R+Rp
(Mp) = 0 for all p, hence Hn

R+
(M) = 0, a con-

tradiction. In conclusion, there exists some p ∈ Spec(R0) such that n = nRp
(Mp).

2.8. Theorem. If n is an integer such that Hi
R+

(M) = 0 for all i > n and

Hn
R+

(M) 6= 0, then Hn
R+

(M) is tame.

Proof. If n = 0, then Hn
R+

(M) is a finite R0-module, and thus Hn
R+

(M)j = 0 for

all j ≪ 0. So we may assume n > 0.
By Remark 2.7, there exists p ∈ Spec(R0) such that n = nRp

(Mp). By Remark
2.6, it follows that Hn

R+Rp
(Mp)j = 0 for all j ≪ 0, and thus Hn

R+
(M) = 0 for all

j ≪ 0. �
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3. the support of the top local cohomology is closed

In this section we prove several results regarding open loci, which culminate with
the one announced in the title. First, we record a basic lemma:

3.1. Lemma. Let N =
⊕

d∈Z
Nd be a finitely generated R-module and p ∈ Spec(R0)

be a prime ideal.

(1) If Np = 0 then there exists an open set U of Spec(R0) such that p ∈ U and

Nq = 0 for all q ∈ U .

(2) Let x ∈ R+ be a homogeneous element such that x/1 ∈ R+Rp is Np-regular.

There exists then an open set U of Spec(R0) such that p ∈ U and Nq = 0 or

x/1 ∈ R+Rq is Nq-regular for al q ∈ U .

Proof. (1) Let n1, . . . ns be a set of generators of N over R and let a ∈ R0 r p such
that n1/1, . . . , ns/1 = 0 in Na. Consider then

U = Ua := {p ∈ Spec(R0) | a /∈ p} .

(2) Let K be the kernel of multiplication by x on N . Since x/1 is Np-regular, we
have Kp = 0. Use then (1) to find an open set U such that Kq = 0 for all q ∈ U . �

3.2. Lemma. For any q ∈ Spec(R0) we set nq = nRq
(Mq).

(1) If p and q are prime ideals in Spec(R0) such that p ⊆ q, then np ≤ nq.

(2) For any p ∈ Spec(R0) there exists an open set U ⊆ Spec(R0) such that p ∈ U
and nq ≤ np for all q ∈ U ; in particular, nq = np for all q ∈ U ∩ V (p).

Proof. (1) By localizing at q, we may assume that R0 is local, with maximal ideal
q, and hence nq = nR(M). If np = −∞, then the inequality is clear. Assume now
that np ≥ 0. From (1.2.2) we have H

np

R+Rp
(Mp) 6= 0 and from 1.3.3 it follows that

H
np

R+
(M) 6= 0. Using again (1.2.2), we conclude np ≤ nR(M) = nq.

(2) We proceed by induction on np. If np = −∞, then Mp = 0 and we choose
then U as in Lemma 3.1(1) so that p ∈ U and for all q ∈ U we have Mq = 0, and
thus nq = −∞.

If np = 0 then
(

M/ΓR+
(M)

)

p
= 0 by 1.3.5. Using Lema 3.1(1) we choose then

U so that p ∈ U and
(

M/ΓR+
(M)

)

q
= 0 for all q ∈ U . For such q it follows that

nq ≤ 0 using again 1.3.5.
Assume now that np = n > 0 and that the statement is proved for all graded

finitely generated R modules N with nRp
(N) = n−1. Set M = M/ΓR+

(M). Since

np > 0, we have np = nRp
(Mp) by 1.3.6. Let x ∈ R+ be a homogeneous Mp-regular

element such that nRp
(Mp/xMp) = np − 1, cf. 1.3.7. By the induction hypothesis,

there exists an open set U such that p ∈ U and nRp
(Mp/xMp) ≥ nRq

(Mq/xMq)
for all q ∈ U . The inequality in the statement is clearly satisfied for all q ∈ U with
nq ≤ 0. For all q ∈ U with nq > 0 we have:

np = nRp
(Mp/xMp) + 1 ≥ nRq

(Mq/xMq) + 1 ≥ nq(Mq) = nq(Mq)

