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Abstract. It is known that the powers m
n of the maximal ideal of a local

Noetherian ring share certain homological properties for all sufficiently large
integers n. For example, the natural homomorphisms R → R/m

n are Golod,
respectively, small, for all large n. We give effective bounds on the smallest
integers n for which such properties begin to hold.

Introduction

Let R be a local commutative Noetherian ring with maximal ideal m and residue
field k = R/m. We study homological properties of the powers m

n which hold for
all large values of n.

One such property is established by Levin [19]; he proves that the natural homo-
morphism R→ R/mn is Golod for all large n. Lee [17] defines the Golod invariant
of R to be the smallest number s such that R→ R/mn is Golod for all n ≥ s. The
results of this paper are better stated in terms of a Golod index G(R), defined to
be one less than the invariant introduced by Lee.

In order to study the Golod property, we consider two related homological prop-
erties. One is based on the notion of small homomorphism introduced by Avramov
[3], the other arises from Levin’s proof of his theorem; we refer to the corresponding
sections for precise definitions. We define indices A(R) and L(R), in analogy to the
Golod index. Results of Avramov and Levin show that these are natural numbers
that provide bounds for G(R) as follows:

A(R) ≤ G(R) ≤ L(R) .

We obtain bounds for A(R) and L(R) in terms of numerical invariants of the
associated graded ring gr

m
(R) with respect to the m-adic filtration. Recall that the

m-adic completion R̂ has a minimal Cohen presentation R̂ ∼= Q/a, with (Q, n) a
regular local ring and a ⊆ n

2. We summarize below our results:

Theorem 1. Let (R,m) be a local Noetherian ring with m 6= 0. Let R̂ ∼= Q/a be

a minimal Cohen presentation and let pol reg(R) denote the Castelnuovo-Mumford

regularity of gr
m

(R) over gr
n
(Q). The following then hold:

(1) inf{i ≥ 1 | a ∩ n
i+2 ⊆ na} ≤ A(R) ≤ L(R) ≤ max{1, pol reg(R)}.

(2) If R is a complete intersection, then A(R) = inf{i ≥ 1 | a ∩ n
i+2 ⊆ na}.

(3) If R is a hypersurface or a Golod Artinian ring, then

A(R) = G(R) = L(R) = max{1, pol reg(R)} .

(4) If edimR − dimR ≤ 1, or if edimR ≤ 2, or if edimR = 3 and R is a

complete intersection, then A(R) = G(R).
(5) The graded k-algebra gr

m
(R) is Koszul if and only if L(R) = 1.
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We study the behavior of the indices under factorization of regular sequences.
Part (2) of the next theorem answers partially a question of Roos [29].

Theorem 2. For each local Noetherian ring (R,m) the following hold:

(1) If x is a regular element such that (x) 6= m, then A(R) ≤ A(R/(x)).
(2) If x /∈ m

2 and the initial form of x is gr
m
(R)-regular, then L(R) = L(R/(x)).

The index L(R) is a particular case of an index defined in Section 3 for any R-
module M , and denoted LR(M). If pol reg(M) denotes the Castelnuovo-Mumford
regularity of gr

m
(M) over a certain polynomial ring, then we obtain an inequality

LR(M) ≤ pol reg(M) + 1, which gives the corresponding inequality of Theorem
1(1). We obtain an application to delta invariants δiR(M), defined by Auslander [2]
when R is Gorenstein, and by Martsinkovsky [24] in general.

Theorem 3. If M is a finite module over a non-regular local ring (R,m, k), then

δiR(mnM) = 0 for all i ≥ 0 and all n > pol reg(M).

This generalizes a theorem of Yoshino [39], which shows that if R is Gorenstein,
then δiR(mn) = 0 for all large n.

In Section 1 we discuss notions of regularity; the definitions involve Castelnuovo-
Mumford regularity over different graded rings of the associated graded module
gr

m
(M). In Section 2 we construct canonical homomorphisms

τMi : TorRi (M,k)→ Tor
gr

m
(R)

i

(
gr

m
(M), k

)
,

which can be computed by means of free resolutions of either the first or the second
module argument. We show that M has a linear resolution, that is, regR(M) = 0,
if and only if the maps τMi are bijective for all i.

In Section 3 we introduce for each finite R-module M the index LR(M) and we
bound it by pol reg(M)+1. As consequences, we obtain effective versions of results
of Levin and Avramov on Poincaré series, and of similar results of Roos for Bass
series. Theorem 3 is proved in Section 4. In Section 5 we define the index A(R)
and use results of Avramov [3] to establish the relevant parts of Theorems 1 and 2.
In Section 6 we discuss the invariant G(R) and prove Theorem 1(4). We also prove
that if edimR − dimR ≤ 1, then the ring R/mn is Golod for all integers n ≥ 2.
Since the equality edimR − dimR = 0 characterizes regularity, this generalizes
Golod’s classical example [12].

In Section 7 we introduce the index L(R) by the formula L(R) = LR(m) and
derive the equalities of Theorem 1(3) from results proved earlier in the paper.
We also prove Theorem 1(5), which extends a characterization of graded Koszul
algebras noted by Roos [29]. In particular, this shows that if R is Koszul, that is,
regR(k) = 0, then Ext∗R(k, k) is finitely generated as a graded algebra under Yoneda
product. While these two conditions are equivalent for graded algebras, we give an
example of a local ring for which they are not.

In Section 8 we prove Theorem 2(2). In Section 9 we consider graded rings.
Adapting our definitions to this case, we prove that if R is a graded Golod ring
which is not a field, then A(R) = G(R) = L(R) = max{1, pol reg(R)}. We end the
paper with various examples.

1. Regularity of modules

In this paper all rings are commutative Noetherian and all modules are assumed
finitely generated.
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1.1. If A is a ring and a = a1, . . . , ae is a sequence of elements of A, thenK(a;A) de-
notes the Koszul complex on a. For an A-moduleN we setK(a;N) = K(a;A)⊗AN
and H∗(a;N) = H∗

(
K(a;N)

)
. If ϕ : A→ B is a ring homomorphism, then clearly

K(a;A) ⊗A B = K(ϕ(a);B). If the A-module structure of N is induced through
the homomorphism ϕ, then we systematically identify K(a;N) and K(ϕ(a);N).

1.2. Let k be a field, A =
⊕∞

n=0An a commutative graded algebra with A0 = k,
and N =

⊕∞
n=0Nn a graded A-module. For each d ∈ Z we denote N(d) the graded

A-module with N(d)p = Nd+p. We denote A+ the maximal homogeneous ideal of
A and write k for the residue field A/A> 1 modulo the maximal homogeneous ideal
of A. The module N has a minimal graded free resolution

G = · · · → Gi
∂i−→ Gi−1 → · · · → G1

∂1−→ G0 ,

where for each i the module Gi is isomorphic to a direct sum of copies of A(−j) and
∂i(Gi) ⊆ (A> 1)Gi−1. Any two minimal graded free resolutions are isomorphic as
complexes of gradedA-modules, so the number of direct summands ofGi isomorphic
to A(−j) is an invariant of N , called the ij ’th graded Betti number βAij(N). The
Castelnuovo-Mumford regularity of N is the number

regA(N) = sup{s ∈ Z | βAi,i+s(N) 6= 0 for some i ∈ N} .

We note that βAi,j(N) = rankk TorAi (N, k)j ; these numbers can be calculated from
any free resolution of k or N over A.

1.3. Assume further that A = A0[A1]. We can present A as k[u]/I, where k[u]
is a polynomial ring over k with variables u = u1, . . . , ur in degree 1 and I a
homogeneous ideal. We define the polynomial regularity of N by the formula

pol reg(N) = regk[u](N) .

The next lemma shows that the right-hand side does not depend on the choice of
the presentation.

1.4. Lemma. If A = k[u]/I and A = k[v]/J are two presentations as above, then

regk[u](N) = regk[v](N).

Proof. The canonical maps k[u]
α
−→ A

β
←− k[v] define a surjective homomorphism

k[u,v] = k[u]⊗k k[v]→ A

through which both α and β factor, so it suffices to prove that regk[u](N) =

regk[u,v](N). Using induction on the number of variables in v, it suffices to show

that regP (N) = regP [v](N), where P = k[u] and v is a single variable which

acts on N through a surjective homomorphism γ : P [v] → A such that γ|P = α.
Replacing v with the linear form v −

∑r
j=1 ajuj, where aj ∈ k are such that

γ(v) = α(
∑r

j=1 ajuj), we can assume vN = 0. By the graded graded version

of a well-known result (see [10, 1.6.13]) we have an exact sequence

· · · → Hi(u;N)→ Hi(u, v;N)→ Hi−1(u;N(−1))
±v
−−→ Hi−1(u;N)→ · · ·

of Koszul homology. Since vN = 0, it splits into short exact sequences

0→ Hi(u;N)→ Hi(u, v;N)→ Hi−1(u;N(−1))→ 0 .
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The complex K(u;P ), respectively K(u, v;P [v]), is a minimal graded free resolu-
tion of k over P , respectively P [v], hence we have

βPi,j(N) = rankk
(
Hi(u;N)

)
j and β

P [v]
i,j (N) = rankk

(
Hi(u, v;N)

)
j .