For the second inequality, note that if S is a graded ring with unique graded max-
imal ideal n, then for any nonzero finitely generated graded S-module N , and any
homogeneous element z ∈ n we have dimR(N/zN) ≥ dimR(N)−1; this is the graded
version of [5, A.4]. To prove this, it suffices to reduce the problem to the local case,
using the fact dimR(N) = dimRn

(Nn) and dimR(N/zN) = dimRn
(Nn/zNn). �

We obtain a similar lemma for the grade:
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3.3. Lemma. For any p ∈ Spec(R0) we set gp = gRp
(Mp). .

(1) If p, q are prime ideals in Spec(R0) such that p ⊆ q, then gp ≥ gq.

(2) For any p ∈ Spec(R0) there exists an open set U ⊆ Spec(R0) such that p ∈ U
and gq ≥ gp for all q ∈ U . In particular, gq = gp for all q ∈ U ∩ V (p).

Proof. (1) By localizing at q we may assume that R0 is local with maximal ideal
q and thus gq = gR(M). If gp = ∞, then the inequality is clear. Assume now
that gp 6= ∞. By (1.2.1) we have H

gp

R+Rp
(Mp) 6= 0. From 1.3.3 it follows that

H
gp

R+
(M) 6= 0. Using again (1.2.1) we conclude gp ≥ gR(M) = gq.

(2) We prove the statement by induction on gp. If gp = ∞, then Mp = 0 and
choose U so that p ∈ U and Mq = 0 for all q ∈ U , as in Lemma 3.1(1).

If gp = 0 then the assertion is clear.
If 0 < gp < ∞ then choose a homogeneous element x/1 ∈ R+Rp which is

regular on Mp, cf. 1.3.1. By Lemma 3.1(2) we can choose an open set U1 such
that p ∈ U1 and x/1 ∈ R+Rq is regular on Mq or Mq = 0 for all q ∈ U1. Since
gRp

(Mp/xMp) = gp − 1, we can use the induction hypothesis to obtain an open set
U2 so that p ∈ U2 and

gRp
(Mp/xMp) ≤ gRq

(Mq/xMq) for all q ∈ U2 .

Setting U = U1 ∩ U2 we have thus for all q ∈ U with Mq 6= 0:

gp = gRp
(Mp/xMp) + 1 ≤ gRq

(Mq/xMq) + 1 = gq

When Mq = 0 we have gq = ∞, hence the inequality is also satisfied. �

The next proposition can be deduced immediately from the above lemmas.

3.4. Proposition. For any integer k the following sets are open in Spec(R0):

Dk
1 (M) : = {q ∈ Spec(R0) | gRq

(Mq) ≥ k}
Dk

2 (M) : = {q ∈ Spec(R0) | nRq
(Mq) ≤ k}

Dk
3 (M) : = {q ∈ Spec(R0) | nRq

(Mq) − gRq
(Mq) ≤ k}

Our main theorem in this section generalizes a result of Katzman and Sharp in
[9, 1.8]; they prove the case M = R of Theorem 3.5 below.

3.5. Theorem. Let n be an integer such that Hi
R+

(M) = 0 for all i > n and

Hn
R+

(M) 6= 0. The set SuppR0
(Hn

R+
(M)) is then closed in Spec(R0).

In view of 1.1, this gives Theorem 1(2) in the introduction.

Proof. Using 1.2, we conclude

SuppR0

(

Hn
R+

(M)
)

= {q ∈ Spec(R0) | nRq
(Mq) = n}

We also have nRq
(Mq) ≤ n for all q ∈ Spec(R0), hence, in the notation of Proposi-

tion 3.4, the complement in Spec(R0) of the set above is precisely the set Dn−1
2 (M),

which is open. �

3.6. Remark. Arguments similar to those in the proof above show that the sup-
port of the bottom nonvanishing local cohomology is closed, too. However the
result would be weaker than what is known, since AssR0

(Hg
R+

(M)) is finite for

g = grade(R+, M), cf. [2].



8 C. ROTTHAUS AND L. M. ŞEGA

4. Cohen-Macaulay modules

In this section we consider the case when M is a Cohen-Macaulay R-module.
We recall below several known facts on Cohen-Macaulay graded modules, for which
we refer to [5].

4.1. Assume that (R0, m0) is local and set m = m0+R+, the unique graded maximal
ideal of R. The R-module M is then Cohen-Macaulay if and only if the Rm-module
Mm is Cohen-Macaulay, and in this case we have:

dimR(M) = dimRm
(Mm) = depthRm

(Mm) = grade(m, M)

4.2. Proposition. Assume (R0, m0) is local, and M is a nonzero Cohen-Macaulay

R-module. The following then holds:

grade(R+, M) = dimR M − dimR0
M

Proof. Since R is isomorphic to a quotient of a polynomial ring over R0, we may
actually assume by 1.3.4 that R is a polynomial ring R = R0[x1, . . . xs]. (Note
that dimension is also invariant under the change of the ring.) Furthermore, by
1.3.3 we may assume that R0 is complete, and hence it is a quotient S0/I, where
S0 is a regular local ring. It follows that R is a quotient of the polynomial ring
S0[x1, . . . xs]. Replacing R with this ring, we may thus assume that both R and R0

are regular (in particular, Cohen-Macaulay)
In his thesis, Lim [11, 1.2.9] proved that the following holds:

(∗) grade(R+, M) = ht(R+) + ht(I ∩ R0) − ht I

where I =
√

annR M . Note that I ∩ R0 =
√

annR0
M , using for example [16,

1.1.2(1)]. Since R0 and R are Cohen-Macaulay, we have

ht(I ∩ R0) = dimR0 − dimR0
M

ht(I) = dim R − dimR M

Since ht(R+) = dim(R) − dim(R0), the formula (∗) gives the equality in the state-
ment. �

When R0 is local, the notion of depth of M over R0 can be introduced in the
usual way (even if M is not necessarily finitely generated over R0), namely as being
equal to the length of a maximal regular sequence. (See [16] for more details.)

4.3. Proposition. If (R0, m0) is local and M is a Cohen-Macaulay R-module, then

dimR(M/m0M) = dimR(M) − depthR0
(M)

Proof. Let m = m0 + R+ be the unique graded maximal ideal of R. Consider a
maximal M -regular sequence q1, . . . qs in m0, and choose t1, . . . tr ∈ m such that
q1, . . . qs, t1, . . . , tr is a maximal M -regular sequence in m. We have thus:

depthR0
(M) = s and grade(m, M) = r + s

Using 4.1 we evaluate the right-hand part of the equality in the statement:

dimR(M) − depthR0
(M) = grade(m, M) − depthR0

(M) = r

Set M = M/(q1, . . . qs)M . Note that M is a graded Cohen-Macaulay R-module
and in view of 4.1 we have

dimR(M) = grade(m,M) = r
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To prove the statement, it suffices thus to show that the R-modules M/m0M
and M have the same dimension. Since M/m0M is a homomorphic image of M ,
we have dimR(M/m0M) ≤ dimR(M).

To prove the reverse inequality, consider Q ∈ AssR(M) such that Q ∩ R0 = m0.
We can choose such a prime because depthR0

(M) = 0, hence m0 ∈ AssR0
(M), and

we can apply for example [16, 2.1.2].
The R-module M is graded Cohen-Macaulay, hence the Rm-module Mm is

Cohen-Macaulay. Since Qm is an associated prime of this last module, we have

(4.3.1) dimR(M) = dimRm
(Mm) = dimRm

(Rm/Qm) = dimR(R/Q)

Let N be a Q-primary submodule N ⊆ M , and let N denote the preimage of N
in M . We have AssR(M/N) = AssR(M/N) = {Q}, hence:

(4.3.2) dimR(M/N) = dimR(R/Q)

It also follows that rad(annR(M/N)) = Q, and since m0 ⊆ Q, we conclude that
there exists an integer r such that mr