Computing ranks from the exact sequences above, we obtain

βPi,j(N) + βPi−1,j−1(N) = β
P [v]
i,j (N)

for all i, j ∈ Z. These equalities show that the regularities coincide. �

1.5. If a graded A-module N has finite length, then pol reg(N) can be expressed
as the largest integer s for which Ns 6= 0. Indeed, let A = k[u]/I be a presentation
as in 1.3, with variables u = u1, . . . , ue. Since K(u;N) is a minimal free resolution

of k over k[u], we have Tor
k[u]
i (N, k)i+n ∼= Hi(u;N)i+n = 0 for all i ≥ 0 and all

n > s, and Tork[u]
e (N, k)e+s ∼= He(u, N)e+s = {y ∈ Ns |uy = 0} = Ns 6= 0.

We extend next the notion of regularity to local rings. The notation for a local
ring is (R,m, k), where m is the maximal ideal and k is the residue field.

1.6. For a local ring (R,m, k) and an R-module M we denote gr(M) the associated
graded module

⊕∞
n=0 m

nM/mn+1M with respect to the m-adic filtration. Thus,
gr(R) is a graded ring and gr(M) is a graded gr(R)-module. Note that gr(R) is a
polynomial ring if and only if R is regular.

We define the regularity of M over R by the formula

regR(M) = reggr(R)

(
gr(M)

)
.

and the polynomial regularity of M by the formula

pol reg(M) = pol reg
(
gr(M)

)
.

1.7. As usual, R̂ denotes the m-adic completion of R. We say that Q/a is a Cohen

presentation of R if R̂ ∼= Q/a, where (Q, n, k) is a regular local ring and a an ideal
of Q. If a is contained in n

2, then we say that the presentation is minimal . Cohen’s
Structure Theorem guarantees that such presentations always exist.

The ring R̂ is R-flat, with maximal ideal mR̂, hence there are equalities gr(R̂) =

gr(R) and gr(M̂) = gr(M). Thus, the regularity of M over R, as well as the
polynomial regularity of M , do not change under m-adic completion.

Let R̂ = Q/a be a Cohen presentation. Since gr(R) is then a homomorphic
image of gr(Q), which is a polynomial ring, we have:

pol reg(M) = pol reg(gr(M)) = reggr(Q)(gr(M)) = regQ(M) .

1.8. Example. The Loewy length of an R-module M , denoted ℓℓR(M), is the
smallest positive integer n for which m

nM = 0. Recall by 1.5 that if gr(M) has finite
length, then pol reg

(
gr(M)

)
is equal to the largest integer n such that gr(M)n 6= 0;

this is also the largest integer n such that m
nM 6= 0. For an Artinian R-module M

we have thus pol reg(M) = ℓℓR(M)− 1.

1.9. Example. Assume that R is a hypersurface, that is, R̂ has a Cohen presenta-

tion R̂ = Q/(a), with a = (a) for some a ∈ n. In this case, pol reg(R) = mult(R)−1.
Indeed, it is well-known that mult(R) is the smallest integer s such that a ∈ n

s.
By 1.7 the invariant pol reg(R) is equal to the Castelnuovo-Mumford regularity of
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gr(R) over the polynomial ring gr(Q). If a∗ denotes the initial form of a in gr(R),
then gr(R) = gr(Q)/(a∗), hence

0 −→ gr(Q)(−s)
a∗
−→ gr(Q) −→ 0

is a minimal graded free resolution of gr(R) over gr(Q), so pol reg(R) = s− 1.

2. Linear resolutions

Let (R,m, k) be a local ring and set G = gr(R). An R-module M is said to have
a linear resolution if regR(M) = 0. We describe next constructions that will be
used to characterize such modules.

2.1. Let X be a complex of R-modules filtered by subcomplexes

X = F 0 ⊇ F 1 ⊇ · · · ⊇ F p ⊇ · · · .

The associated graded complex (grF (X), d) has
(
grF (X)

)
i,p = F pi /F

p+1
i

and the differential d is induced by ∂.
If the complex X is minimal, that is ∂(X) ⊆ mX , then it has a filtration defined

by F pi = m
p−iXi for each i, that is:

F p = · · · → Xp+1 → Xp → mXp−1 → · · · → m
p−1X1 → m

pX0 → 0 .

In this case we set E(X) = grF (X) and note that E(X) is a complex of graded G-
modules, with E(X)i = gr(Xi)(−i) for each i, and the differential d is homogeneous
of degree 0.

2.2. For an R-module M we choose a minimal free resolution X of M over R.
It induces a map E(X) → gr(M). Choose a graded free resolution U of gr(M)
over G and choose a lifting of the identity map on gr(M) to a morphism of com-
plexes of graded G-modules ιM : E(X)→ U ; this lifting is unique up to homotopy.
For each z ∈ Xi we denote z the class of z in E(X)i,i = Xi/mXi. Calculating

TorRi (M,k) from the resolution X and TorGi
(
gr(M), k

)
from the resolution U , we

define homomorphisms of R-modules λMi as follows:

λMi : TorRi (M,k) = Xi ⊗R k −→ Hi(U ⊗G k)i = TorGi
(
gr(M), k

)
i

λMi (z ⊗R 1) = cls
(
ιM (z)⊗G 1

)
.

We then define τMi : TorRi (M,k)→ TorGi
(
gr(M), k

)
to be the composition of λMi

with the inclusion TorGi
(
gr(M), k

)
i →֒TorGi

(
gr(M), k

)
.

2.3. Proposition. Let (R,m, k) be a local ring, M a finite R-module, and X a

minimal free resolution of M over R. The following properties are equivalent:

(1) The module M has a linear resolution.

(2) E(X) is a minimal free resolution of gr(M) over G.

(3) E(X) is a free resolution of gr(M) over G.

(4) For each i the maps τMi and λMi are bijective.

(5) For each i the map τMi is surjective.

The content of the proposition is more or less known; see also [16]. Due to lack
of a proper reference, we provide a proof, based on the next lemma.

For each integer j we denote R{j} the R-module R, filtered by F p = m
p−j .
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2.4. Lemma. Let (R,m, k) be a local ring and M a finite R-module. There exists

a filtered resolution X ′ of M with X ′
i =

⊕si

j=1R{aij} for each i ≥ 0, such that the

associated graded complex is a minimal graded free resolution of gr(M) over G.

Proof. For an element m ∈M we denote m∗ its initial form in gr
m

(M) and ord(m)
the order of m∗. Let m∗

1, . . . ,m
∗
s be a minimal system of homogeneous genera-

tors of gr
m

(M) over G and set a0j = ord(mj). By [34, II-6, Cor. 2], the elements
m1, . . . ,ms generate M . Set X ′

0 = ⊕sj=1R{a0j} and let ∂0 : X ′
0 →M be the surjec-

tion that sends to mj the basis element corresponding to R{a0j}. The associated
graded module of X ′

0 is U0 = ⊕sj=1G
(
− a0j

)
, and the map d0 : U0 → gr(M) in-

duced by ∂0 is homogeneous and surjective. We set M0 = Ker(∂0) and consider the
filtration F0 induced by X ′

0. Note that grF0
(X ′

0) = Ker(d0). The resolution X ′ is
obtained by iterating this procedure. �

Proof of Proposition 2.3. The implications (2)⇒ (3) and (4)⇒ (5) are clear.
(1)⇒ (2) Let X ′ be the filtered resolution of M from Lemma 2.4. The associated

graded complex has Ui =
⊕si

j=1G(−aij). Since regR(M) = 0, we get aij = i for all

i and j, hence the filtration of X ′ is given by F pi = m
p−iX ′

i. The compatibility of
this filtration with the differential implies that X ′ is a minimal free resolution. Any
two minimal free resolutions of M over R are isomorphic, and such an isomorphism
preserves the filtration described above, hence U = E(X ′) ∼= E(X).

(3)⇒ (4) Both E(X) and U are graded free resolutions of gr(M) over G, so
H∗(ι

M⊗Gk) is bijective. Since the complex E(X) is minimal, we have H∗

(
E(X)⊗G

k
)

= E(X)⊗G k. The map νi : Xi ⊗R k →
(
E(X)⊗G k

)
i,i defined by νi(z ⊗R 1) =

z ⊗G 1 is clearly bijective. Since λMi = Hi(ι
M ⊗G k)i ◦ νi for each i, the map λMi is

bijective, and so is τMi , because TorGi (gr(M), k)p ∼=
(
E(X)⊗G k

)
i,p = 0 for i 6= p.

(5)⇒ (1). The image of the map τMi is in TorGi (gr(M), k
)
i. If τMi is surjective

for each i, then TorGi (gr(M), k
)
p = 0 for p 6= i, hence regR(M) = 0. �

We defined the homomorphisms λMi : TorRi (M,k)→ TorGi
(
gr(M), k

)
i in terms

of free resolutions of M and respectively gr(M). We show next that one can also
compute these maps using free resolutions of k. To do so, we take a more general
point of view.

2.5. Let X be a minimal complex of free R-modules. Since E(X)i,p = 0 for p < i
and Ei,i = Xi/mXi, we have

Hi

(
E(X)

)
i = Zi

(
E(X)

)
i ⊆ Xi/mXi .

Recall that for each z ∈ Xi we denote z its class in E(X)i,i. We then define
canonical homomorphisms

νXi : Hi(X)→ Hi

(
E(X)

)
i , by setting νXi

(
cls(z)

)
= z .

If X and Y are two minimal complexes of R-modules, then an easy calculation
shows that E(X ⊗R Y ) = E(X)⊗G E(Y ) as complexes of graded G-modules, hence
for each i we have a map

νX⊗RY
i : Hi(X ⊗R Y )→ Hi

(
E(X)⊗G E(Y )

)
i
.

Let M and N be two R-modules. We consider them as complexes concentrated
in degree 0 and note that E(M) = gr(M) and E(N) = gr(N). Let κX : X →M be
a minimal free resolution of M over R and κY : Y → N a minimal free resolution of
N over R. They induce morphisms E(κX) : E(X) → gr(M) and E(κY ) : E(Y ) →
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gr(N). For each graded free resolution κU : U → gr(M) of gr(M) over G and each
graded free resolution κV : V → gr(N) of gr(N) over G we consider morphisms of
graded complexes ιM : E(X)→ U and ιN : E(Y ) → V as in 2.2; these morphisms
are unique up to homotopy. For each integer i we set

αi,i = Hi

(
E(X)⊗G E(κY )

)
i and βi,i = Hi

(
E(κX)⊗G E(Y )

)
i .

The commutative diagram below defines maps λi(M,N) as indicated:

TorRi (M,N)
λi(M,N) // TorGi

(
gr(M), gr(N)

)
i

Hi(X ⊗R N)
ν

X⊗RN

i // Hi(E(X)⊗G gr(N))i
Hi(ι

M⊗Ggr(N))i // Hi(U ⊗G gr(N))i

Hi(X ⊗R Y )
ν

X⊗RY

i //

∼=Hi(X⊗Gκ
Y )

OO

∼=Hi(κ
X⊗RY )

��

Hi(E(X)⊗G E(Y ))i
Hi(ι

M⊗Rι
N )i //

βi,i

��

αi,i

OO

Hi(U ⊗G V )i

∼=Hi(U⊗Gκ
V )i

OO

∼=Hi(κ
U⊗GV )i

��
Hi(M ⊗R Y )

ν
M⊗RY

i // Hi(gr(M)⊗G E(Y ))i
Hi(gr(M)⊗Gι

N )i// Hi(gr(M)⊗G V )i

We note that λi(M,k) coincides with the map λMi defined at the beginning of
the section. Thus, these maps can be calculated from any horizontal line of the
diagram above, with N = k.

3. Indices of modules

Each homomorphism of R-modules ψ : M → N induces homomorphisms of
graded vector spaces

TorR∗ (ψ, k) : TorR∗ (M,k)→ TorR∗ (N, k) ,

Ext∗R(ψ, k) : Ext∗R(N, k)→ Ext∗R(M,k) ,

Ext∗R(k, ψ) : Ext∗R(k,M)→ Ext∗R(k,N) .

Let n be an integer. For each R-module M consider the canonical inclusion

µ
(n)
M : m

nM → m
n−1M .

If ϕ : (Q, n) → (R,m) is a surjective homomorphism of local rings, then m
nM =

n
nM , so the notation µ

(n)
M will be used without reference to a specific ring.

3.1. We define the Levin index of M over R by the formula:

LR(M) = inf{s ≥ 1 | TorR∗ (µ
(n)
M , k) = 0 for all n ≥ s} .

The isomorphism of functors Ext∗R(−, k) ∼= Homk

(
TorR∗ (−, k), k

)
shows that

LR(M) = inf{s ≥ 1 | Ext∗R(µ
(n)
M , k) = 0 for all n ≥ s} .

Results of Levin [21] show that LR(M) <∞, cf. 3.6 for more details.
We define the Roos index of M over R by the formula

RR(M) = inf{s ≥ 1 | Ext∗R(k, µ
(n)
M ) = 0 for all n ≥ s} .

Roos [27] noted that Levin’s arguments can be adapted to show that RR(M) <∞,
cf. 3.7 for details.
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Following [16], we say that a ring R is Koszul if its residue field has a linear
resolution, that is, regR(k) = 0; recall that the notions of regularity and polynomial
regularity of local rings were discussed in the first section.

3.2. Theorem. If (R,m) is a Koszul local ring and M a finite R-module, then

(1) regR(miM) = max{regR(M)− i, 0} for all i ≥ 0.
(2) LR(M) = regR(M) + 1.

3.3. Theorem. For a finite module M over an arbitrary local ring R there is an

inequality

max{LR(M),RR(M)} ≤ pol reg(M) + 1 .

We postpone the proofs for the moment, in order to give an application of The-
orem 3.3.

The Poincaré series of a finite R-module M is the formal power series

PRM (t) =

∞∑

i=0

rankk TorRi (M,k)ti .

The Bass series of M is the formal power series

IMR (t) =

∞∑

i=0

rankk ExtiR(k,M)ti .

The Hilbert series of M is the formal power series

HilbRM (t) =

∞∑

i=0

rankk(m
iM/mi+1M)ti

The following corollary contains effective versions of [6, 4.1.8], [21, Theorem 2]
(see also [6, 6.3.6]); we also include versions for Bass series.

3.4. Corollary. Set p = pol reg(M). For each submodule M ′ contained in m
p+1M

and for each integer n > p the following hold:

PRM/M ′(t) = PRM (t) + tPRM ′(t) I
M/M ′

R (t) = IMR (t) + t IM
′

R (t) .

PR
m

nM (t) = HilbR
m

nM (−t) PRk (t) Im
nM

R (t) = HilbR
m

nM (−t) IkR(t) .

Proof. Let α be the inclusion M ′ →֒M , let β be the inclusion M ′ →֒m
p+1M , and

γ the inclusion m
p+1M →֒M . We have then α = γ ◦ µ(p+1) ◦ β, hence

TorR∗ (α, k) = TorR∗ (γ, k) ◦ TorR∗ (µ(p+1), k) ◦ TorR∗ (β, k) .

Theorem 3.3 gives TorR∗ (µ
(p+1)
M , k) = 0, hence TorR∗ (α, k) = 0. Consider the short

exact sequence

0→M ′ α
−→M

π
−→M/M ′ → 0 .

The long exact sequence obtained by applying TorR∗ (−, k) splits into short exact

sequences. Computing ranks, we obtain the equality PRM/M ′ (t) = PRM (t)+ tPRM ′(t).
The corresponding equality for Bass series is obtained similarly.

The expression for PR
m

nM (t) can be deduced using the calculations in [21, The-
orem 2] or [6, 6.3.6]. Similar computations apply to Bass series. �
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Proof of theorem 3.2. We choose a minimal free resolution Y of k over R. By
Proposition 2.3 the complex E(Y ) is a minimal free resolution of k over G. For all
integers i and n we have

TorGi (gr(M), k) ∼= Hi

(
gr(M)⊗G E(Y )

)
= Hi

(
E(M ⊗R Y )

)
,

TorGi
(
gr(mnM), k

)
∼= Hi

(
gr(mnM)⊗G E(Y )

)
= Hi

(
E(mnM ⊗R Y )

)
.

Since E(mnM ⊗R Y )i,p = E(M ⊗R Y )i,p+n we further have

Hi

(
E(mnM ⊗R Y )

)
p
∼=

{
Hi

(
E(M ⊗R Y )

)
p+n if p > i

Zi
(
E(M ⊗R Y )

)
p+n if p = i .

These isomorphisms prove (1). In particular, we have regR(mnM) = 0 for n ≥
regR(M), hence the maps λm

nM
i are bijective by Proposition 2.3(4). As shown in

2.5, we have λm
nM

i = λi(m
nM,k), and this map can be computed from the last

row of the diagram considered there, as the composition Hi

(
gr(mnM) ⊗G ι

k
)
i ◦

νm
nM⊗RY

i . Since both V and E(Y ) are graded free resolutions of k over G, the

first map is an isomorphism. It follows that νm
nM⊗RY

i is bijective for all i and all

n ≥ regR(M). To simplify notation, we denote these maps ν
(n)
i and we recall their

definition:

ν
(n)
i : Hi(m

nM ⊗R Y )→ Hi

(
E(mnM ⊗R Y )

)
i ⊆

m
nM ⊗R Yi

mn+1M ⊗R Yi
,

ν
(n)
i (cls(z)) = z + (mn+1M ⊗R Yi) .