0 ⊆ annR(M/N), and hence mr
0M ⊆ N . We

have thus:

(4.3.3) dimR(M/m
r
0M) ≥ dimR(M/N)

On the other hand, by [16, 5.1] we have:

(4.3.4) dimR(M/m
r
0M) = dimR(M/m0M)

Putting together the four equations displayed above, we obtain

dimR(M/m0M) ≥ dimR(M)

and this finishes the proof. �

4.4. When R0 is local, we set

codepthR0
(M) = dimR0

(M) − depthR0
(M)

Recall from [16, 1.2.2] that we have the following formulas:

depthR0
(M) = inf{depthR0

(Mi) | i ∈ Z with Mi 6= 0}
dimR0

(M) = sup{dimR0
(Mi) | i ∈ Z}

Note that if M 6= 0 then 0 ≤ codepthR0
(M) ≤ dim(R0) and if M = 0 then

codepthR0
(M) = −∞.

Using the notation introduced earlier, Propositions 4.2 and 4.3 prove that the
following formula holds whenever R0 is local, and M is a nonzero Cohen-Macaulay
R-module:

(4.4.1) nR(M) − gR(M) = codepthR0
(M)

Note that the formula also holds when M = 0.

4.5. Remark. The R0-module M is Cohen-Macaulay (meaning that codepthR0
M ≤

0) if and only if for each i the R0-module Mi is Cohen-Macaulay and dimR0
Mi =

dimR0
M .

Indeed, if M is Cohen-Macaulay, then, using 4.4, we have for all i:

depthR0
Mi ≥ depthR0

M = dimR0
M ≥ dimR0

Mi

It follows that equalities hold above, and in particular Mi is Cohen-Macaulay.
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Conversely, choose i be such that depthR0
M = depthR0

Mi, cf. 4.4. Since
depthR0

Mi = dimR0
Mi = dimR0

M , it follows that M is Cohen-Macaulay.

In view of 1.2, we can use the formula (4.4.1) and Remark 4.5 to give a nec-
essary and sufficient condition for a Cohen-Macaulay R-module to have only one
nonvanishing local cohomology.

4.6. Corollary. Assume that M is a Cohen-Macaulay R-module and R0 is local.

The following statements are then equivalent:

(1) M is Cohen-Macaulay as an R0-module.

(2) The R0-module Mi is Cohen-Macaulay, with dimR0
Mi = dimR0

M for all i.
(3) There exists an integer j ≥ 0 such that Hi

R+
(M) = 0 for all i 6= j. �

In the remaining of the section we eliminate the condition that R0 is local. Note
that the formula (4.4.1) gives:

4.7. Corollary. Assume that M is a Cohen-Macaulay R-module. For any p ∈
Spec(R0) the following equality holds:

nRp
(Mp) − gRp

(Mp) = codepth(R0)p
(Mp) �

Combining Corollary 4.7 with Proposition 3.4, we obtain:

4.8. Corollary. If M is Cohen-Macaulay over R, then for any k ∈ N the set

U0
Cn

(M) = {p ∈ Spec(R0) | codepth(R0)p
(Mp) ≤ k}

is open in Spec(R0). �

Furthermore, by [16, 3.3] we have:

4.9. Corollary. If M is Cohen-Macaulay over R, then for any k ∈ N the set

U0
Sn

(M) = {p ∈ Spec(R0) | the (R0)p-module Mp satisfies (Sk)}
is open in Spec(R0). �

5. base rings of small dimension

In this section we prove in several cases that the support of the local cohomology
is closed. To prove that a set is open, we use the topological Nagata criterion, cf.
[14, 24.2], as recalled below:

5.1. A set D in Spec(R0) is open if and only if the following two conditions are
satisfied:

(1) If q ∈ D and p ⊆ q, then p ∈ D.
(2) For any prime p ∈ D there exists an open non-empty subset of V (p) contained

in D, that is, there exists an open set U in Spec(R0) such that ∅ 6= U ∩ V (p) ⊆ D.