We set l = LR(M) and r = regR(M). To prove the inequality r+1 ≥ l, we show
that the map

H(µ
(n)
M ⊗R Y ) : H(mnM ⊗R Y )→ H(mn−1M ⊗R Y )

is zero for all n ≥ r+ 1. Let z ∈ m
nM ⊗R Y be a cycle of degree i, with n ≥ r+ 1.

We regard z as a cycle of the subcomplex m
n−1M ⊗R Y . Since ν

(n−1)
i is bijective

and ν
(n−1)
i (cls(z)) = 0, it follows that z is a boundary in m

n−1M ⊗R Y .

We assume next that r + 1 > l. We want to prove that TorGi
(
gr(M), k

)
i+r = 0

for all i, which contradicts r = regR(M). By the above we have

TorGi
(
gr(M), k

)
i+r
∼= Hi

(
E(M ⊗R Y )

)
i+r .

Let z be an element of m
rM ⊗R Yi whose image z in E(M ⊗R Y )i,i+r is a cycle.

We need to show that z is a boundary of E(M ⊗R Y ). We regard z as a cycle of

E(mrM ⊗R Y ). Since the map ν
(r)
i is bijective, there exists a cycle z′ ∈ m

rM ⊗R Yi
such that z = z′ in E(mrM ⊗R Y )i,i = E(M ⊗R Y )i,i+r . The assumption that

r ≥ l and the definition of l imply that the map H(µ
(r)
M ⊗R Y ) : H(mrM ⊗R Y )→

H(mr−1M ⊗R Y ) is zero, hence z′ is a boundary of the complex m
r−1M ⊗R Y . It

follows that z′, and hence z, is a boundary of E(M ⊗R Y ). �

3.5. For an arbitrary local ring (R,m) we choose a minimal system of generators g

of m and set KR = K(g;R). If M is an R-module, then we set K(M) = K(g;M)
and H∗(M) = H∗

(
K(M)

)
. For an R-homomorphism ψ : M →M ′ we denote H∗(ψ)

the induced map H∗(M) → H∗(M
′). If ϕ : R → S is a surjective homomorphism

of local rings with Ker(ϕ) ⊆ m
2, then ϕ(g) is a minimal system of generators of

the maximal ideal of S. Thus, we can identify KS and KR ⊗R S. If the R-module
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structure of M is induced through the homomorphism ϕ, then, as in 1.1, we identify
K(ϕ(g);M) and K(g,M) and let the notation K(M) refer to either complex.

The complex HomR(KR,M) is known to be isomorphic to K(M), cf. [10, 1.6.10].
We denote H∗(M) its homology. Also, we denote H∗(ϕ) : H∗(M ′) → H∗(M) the
map induced by the homomorphism ϕ : M → M ′, which is the k-dual of H∗(ϕ),
and we make identifications similar to those above.

3.6. Levin [21, Lemma 1] proves that H∗

(
µ

(n)
M

)
for all large n. Also, [21, Lemma 2]

shows that H∗

(
µ

(n)
M

)
= 0 implies TorR∗

(
µ

(n)
M , k

)
= 0. In particular, LR(M) <∞.

3.7. Since the map H∗
(
µ

(n)
M

)
is dual to H∗

(
µ

(n)
M

)
, it is also zero for all large n. As

noted by Roos [27], techniques similar to those of Levin show that H∗
(
µ

(n)
M

)
= 0

implies Ext∗R
(
k, µ

(n)
M

)
= 0. In particular, RR(M) <∞.

Proof of Theorem 3.3. Since R̂ is R-flat, with maximal ideal mR̂, there are equal-

ities LR(M) = L bR(M̂) and RR(M) = R bR(M̂). Thus, we can assume that R
has a minimal Cohen presentation R = Q/a. Since Q is regular, the Koszul com-

plex KQ is a minimal free resolution of k over Q, so TorQ∗ (−, k) = H∗(−) and
Ext∗Q(k,−) = H∗(−), in the notation of 3.5. For any Q-module there are isomor-

phisms Hi(N) ∼= Hd−i(N), where d = dim(Q), cf. [10, 1.6.10]. We have thus:

LQ(M) = inf{s ≥ 1 | H∗

(
µ

(n)
M

)
= 0 for all n ≥ s}

= inf{s ≥ 1 | H∗
(
µ

(n)
M

)
= 0 for all n ≥ s} = RQ(M) .

By 3.5 the maps H∗

(
µ

(n)
M

)
and H∗

(
µ

(n)
M

)
do not depend on whether M is viewed

as a module over R or over Q. In our notation, 3.6 and 3.7 translate as follows:

max{LR(M),RR(M)} ≤ LQ(M) = RQ(M) <∞ .

Note that Q is a Koszul local ring, since gr(Q) is a polynomial ring over k, hence
a minimal graded free resolution of k over this ring is given by the Koszul complex
on the variables. By 3.2 we have then LQ(M) = regQ(M) + 1. To finish the proof,
recall from 1.7 that regQ(M) = pol reg(M). �

4. Higher delta invariants

For a finite module M over a Gorenstein local complete ring (R,m) Auslander
defined the delta invariant δR(M) to be the smallest integer n such that there
exists an epimorphism X ⊕ Rn → M , where X is a maximal Cohen Macaulay
module with no free summand. For an integer i ≥ 0 he defined an i-th higher delta

invariant δiR(M) by the formula δiR(M) = δR(ΩiR(M)), where ΩiR(M) denotes the
i-th syzygy module in a minimal free resolution of M over R, cf. [2, §5].

If R is not regular, then Auslander proved δiR(k) = 0 for all i > 0, cf. [2, 5.7].
Yoshino [39] studied the vanishing of the numbers δiR(R/mn) for positive integers
i and n. He conjectured that if R is not regular, then they all vanish. One of his
main results [39, (2.1)] shows that there exists an integer s such that δiR(R/mn) = 0
for all n ≥ s and all i > 0, or, equivalently, δiR(mn) = 0 for all n ≥ s and all i ≥ 0.

Buchweitz has noted, cf. [26, 2.3], that δiR(M) equals the rank of the kernel of

εiR(M,k) : ExtiR(M,k)→ E
∨

xtiR(M,k) ,
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where ε∗R(−,−) is the natural transformation from absolute cohomology to Tate
cohomology. The latter cohomology theory is defined for all modules over a Goren-
stein ring, but not in general. Over an arbitrary ring, Vogel has defined a cohomol-

ogy theory, E
∨

xt∗R(−,−), which comes with a natural transformation ε∗R(−,−) as
above, and coincides with Tate cohomology when R is Gorenstein. Vogel’s theory
is described in [11], cf. also [24].

Martsinkovsky [24] sets ξiR(M) = rankk Ker
(
εiR(M,k)

)
and proves:

4.1. ([25, Theorem 6]). If R is not regular, then ξiR(k) = 0 for all i.

We use the cohomological interpretation of delta invariants to extend Yoshino’s
result to arbitrary local rings, to generalize it to submodules m

nM of any finite
R-module, and to obtain bounds for the vanishing of δiR(mnM).

4.2. Theorem. If M is a finite module over a non-regular local ring (R,m, k), then

the homomorphism εiR(mnM,k) is injective for all i ≥ 0 and all n ≥ LR(M). In

particular, if R is Gorenstein, then δiR(mnM) = 0 for all n > pol reg(M).

Proof. For each integer n we set Mn = m
n−1M/mnM and form the exact sequence

0→ m
nM

µ
(n)
M−−−→ m

n−1M →Mn → 0 .

It induces long exact sequences in cohomology, both for Ext and E
∨

xt. The naturality
of ε∗R(−, k) implies that for each i there is a commutative diagram

ExtiR(mn−1M,k)
Exti

R(µ
(n)
M
,k)

//

εi
R(mn−1M,k)

��

ExtiR(mnM,k)
ð

i

//

εi
R(mnM,k)

��

Exti+1
R (Mn, k)

εi+1
R

(Mn,k)

��

E
∨

xtiR(mn−1M,k)
E

∨
xti

R(µ
(n)
M
,k)

// E
∨

xtiR(mnM,k)

∨

ð
i

// E
∨

xti+1
R (Mn, k)

where ði and
∨

ði denote connecting homomorphisms. If n ≥ LR(M), then we have

ExtiR(µ
(n)
M , k) = 0 by the definition in 3.1, hence ð

i is injective. Since mMn = 0, the

map εi+1
R (Mn, k) can be identified with the natural map εi+1

R (k, k)⊗RHomk(Mn, k).

The map εi+1
R (k, k) is injective by 4.1, hence so is εi+1

R (Mn, k). The commutativity
of the right-hand square implies that εiR(mnM,k) is injective, hence δiR(mnM) = 0.
The last statement of the theorem follows by 3.3. �

5. Small homomorphisms

Let (R,m, k) be a local ring and let ϕ : R → S be a surjective homomorphism
of rings. Due to the functoriality of Tor and Ext in the ring variable there are
homomorphisms of graded vector spaces

Torϕ∗ (k, k) : TorR∗ (k, k)→ TorS∗ (k, k)

Ext∗ϕ(k, k) : Ext∗S(k, k)→ Ext∗R(k, k) .

Recall that Ext∗ϕ(k, k) is a homomorphism of k-graded algebras, where multipli-
cation on the Ext’s is given by the Yoneda products.

Following Avramov [3], we say that a surjective homomorphism ϕ : R → S
is small if Torϕ∗ (k, k) is injective, or, equivalently, if the algebra homomorphism
Ext∗ϕ(k, k) is surjective.
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For each integer n we consider the canonical homomorphism

ρ(n) : R→ R/mn .

By [3, 4.1] the homomomorphism ρ(n) is small for all large n.

5.1. We define the Avramov index by the formula

A(R) = inf{s ≥ 0 | ρ(s+1) is small} .

We note that if ρ(s) is small for some integer s, then ρ(n) is small for all n ≥ s.
Indeed, if υ : R/mn → R/ms is the induced map, then the functoriality of Tor gives

Torρ
(s)

∗ (k, k) = Torυ∗(k, k) ◦ Torρ
(n)

∗ (k, k) .

Thus, the definition of A(R) can be reformulated in terms similar to those of
the other indices:

A(R) = inf{s ≥ 0 | ρ(n) is small for all n > s} .

5.2. By [3, 3.9] a homomorphism ϕ is small if and only if the induced homomorphism

ϕ̂ : R̂ → Ŝ is small. Thus, A(R) = A(R̂) and we will assume whenever necessary
that R is complete, with Cohen presentation R = Q/a as in 1.7.

For completeness, we include a proof of the following known result.

5.3. Proposition. For a local ring (R,m, k) an inequality A(R) ≤ 1 holds if and

only if Ext∗R(k, k) is generated as an algebra by its elements of degree 1. Moreover,

A(R) = 0 holds if and only if m = 0.

Proof. The inequality A(R) ≤ 1 implies the surjectivity of the algebra homomor-
phism Ext∗ρ(2)(k, k). Since Ext∗R/m2(k, k) is the tensor algebra over k generated by

the elements of degree 1, cf. [28, §1, Remark 3], the conclusion follows.
If R = k, then it is clear that A(R) = 0. Conversely, if A(R) = 0, then we have

an injection Torρ
(1)

1 (k, k) : TorR1 (k, k) = m/m2 → Tork1(k, k) = 0, hence m = 0 by
Nakayama’s Lemma. �

Recall that a ring R is said to be a complete intersection if the ideal a in some
Cohen presentation is generated by a Q-regular sequence. It is known that this
notion does not depend on the choice of the presentation, cf. [3, 7.3.3], for example.
If the ideal a is principal, then R is a hypersurface.

5.4. Proposition. Let (R,m) be a local ring with m 6= 0 and minimal Cohen

presentation R̂ = Q/a. The following then hold:

(1) A(R) ≥ inf{i ≥ 1 | a ∩ n
i+2 ⊆ na}.

(2) If R a complete intersection, then equality holds in (1).
(3) If R is a hypersurface, then A(R) = max{1,mult(R)− 1}.
(4) If x is a regular sequence in R and m 6= (x), then A(R) ≤ A(R/(x)).

The proof is based on results about small homomorphisms from [3].

5.5. A DG algebra is a complex (Λ, ∂) with an unitary associative product such
that the differential satisfies the Leibnitz rule: ∂(ab) = ∂(a)b+ (−1)|a|a∂(b), where
|a| denotes the homological degree of a. In addition, we assume DG algebras to be
graded commutative, that is ab = (−1)|a||b|ba for all a, b ∈ Λ, and a2 = 0 when |a|
is odd. We refer to [6] and [19] for details.

A system of divided powers on a DG algebra Λ is an operation that associates
to every element a ∈ Λ of even positive degree a sequence of elements a(i) ∈ Λ with
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i = 0, 1, 2, . . . satisfying certain axioms, cf. [14, 1.7.1]. A DG Γ-algebra is a DG
algebra with divided powers which are compatible with the differential, in the sense
that ∂(a(i)) = ∂(a)a(i−1) for every a ∈ Λ of positive even degree and every i ≥ 1.

By Gulliksen [13] and Schoeller [32] there exists a minimal free resolution of k
over R which has a structure of DG Γ-algebra; it is obtained by Tate’s procedure of
adjoining divided powers variables (cf. [38]). We call it a minimal Tate resolution

of k over R. Note that TorR∗ (k, k) inherits a structure of DG Γ-algebra.
Let Λ be a DG Γ-algebra and denote Λ>0 the ideal of elements of positive degree.

The module of Γ-indecomposables of Λ is the quotient of Λ>0 by the submodule
generated by all elements of the form uv with u, v ∈ Λ>0 and w(n) with w ∈
Λ2i, n ≥ 2. We denote π∗(R) the module of Γ-indecomposables of TorR∗ (k, k).

The next result is our main tool in the study of small homomorphisms.

5.6. ([3, 3.1]) A surjective homomorphism of local rings ϕ : R → S is small if and
only if the induced homomorphism π∗(ϕ) : π∗(R)→ π∗(S) is injective.

We proceed to describe the maps π1(ϕ) and π2(ϕ).

5.7. By 5.2 we can consider a minimal Cohen presentation R = Q/a. We then have

S = Q/b for an ideal b ⊇ a. Since π1(R) = TorR1 (k, k), the map π1(ϕ) = Torϕ1 (k, k)
is canonically identified with the natural map n/n2 → n/(b, n2). It is injective if
and only if b ⊆ n

2. When this happens, π1(ϕ) is bijective.
Assume that b ⊆ n

2. The proof of [14, Proposition 3.3.4] canonically identifies
π2(R) with a/na and π2(S) with b/nb; under these identifications, π2(ϕ) is the
natural homomorphism a/na→ b/nb. This map is injective if and only if a ∩ nb ⊆
na, or, equivalently, if a minimal set of generators of a can be completed to a
minimal set of generators of b.

The behavior of smallness under factorization of a regular sequence is described
by the following result of Tate [38, Theorem 4] and Scheja [33, Satz 1], in the form
given by Gulliksen [14, 3.4.1].

5.8. Let x be a regular sequence in R and set R = R/(x). The canonical homo-
morphism ψ : R→ R induces isomorphisms

πj(ψ) : πj(R) ∼= πj(R) for j ≥ 3

and an exact sequence

0→ π2(R)
π2(ψ)
−−−−→ π2(R)→ (x)/m(x)→ π1(R)

π1(ψ)
−−−−→ π1(R)→ 0 .

In particular, one sees from here: if R is regular, then πi(R) = 0 for i 6= 1; if R
is a complete intersection, then πi(R) = 0 for i 6= 0, 1.

5.9. Lemma. Let (R,m, k) be a local ring, c an ideal contained in m
2, and x a

regular sequence. Set S = R/c and denote ϕ the canonical homomorphism R→ S.

Also, set R = R/(x) and S = R/(c,x). If the induced homomorphism ϕ : R → S
is small, then ϕ is small.

Proof. The naturality of the module of indecomposables yields a commutative di-
agram

π∗(R)
π∗(ϕ) //

π∗(ψ)
��

π∗(S)

��
π∗(R)

π∗(ϕ) // π∗(S)
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Since ϕ is small, the map π∗(ϕ) is injective. Also, π> 2(ψ) is injective by 5.8, so
the commutativity of the diagram implies that π> 2(ϕ) injective. Since c ⊆ m

2, the
map π1(ϕ) is bijective by 5.7. Thus, π∗(ϕ) is injective, hence ϕ is small by 5.6. �

Proof of Proposition 5.4. By 5.2 we can consider a minimal Cohen presentation
R = Q/a. Also, the hypothesis m 6= 0 implies A(R) ≥ 1.

(1) By 5.7 we have

inf{i ≥ 1 | a ∩ n
i+2 ⊆ na} = inf{i ≥ 1 | π2(ρ

(i+1)) is injective} .