The assumptions on R and M are as in Section 1. To simplify the notation, for
every p ∈ Spec(R0) we set:

gp = gRp
(Mp) and np = nRp

(Mp)

5.2. Proposition. Assume that M is a Cohen-Macaulay R-module and the in-

equality codepth(R0)p
(Mp) ≤ 1 holds for all p ∈ Spec(R0).

The set SuppR0
(Hi

R+
(M)) is then closed in Spec(R0) for all i.
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Proof. Fix some i. We will prove the conditions (1) and (2) of 5.1 for the set
D = Spec(R0) r SuppR0

(Hi
R+

(M)). By Flat Base Change, we have

D = {p ∈ Spec(R0) | Hi
R+Rp

(Mp) = 0}
and we see that (1) is satisfied. To check (2), let p ∈ D. If Mp=0, then we choose
U as in Lemma 3.1(1).

If Mp 6= 0, then Corollary 4.7 gives gp ≤ np ≤ gp + 1. Since Hi
R+Rp

(Mp) = 0,

we have i /∈ {gp, np} by 1.2. Using Theorems 3.2 and 3.3 we can choose an open
set U such that p ∈ U and nq = np and gq = gp for all q ∈ U ∩ V (p). Thus, for all
q ∈ U ∩ V (p) we have gq ≤ nq ≤ gq + 1 and i /∈ {gq, nq}. Using again 1.2 it follows
that Hi

R+Rq
(Mq) = 0, that is, q ∈ D. �

5.3. Theorem. Assume that M is a Cohen-Macaulay R-module.

If dim R0 ≤ 2, then SuppR0
(Hi

R+
(M)) is closed for all i.

Proof. Fix some i. As above, we only need to check condition (2) of 5.1 for the set
D = Spec(R0) r SuppR0

(Hi
R+

(M)). Let p ∈ D. We distinguish the following two
cases:

(a) ht p = 2. In this case we take U = Spec(R0), noting that U ∩ V (p) = {p}.
(b) ht p ≤ 1. In this case we have codepth(R0)p

(Mp) ≤ dim(R0)p ≤ 1, hence
gp ≤ np ≤ gp + 1 when Mp 6= 0, by Corollary 4.7. We proceed as in the proof of
Proposition 5.2. �

5.4. Theorem. Assume that R0 is semilocal, and M is a Cohen-Macaulay R-

module. If dimR0 ≤ 3, then SuppR0
(Hi

R+
(M)) is closed for all i.

Proof. Fix some i. As above, we only need to check condition (2) of 5.1 for the set
D = Spec(R0) r SuppR0

(Hi
R+

(M)). Let p ∈ D. We distinguish the following three
cases:

(a) If ht p = 3, then we take U = Spec(R0).
(b) If ht p = 2, then we take U = Spec(R0)r{m1, . . . , ms}, where m1, . . . , ms are

the maximal ideals of R0.
(c) If ht p ≤ 1, then by Corollary 4.7 we have gp ≤ np ≤ gp + 1 when Mp 6= 0

and we proceed as in the proof of Proposition 5.2. �

We recall a result of Brodmann, Fumasoli and Lim [1]:

5.5. If R0 is semilocal of dimension at most 2, then Hi
R+

(M) is tame for all i.

Lim [13] has proved tameness of the local cohomology for any ring of dimension
at most 2, under the additional assumption that M is Cohen-Macaulay. Using our
methods, we recover below Lim’s result.

5.6. Theorem. Assume that M is a Cohen-Macaulay R-module.

If dim R0 ≤ 2, then Hi
R+

(M) is tame for all i.

Proof. Fix some i. If there exists some p ∈ Spec(R0) such that Hi
R+Rp

(Mp)d 6= 0

for infinitely many d < 0, then 5.5 yields that Hi
R+Rp

(Mp)j 6= 0 for all j ≪ 0, hence

Hi
R+

(M)j 6= 0 for all j ≪ 0 , and thus Hi
R+

(M) is tame.