By 5.6 the index A(R) is an upper bound for the number on the right hand side.
(2) Let n ≥ 1 be an integer such that a ∩ n

n+2 ⊆ na. Set S = R/mn+1 and
ϕ = ρ(n+1). Note that S = Q/b with b = (a, nn+1). We have b ⊆ n

2 and a∩nb ⊆ na,
so π1(ϕ) and π2(ϕ) are injective by 5.7. Also, by 5.9 we have πi(R) = 0 for i > 2,
so π∗(ϕ) is injective, and then ϕ is small by 5.6.

(3) We have a = (a) and the multiplicity of R is equal to the smallest integer n
such that a ∈ n

n. The equality A(R) = max{1,mult(R)−1} then follows from (2).
(4) The inequality A(R) ≤ A(R/(x)) follows by applying Lemma 5.9 to c =

m
n+1, where n = A(R/(x)). Note that n ≥ 1, cf. 5.3 �

5.10. Remark. The proof above shows that the number inf{i ≥ 1 | a∩ n
i+2 ⊆ na}

does not depend on the minimal Cohen presentation R = Q/a and is an invariant
of the ring R; we denote it s(R).

5.11. Remark. If n > A(R), then Proposition 5.4(1) implies a ∩ n
n+1 ⊆ na, that

is, any minimal system of generators of a is part of a minimal system of generators
of (a, nn).

6. Golod rings and Golod homomorphisms

A surjective homomorphism ϕ : R→ S is called Golod if

PSk (t) =
PRk (t)

1− t
(
PRS (t)− 1

) .

Levin [19, 3.15] proves that ρ(n) is Golod for all large n.

6.1. We define the Golod index of R by the formula

G(R) = inf{s ≥ 0 | ρ(n) is Golod for all n > s} .

Note that G(R) is one less than the Golod invariant G(R) introduced in [17].

6.2. By [3, 3.5] a Golod homomorphism is small. In particular, one has

A(R) ≤ G(R) .

6.3. The condition G(R) = 0 holds if and only if R is a field. Indeed, if G(R) = 0,
then 6.2 implies A(R) = 0, hence R is a field by 5.3. The converse is clear.

Golod [12] studied local rings (R,m, k) satisfying

PRk (t) =
(1 + t)edimR

1−
∑∞

j=1 rankHj(KR)tj+1
,

Rings with this property are now called Golod rings . If R = Q/a is a minimal Cohen

presentation as in 1.7, then H(KR) ∼= TorQ∗ (R, k), hence the projection Q → Q/a
is a Golod homomorphism if and only if R is a Golod ring.
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6.4. Poincaré series are invariant under completion, so a surjective homomorphism

ϕ : R → S is Golod if and only if the induced homomorphism ϕ̂ : R̂ → Ŝ is Golod.

Thus, G(R) = G(R̂) and we may assume whenever necessary that R is complete.

Next we show that in some cases the indices A(R) and G(R) are equal.

6.5. Theorem. An equality A(R) = G(R) holds if one of the following conditions

is satisfied:

(1) R is Golod and Artinian. In this case both indices are equal to pol reg(R).
(2) edimR ≤ dimR+ 1.
(3) edimR = 2.
(4) edimR = 3 and R is a complete intersection.

The proof of Theorem 6.5 requires some preparation. One of the ideas involved
is to connect Golod rings to Golod homomorphisms. To do this we use their co-
homological characterizations. As in Section 5, π∗(R) denotes the module of inde-
composables of Tor. Its vector space dual π∗(R) = Homk(π∗(R), k) is a graded Lie
algebra, called the homotopy Lie algebra of R; we refer to [4, §10] for details.

6.6. Avramov and Löfwall prove that a local ring S is Golod if and only if π> 2(S)
is a free Lie algebra and that a homomorphism ϕ : R → S is Golod if and only if
the kernel of the induced map π∗(ϕ) : π∗(S) → π∗(R) is a free Lie algebra, cf. [3,
3.5], [5, 3.4], [22, Corollary 2.4].

6.7. Proposition. Let ϕ : R → S be a surjective homomorphism of local rings. If

ϕ is small and the ring S is Golod, then the homomorphism ϕ is Golod.

Proof. The map π∗(ϕ) is surjective by 5.6, and π1(ϕ) is bijective by 5.7. Denoting
L the kernel of π∗(ϕ), we have L1 = 0. If S is Golod, then π> 2(S) is a free Lie
algebra, cf. 6.6. Subalgebras of free Lie algebras are free by [18, A.1.10], hence
L = L> 2 is free and ϕ is Golod by 6.6. �

We recall two facts on Koszul complexes, using the notation of 3.5.

6.8. ([20, 1.6]) If there is an R-submodule V of mKR with V 2 = 0 and such that

Z≥1(K
R) ⊆ V + B(KR) ,

then the ring R is Golod.

6.9. ([36, §2, Lemma 1]). If (Q, n, k) is a regular local ring and p is a positive
integer, then

∂(np−1KQ
> 1) = ∂(KQ) ∩ n

pKQ .

In view of Proposition 6.7, we plan to prove most of Theorem 6.5 by showing
that, under the given assumption, the ring R/mn is Golod for all n > A(R). If
edimR = dimR, that is, if R is regular, then by Golod’s example [12] the ring
R/mn is Golod for all n ≥ 2. The next proposition generalizes this result; the proof
uses some ideas from of [37, §2, Lemma 2] and [35, §5, Lemma 2].

6.10. Proposition. If (R,m, k) is a local ring with edimR ≤ dimR + 1, then the

ring R/mn is Golod for each integer n ≥ 2.

Proof. By 6.4 we may assume that R has a minimal Cohen presentation R = Q/a.
Since edimR ≤ dimR + 1 and Q is catenary, it follows that ht a ≤ 1. Since Q is
factorial, there exist an element x ∈ n and an ideal b such that a = xb. Let s be
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the largest integer for which x ∈ n
s. We denote R the ring R/mn = Q/(nn, xb) and

m its maximal ideal. Set K = KQ and K = KR. By 3.5 we have

K = K ⊗Q R = K/(nn, xb)K .

If y is a cycle in K of degree j ≥ 1, and y its preimage in K, then

∂(y) = a+ xb with a ∈ n
nKj−1 and b ∈ bKj−1 .

Differentiating, we obtain x∂(b) = −∂(a) ∈ n
n+1K. Now K is a complex of free Q-

modules. If c1, . . . , cr are the coefficients of ∂(b) in a basis of Kj−2, then xci ∈ n
n+1

for all i. Since x is not contained in n
s+1 and Q is a regular ring, we conclude that

ci ∈ n
n+1−s, hence ∂(b) ∈ n

n+1−sK.
Let T1, . . . Te be a basis of K1, with ∂(Ti) = gi for each i. Note that g1, . . . , ge

minimally generate n, hence x = a1g1 + . . . aege with ai ∈ n
s−1. For t = a1T1 +

· · ·+ aeTe we have t ∈ n
s−1K and ∂(t) = x. Setting u = y − tb, we then obtain

∂(u) = a+ xb− ∂(t)b+ t∂(b) = a+ t∂(b) ∈ n
nK .

By 6.9 there is an element v ∈ n
n−1K such that ∂(u) = ∂(v). Since u is a cycle of

positive degree in K, we have u − v = ∂(w) for some w ∈ K. In conclusion, any
y ∈ Z> 1(K) can be written as

y = t b+ v + ∂(w) with b ∈ b and v ∈ m
n−1K

The submodule V = (t b,mn−1K) is contained in mK. Indeed, if the ideal b is not
contained in m, then s ≥ 2 and hence t ∈ m. The product of any two cycles of the
form t b+ v, with b ∈ b and v ∈ m

n−1K is equal to zero, hence the ring R is Golod
by 6.8. �

To continue, we need two more results of Avramov, Kustin and Miller [8].

6.11. ([8, 6.1]) Let S be homomorphic image of a regular local ring Q. If pdQ(S) ≤
3, then there is a Golod homomorphism from a complete intersection (of codimen-
sion less than 2) onto S.

6.12. ([8, 5.13]) Let (R,m, k) be a local ring, c an ideal contained in m
2, and set

R = R/c. If the natural homomorphism R → R is Golod and x = x1, . . . , xr is a
regular sequence that can be extended to a minimal generating set for c, then the
induced homomorphism R/(x)→ R is Golod.

Proof of Theorem 6.5. Let n be an integer such that n > A(R), that is, the map
ρ(n) is small. We may assume A(R) > 0, hence n ≥ 2 (otherwise, R is a field and
both indices are zero). We have to prove that ρ(n) is Golod.

(1) For an ideal c of R the canonical map R→ R/c is small if and only if c = (0),
cf. [3, 4.7]. We have thus m

n = 0, hence ρ(n) is Golod for trivial reasons. By
1.5, pol reg(R) is the largest integer s for which m

s 6= 0, hence A(R) = G(R) =
pol reg(R).

For the rest of the proof we assume R = Q/a with (Q, n, k) regular and a ⊆ n
2,

cf. 1.7.
(2) By Proposition 6.10, the ring R = R/ms is Golod for each s ≥ 2, so Propo-

sition 6.7 implies that ρ(n) is Golod.
(3)By Scheja [33, Satz 9] the ring R = R/mn = Q/(a, nn) is either Golod or

a complete intersection. If it is Golod, then ρ(n) is Golod by Proposition 6.7.
Assume now that R is a complete intersection. By Remark 5.11, a minimal system
of generators of a can be completed to a minimal system of generators of (a, nn),
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hence a is generated by a regular sequence. If dimR > 0, then codimR ≤ 1, so the
problem is settled by (2). If dimR = 0, then a is generated by a maximal regular
sequence and thus (a, nn) = a. Therefore m

n = 0, and ρ(n) is the identity map.
(4) We have a = (x) for a regular sequence x = x1, . . . , xc. By Remark 5.11, x

is part of a minimal system of generators of (x, nn). Set S = R/mn = Q/(nn,x).
If c ≤ 1, then the assertion follows from (2). If c ≥ 2, then by 6.11 there exists a
regular sequence x′ in (x′) ⊆ (x,mn), of length at most two, such that the map
Q/(x′)→ S is Golod. Examining the proof of [8, 2.17], we see that we can modify
x′ to be either x1, x2 or x1. The conclusion then follows from 6.12. �

Comments. We proved that A(R) = G(R) for all complete intersections R with
edimR ≤ 3. It would be interesting to see whether there are complete intersections
of higher embedding dimension for which the equality does not hold. So far I did
not find any example of a local ring with A(R) < G(R).

7. The Levin index of a ring

7.1. We define the Levin index of the ring R by the formula

L(R) = LR(m) .

We set µ(n) = µ
(n)
R : m

n → m
n−1 and note that µ(n) = µ

(n−1)
m , hence we have

L(R) = inf{s ≥ 1 | TorR∗ (µ(n), k) = 0 for all n > s} = max{1,LR(R)− 1} .

7.2. Theorem. For a local ring R there are inequalities

G(R) ≤ L(R) ≤ max{1, pol reg(R)} .

Proof. The proof of [19, 3.15] shows that if TorR∗ (µ(n), k) = 0 for some n ≥ 2, then
ρ(n) is Golod; this proves the first inequality. The second one follows from Theorem
3.3. �

7.3. The proofs of [21, Theorem 2] and [20, 2.8] contain calculations of Poincaré

series based on a choice of an integer s ≥ 2 such that TorR∗ (µ(n), k) = 0 for all
n ≥ s, hence Theorem 7.2 yields

P
R/mn

k (t) =
PRk (t)

1− t2 HilbR
m

n(−t) PRk (t)

for each n > max{1, pol reg(R)}.

The next proposition follows by combining 5.4(3) and 6.5(1) with 7.2.

7.4. Proposition. Let (R,m) be a local ring which is not a field. If R is a hyper-

surface or a Golod Artinian ring, then

A(R) = G(R) = L(R) = max{1, pol reg(R)}. �

We characterize next rings that satisfy L(R) = 1. A similar result for graded
algebras is mentioned by Roos [29, Remark 3.4].

7.5. Proposition. A local ring R is Koszul if and only if L(R) = 1. If R is Koszul,

then Ext∗R(k, k) is generated by its elements of degree 1.
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Proof. If R is Koszul, then 3.2 gives L(R) = max{1, regR(R)} = 1. Conversely,
assume that L(R) = 1. We denote (X, ∂) a minimal free resolution of k over R
and set U = E(X); this is the associated graded complex of X with respect to the
natural filtration, as defined in 2.1 The fact that L(R) = 1 means that the natural
map H∗(m

nX)→ H∗(m
n−1X) is zero for all n ≥ 1. To prove that R is Koszul, we

show that the complex U is acyclic. For all integers i and n the module Hi(U)i+n
is the homology of the complex

m
n−1Xi+1/m

nXi+1 → m
nXi/m

n+1Xi → m
n+1Xi−1/m

n+2Xi−1 .

Let x be an element in Zi(U)i+n for some i ≥ 1, that is, x ∈ m
nXi and ∂(x) ∈

m
n+2Xi+1. Since the map H∗(m

n+2X) → H∗(m
n+1X) is zero, it follows that

∂(x) = ∂(a) for some a ∈ m
n+1Xi. Thus x − a is a cycle of X of positive degree,

hence x−a = ∂(b) for some b ∈ Xi+1. Since ∂(b) ∈ m
nX and the map H∗(m

nX)→
H∗(m

n−1X) is zero, it follows that ∂(b) = ∂(c) for some c ∈ m
n−1Xi+1. We

conclude that x = ∂(c) in U , hence U is acyclic and thus regR(k) = 0 by 2.3.
The last assertion follows by 5.3. �

For graded k-algebras, the converse of the last assertion of the proposition holds
by [22, Theorem 1.2]. However, the converse does not hold for local rings, as can
be seen from the following example:

7.6. Let (Q, n, k) be a 2-dimensional regular local ring and u, v a system of param-
eters. We set a = (u2 + v3, uv) and R = Q/a = k[u, v]/(u2 + v3, uv). This is a
local complete intersection such that Ext∗R(k, k) is generated in degree 1, cf. [37,

Theorem 5]. Still, gr(R) ∼= k[u, v]/(u2, uv, v4) and β
gr(R)
2,4 6= 0, hence gr(R), and

thus R is not Koszul.

8. Reduction by a regular sequence

In this section we study the behavior of the Levin index under factorization of
a regular sequence, in connection with a question of Roos. In [29] and [30] he
introduces the graded vector spaces

Sm
n = Im

(
Ext> 1

R (ψ(n), k)
)
⊆ Ext> 1

R (R/mn+1, k) ,

where ψ(n) : R/mn+1 → R/mn is the canonical map, and considers the following
properties of the ring R:

(Ms) Sm
n = 0 for all n > s.

( Ls ) R satisfiesMs and the induced homomorphisms Sm
n → S

m
n+1 are bijective

for n = 1, . . . , s− 3.

As pointed out in [29, Remark 3.4], a graded k-algebra R is Koszul if and only if
it satisfies M2. In general, these properties measure how far the algebra is from
being Koszul.

8.1. Roos [29, 7(iv)] asks the following question: Let R be a Cohen-Macaulay ring
and R = R/(an R-sequence). Is any of the conditions Ls and/or Ms true for R
if and only if it is true for R? Although in [29] the ring R is graded, the question
makes sense for local rings as well.

The isomorphism of functors Homk

(
TorR> 1(−, k), k

)
∼= Ext> 1

R (−, k) shows that
(Ms) is equivalent to L(R) < s. Thus, the question of Roos can be partly refor-
mulated as whether the Levin index is invariant under factorization of a regular
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sequence. We show next that the answer is negative, unless certain assumptions
are made on the regular sequence.

8.2. Let (R,m) be a regular local ring with dim(R) > 0. If x is an element in
m
n r m

n+1 for some integer n ≥ 1, then L(R) = 1 and L(R/(x)) = n − 1 by 7.4
and 1.9.

A sequence x = x1, . . . , xm of elements in R is called strictly regular if the initial
forms x∗1, . . . , x

∗
m form a regular sequence. It is known and easy to see that a strictly

regular sequence is an R-sequence.
We give next a partial answer to Roos’s question.

8.3. Theorem. If (R,m) is a local ring and x = x1, . . . , xm is a strictly regular

sequence in m r m
2, then the following hold:

(1) L(R) = L
(
R/(x)

)
.

(2) R satisfies Ms if and only if R/(x) satisfies Ms.

(3) R satisfies Ls if and only if R/(x) satisfies Ls.

The proof of the theorem follows from Proposition 8.7 below. Here are some
preliminaries:

8.4. ([6, 3.1]) Let X be a minimal Tate resolution of k over R (see 5.5) and x a
regular element in m r m

2. If T ∈ X1 satisfies ∂(T ) = x, then X/(x, T )X is a
minimal free resolution of k over R/(x).

8.5. Lemma. Let (R,m, k) be a local ring, x be an element of R, and T be an

element of X1 with ∂(T ) = x. If (mn+1 : x) ⊆ m
n and ∂(Tc) ∈ m

n+1X for some

integer n and some c ∈ X, then Tc ∈ m
nX.

Proof. The Leibnitz rule gives ∂(Tc) = xc − T∂(c). Multiplying by T , we obtain
T∂(Tc) = T (xc) = x(Tc). This implies x(Tc) ∈ m

n+1X . We set b = Tc ∈ Xs

(where s is the homological degree). Since Xs is a free R-module, we consider
b1, . . . , br to be the components of b in a basis. Then bix ∈ m

n+1 for any i. The
assumption on x implies bi ∈ m

n, hence Tc ∈ m
nX. �

8.6. If k is infinite, then each superficial element x which is regular satisfies the con-
dition (mn+1 : x) ⊆ m

n for all large integers n, cf. [31, Remarks, I-9]; such elements
exist by [31, 3.2, I-8]. Also, if x ∈ m r m

2 is strictly regular, then (mn+1 : x) ⊆ m
n

for all n ≥ 0.