It remains thus to study the case when Hi
R+Rp

(Mp) is a finite (R0)p-module for

all p ∈ Spec(R0). Note that if i = 0, then H0
R+

(M) is itself a finite R0-module.
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Also, if i = 1, then it follows that H1
R+

(M) is a finite R0-module as well, using a

result of Faltings, cf. [4, 9.6.1]. Thus, we may also assume i > 1.

Claim: For every integer n the following set is open:

Dn = {p ∈ Spec(R0) | Hi
R+Rp

(Mp)j = 0 for all j ≤ −n}

Assuming the claim, we will prove the theorem. Set Zn = Spec(R0) r Dn.
If Zn = ∅ for some n, then Hi

R+Rp
(Mp)j = 0 for all j ≤ −n and all p ∈ Spec(R0),

hence Hi
R+

(M)j = 0 for all j ≤ −n, and thus Hi
R+

(M) is tame.

Assume now that for each n we have Zn 6= ∅. The following chain of closed
subsets:

· · · ⊆ Zn ⊆ Zn−1 ⊆ · · · ⊆ Z0

shows that there exists an n0 such that Zn = Zn0
for all n ≥ n0. If p ∈ Zn0

, then
p ∈ Zn for all n ≥ n0, and it follows that Hi

R+Rp
(Mp) is nonzero in infinitely many

degrees; this case was treated in the beginning.

Proof of the claim: To prove that the set Dn is open we will use again the
criterion 5.1. We only need to prove (2), that is: for each p ∈ Dn we need to find
an open set U of Spec(R0) such that ∅ 6= U ∩ V (p) ⊆ Dn. We have the following
two cases:

(a) If ht p = 2, then take U = Spec(R0), and note that U ∩ V (p) = {p}.
(b) Assume now ht p ≤ 1. If Mp = 0, then choose U as in Lemma 3.1(1). We

may assume thus Mp 6= 0. Since codepth(R0)p
(Mp) ≤ 1, Corollary 4.7 implies

(5.6.1) gp ≤ np ≤ gp + 1

If gp = 0, then np ≤ 1. Let U be an open set containing p such that nq ≤ np,
and thus nq ≤ 1, for all q ∈ U . Since i > 1, we have then Hi

R+Rq
(Mq) = 0 for all

q ∈ U , hence U ⊆ Dn.
Assume now that gp > 0. Note that i 6= np. Indeed, if i = np, then Hi

R+Rp
(Mp),

and thus Hi
R+

(M), is nonzero in infinitely many degrees by Remark 2.6. This

contradicts p ∈ Dn.
If i 6= gp then it suffices to choose an open set U such that p ∈ U and gp = gq

and np = nq for all q ∈ U ∩ V (p); this can be done using Lemmas 3.2 and 3.3.
For all such q we have i 6= nq and i 6= gq. In view of (5.6.1) and 1.2 we conclude
Hi

R+Rq
(Mq) = 0, and thus q ∈ Dn.

If i = gp, consider an open set U1 = {q ∈ Spec(R0) | b /∈ q} with b ∈ R0 such
that p ∈ U1 and gq ≥ gp for all q ∈ U1 (by Lemma 3.3). The primes of the ring
(R0)b correspond bijectively with the elements of U1. By assumption Hi

R+Rq
(Mq)

is finite over R0 for all q ∈ U1. Since gq ≥ i for all such q, it actually follows that

Hj
R+Rq

(Mq) is finitely generated for all j < i+1. By a theorem a Faltings [4, 9.6.1],

it follows that Hj
R+Rb

(Mb) is finitely generated for all j < i + 1, and hence there

exists an integer d such that Hi
R+Rb

(Mb)l = 0 for all l ≤ d. In particular, it follows

that Hi
R+Rq

(Mq)l = 0 for all q ∈ U1 and all l ≤ d. If d ≥ −n then we take U = U1.

If d < −n then we take U = U1 ∩ U2 where

U2 =
⋂

d<j≤−n

Spec(R0) r SuppR0
(Hi

R+
(M)j) �
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Note. After the submission of this paper, we learned that the results of Section
2 have been obtained independently by Sazeedeh. Also, M. Brodmann informed us
that he has a different proof of Theorem 3.5.
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