8.7. Proposition. Let (R,m, k) be a graded Noetherian ring, x a regular element

not contained in m
2, and set R = R/(x) and m = m/(x). For any positive integer

n such that (mn+1 : x) ⊆ m
n the following hold:

(1) The induced homomorphism Sm
n → Sm

n is surjective.

(2) The induced homomorphism S
m

n−1 → S
m

n−1 is injective.

Proof. We first reformulate the statement in terms of homology. For each s we
denote Um

s the image of
(
TorR> 1(ψ

(s), k)
)

in TorR> 1(R/m
s, k). In view of the iso-

morphisms Homk

(
TorR> 1(−, k), k

)
∼= Ext> 1

R (−, k), we conclude that Um
s is canon-

ically isomorphic to the vector-space dual of Sm
s . Thus, for (1) we have to prove

that the induced map Um
n → Um

n is injective and for (2) we have to prove that
the induced map U

m
n−1 → U

m
n−1 is surjective.

Let X be a minimal Tate resolution of k over R. By 8.4 the complex X/(x, T )X
is a minimal free resolution of k over R/x, where T ∈ X1 satisfies ∂(T ) = x. For

all integers i we identify TorR> 1(R/m
i, k) with H> 1(X/m

iX) and TorR> 1(R/m
i, k)
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with H> 1

(
X/(mi, x, T )X

)
. Overbars denote residue classes, as appropriate to the

context.
(1) Let cls(y) be an element of H> 1(X/m

n+1X) whose image in Um
n zero.

Thus ∂(y) ∈ m
n+1X and

y = ∂(a) + b+ xc+ Tg with b ∈ m
nX and a, c, g ∈ X .

The Leibnitz rule gives xc = ∂(Tc) + T∂(c) and we obtain:

y = ∂(a) + b+ ∂(Tc) + T∂(c) + Tg = ∂(a′) + b+ Tg′ with a′, g′ ∈ X .

Differentiating, we get ∂(Tg′) = ∂(y) − ∂(b). Since ∂(y) ∈ m
n+1X and b ∈ m

nX ,
we obtain ∂(Tg′) ∈ m

n+1X . By Lemma 8.5 we have Tg′ ∈ m
nX and thus y is a

boundary in X/mnX . We thus have cls(y) = 0 in H> 1(X/m
nX), hence the map

Um
n → Um

n is injective
(2) For cls(y) ∈ H> 1

(
X/(mn, x, T )X

)
we have

∂(y) = a+ xb+ Tc with a ∈ m
nX and b, c ∈ X .

The Leibnitz rule gives xb = ∂(Tb) + T∂(b) and thus

∂(y − Tb) = a+ Tc′ with c′ ∈ X .

Differentiating, we obtain ∂(Tc′) = −∂(a); since a ∈ m
nX , we have ∂(a) ∈ m

n+1X .

Lemma 8.5 yields Tc′ ∈ m
nX , hence ∂(y − Tb) ∈ m

nX . We conclude that y − T b
is a cycle in X/mnX and thus cls(y) is the image of cls(y − T b) ∈ H> 1(X/m

nX).
Thus, the induced map H> 1(X/m

nX)→ H> 1

(
X/(mn, x, T )X

)
is surjective. This

implies the surjectivity of the map U
m

n−1 → U
m

n−1 . �

9. Graded rings

In this section we consider graded Noetherian rings. Let k be a field. Adapting
the notation of a local ring, we denote (R,m, k) a graded Noetherian ring R =
⊕∞
i=0Ri satisfying R = R0[R1], with maximal irrelevant ideal m = ⊕∞

i=1Ri and R0 =
k. We use the notation k also for the residue field R/m. All R-homomorphisms are
assumed homogeneous. The notions and results used so far have analogous graded
versions. We only mention that the notion corresponding to a minimal Cohen
presentation is a presentation of the form R = k[u1, . . . , ur]/a, with a homogeneous
ideal a ⊆ n

2, where n = (u1, . . . , ur), and that the Koszul complexes KR are
understood as KR = K(g, R) for a chosen basis g of R1. Also, Tate resolutions
become graded resolutions in a natural way.

9.1. Let R = k[u1, . . . , ur]/a be a minimal presentation as above. We noted in
Remark 5.10 that the number s(R) = inf{i ≥ 1 | a ∩ n

i+2 ⊆ na} does not depend
on the choice of the presentation. It is easy to see that s(R) is equal to 1 if a = (0)
and is one less the maximum of the degrees of a minimal system of generators of a,
otherwise.

All the results of this paper have analogous versions for graded rings. There are
also some improvements of the statements, which are collected in the next theorem.

9.2. Theorem. Let R be a graded ring as above, which is not a field.

(1) The ring R is Koszul if and only if A(R) = 1, if and only if G(R) = 1, if

and only if L(R) = 1.
(2) s(R) ≤ A(R) ≤ L(R) ≤ max{1, pol reg(R)}.
(3) If R is a complete intersection, then A(R) = s(R).
(4) If a linear form y is a non-zero divisor, then L(R) = L(R/(y)).
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(5) If R is Golod, then A(R) = G(R) = L(R) = max{1, pol reg(R)}.

The proofs of (1)–(4) are mainly contained in the previous sections. The only
part that needs a proof is (5).

9.3. We denote MH(KR) the set of all matric Massey products of H> 1(K
R), as

defined in ([23, §1]. It is a submodule of H> 1(K
R), containing the usual products.

The map H(Kϕ) : KR → KS induced by a homomorphism of local rings ϕ : R→ S
satisfies H(Kϕ)(MH(KR)) ⊆ MH(KS) (see [23, 3.10]). By [3, 4.6], if ϕ is small
then the induced homomorphism

ϕ̃ : H> 1(K
R)/MH(KR)→ H> 1(K

S)/MH(KS)

is injective. Also, Golod [12] shows that the ringR is Golod if and only if MH(KR) =
0, cf. [5, (2.3)]. For our purposes, we will use the graded version of these results.

Proof of Proposition 9.2(5). Set n = A(R) + 1 and S = R/mn. In particular, the
map ρ(n) : R → S is small. Note that n ≥ 2 by 5.3. Since R is a Golod ring,
we have MH(KR) = 0 by 9.3 and then the induced map H> 1(K

R) → H> 1(K
S)

is injective by 9.3. Set s = pol reg(R). There exists then an integer i such that
Hi(K

R)i+s 6= 0, hence Hi(K
S)i+s 6= 0. Since KS = KR/mnKR by 3.5, we observe

that Hi(K
S)j = 0 for all j ≥ n+ i. We conclude that i+ s < n+ i, that is n > s,

hence A(R) ≥ s. From Theorem 9.2(2) we also know that L(R) ≤ max{1, s}, so
the inequalities between the indices give the desired equalities. �

Comments. By 6.5 and 9.2(5) all Golod rings R which are either hypersurfaces, or
local and Artinian, or graded satisfy the equality A(R) = G(R). I do not know
whether Golod local rings of positive dimension satisfy this equality.

9.4. If R is a complete intersection on quadrics, then R is a Koszul algebra. Thus
s(R) = A(R) = G(R) = L(R) = 1, while pol reg(R) = codimR − 1. We note that
all Koszul algebras which are not regular rings satisfy s(R) = A(R) = 1; thus, the
equality between these two invariants is not specific to complete intersections.

9.5. Consider the ring R = k[u, v]/(u3, uv2). Since codim(R) = 1, this ring is
Golod by a result of Shamash [35, §5, Corollary (2)]. Note that s(R) = 2 and
pol reg(R) = 3. By Theorem 9.2(5) we have A(R) = G(R) = L(R) = 3. Thus, we
have A(R) > s(R) in this case.

9.6. Consider the ring R = k[u, v]/(u3, v3). Since edim(R) ≤ 2, we know that
2 = s(R) = A(R) = G(R) by 6.5. Also, pol reg(R) = 4 and we can see that
L(R) = 4. Indeed, by Tate [38, Theorem 4] a minimal free resolution of k over R
has the form

X = R〈S, Y, U, V |∂(U) = u, ∂(V ) = v, ∂(S) = u2U, ∂(T ) = v2V 〉 .

Express TorR> 1(R/m
4, k) as H> 1(X/m

4X) and TorR> 1(R/m
3, k) as H> 1(X/m

3X).

For degree reasons, the image of u2UT is a cycle inX/m4X , which is not a boundary

in X/m3X , hence the map TorR> 1(R/m
4, k)→ TorR> 1(R/m

3, k) is not zero.
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