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Abstract—In packet communication systems, a header is at-
tached to the transmitted packet at each layer. The overhead
due to the transmission of the individual header can have a
significant impact on the performance of the communication
system especially when the system operates in heavy load. In
order to increase data throughput, a number of packets sharing
a single header can be aggregated into a frame.

In this paper, we present a mathematical model for a packet
aggregation system assuming a general distribution for the
packet length. For a given header size, we obtain the minimum
system utilization where packet aggregation improves the system
performance. We also analyze the asymptotic behavior of such
systems leading to a simple heuristic policy on the optimum
aggregation level. It is shown that the impact of the variability
of the packet length distribution on different system performance
measures is rather insignificant when the system load is low or
moderate.

Index Terms—Asymptotic analysis, batch service queues, delay
optimization, framing, packet aggregation, performance bounds,
queueing delay analysis.

I. INTRODUCTION

A packet transmission via Open System Interconnection
(OSI) layers [3, p. 41] assumes that a header is attached

to the transmitted packet at each layer. The overhead due to the
transmission of the individual header may have a significant
impact on the performance of a packet communication system
especially when the system operates in heavy load. In order to
reduce the overhead and increase data throughput, a number of
packets can be aggregated into a frame at the time of encapsu-
lation when the bit error rate is not very high. Otherwise, in a
very noisy environment, the cost of frame retransmission due
to transmission error may offset any performance gain from
packet aggregation, since a frame consisting of a number of
packets needs to be retransmitted instead of a single packet.

Packet aggregation methods have been proposed for about a
decade now [5], [17]. More recently, there has been renewed
interest of their applications in wireless networks [10], [16]
where fairness and inefficiency issues due to a small payload
in 802.11-based wireless systems are examined.

Another example of packet aggregation in real systems is
Frame Relay (FR) systems [3, p. 266], where every packet
which is transmitted over the system is aggregated into the FR
frame. FR also allows packing of small packets into a single
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FR frame as in the case of voice packet transmission over FR
defined in FRF.11 [4]. In this case, every aggregated packet is
called a sub-frame which consists of original packet and a sub-
header. IEEE 802.16 standard for broadband wireless access
systems [8] is also another example of packet aggregation.
Here, the media access control layer operates with protocol
data units (PDU’s), each of which consists of a header and
one or more service data units (SDU’s) which represent PDU’s
payload. In other words, SDU’s are aggregated in a single
PDU.

In our model, we limit the maximum number of packets
inserted into a frame and transmitted as a single entity (i.e.,
batch) by J . A header is appended to the frame before its
transmission. Thus, a completed frame consists of j (j =
1, · · · , J) packets and a header. The service time of a frame
is considered as the sum of the service times of all individual
packets and the header. As described in more details in the next
section, the number of packets in a frame (batch) is dictated by
the number of the packets arriving during the service time of
the previous frame. Therefore, in our model, the service times
of successive frames (batches) are dependent, which indicates
a major difference from the existing queueing models.

In this paper, we present a mathematical model and its
analysis of packet aggregation systems. Our model consists
of a queueing system with batch service, where a complete
performance analysis is provided. We note that the analytical
model of such systems is new and its solution has not been
reported in the open literature. A simple variation of the model
was first reported by Bailey [1]. In his model, if the server
finds less than J waiting on completion of a batch service,
then it takes all of them in a batch for service. If it finds
more than J waiting, then it takes a batch of size J for
service, while others, in excess of J units, wait for service
in the queue. He assumed that the intervals of time between
successive occasions of service are independent and identically
distributed. Neuts [14] studied the distribution of the busy
period for the same system assuming that the service times
of successive batches are conditionally independent given the
batch sizes, but may depend on their batch sizes. Neuts [15]
proposed the “general bulk service rule" in which service
initiates only when at least a certain number, L, of packets
are waiting in the queue and a batch has a maximum size
J , (L ≤ J). Jaiswal [9] considered a batch service queue
in which the batch size is random. In all these batch service
models, the statistical information of the batch size is a priori
specified unlike our model which is a by-product of the
aggregation system under the consideration.

One may think of the header in our system as a vacation in
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gated/limited service systems with a single vacation reported
by Takagi [18, p.202, p.227] which are not batch service
models. However, in our model, all packets in a frame depart
from the system together with a header. Therefore, such
models do not apply to our packet aggregation system.

A brief and preliminary model of the aggregation systems
was presented by the first author [6], [7], where a Phase-Type
service time distribution for individual packets and an Erlang
distribution for the header were considered. Furthermore, the
analysis approach was based on the Markov chain methodol-
ogy.

This paper gives a detailed analysis of the packet aggrega-
tion system assuming that the packet arrivals follow a Poisson
process. Although the generalization to other (Markovian)
arrival processes are possible in principle, such analysis are
quite space-intensive and are not presented here. We assume a
general packet (service) and header length distribution, where
the Supplementary Variable Technique [2, p. 57] is used
for the analysis. Therefore, constant header size is readily
analyzed as a special case, which is the most common in
packet communication systems. Using the proposed model,
we provide the analysis of the end-to-end delay of a packet
and the distribution of the frame size. It is numerically
demonstrated that the system performance measures approach
their asymptotic values quickly as the maximum frame size J
increases. Thus, we consider the case of infinite J , which leads
to a functional equation [13] satisfying the system generating
function. The exact solution of this equation is simpler and
provides a significant reduction in the numerical complexity
of the solution compared to the finite system. Moreover, the
asymptotic model yields simple and nevertheless accurate up-
per and lower bounds for the first order statistics of important
system performance measures. In addition, a simple heuristic
supported by numerical results is provided to determine the
optimum level of aggregation in such systems.

The remainder of this paper is organized as follows. We
provide the queueing model and the analysis for finite max-
imum frame size J in section II and the asymptotic analysis
of the system for large J in section III. Section IV covers the
heuristics for the selection of optimum level of aggregation to
minimize the end-to-end packet delay. We present numerical
results in section V and conclude this paper in section VI.

II. SYSTEM MODEL AND ANALYSIS

We assume that packets arrive according to a Poisson
process with rate λ to a single server queue. Arriving packets
are stored in an infinite buffer until they are transmitted
to the destination peer. The transmission over the data link
layer is done frame by frame. Data packets received from
the network layer can be aggregated in a single frame. An
overhead packet (header) is then appended in front of the
frame. Therefore, each frame consists of a header and a
number of data packets. The maximum number of data packets
which can be aggregated in a single frame is J . Whenever the
system is ready for transmission and the buffer is not empty,
a frame is created of packets currently residing in the buffer
starting from the head of line packet. If the number of packets
in the buffer is less than J , then all packets in the buffer form

a frame. If the number of packets in the buffer is greater than
J , then only the first J packets are inserted into a frame and
other packets wait for the next available frame in the buffer.
Packets arriving during the transmission of a frame cannot
be added to the current transmitting frame but wait for the
available transmission in the buffer. Upon arrival at a buffer
having i, (i ≥ 0) packets waiting for transmission, the arriving
packet waits in the queue until the current frame and �i/J�
frames are transmitted, where �·� denotes the largest integer
not exceeding the argument. Upon arrival at an empty buffer
with no current transmission, the single arriving packet itself
forms a frame and its transmission starts immediately. This
will ensure a work conserving system.

We consider the transmission time of a frame as the sum
of the transmission times of all individual packets and the
header. We assume that the service (transmission) times of
the header and the packet have general distributions and are
independent. Let Y0 and Y1 be the service times of the header
and the packet, respectively. The distribution function Bk(x)
of the service time Yk is given by

Bk(x) = 1 − exp

[
−

∫ x

0

ηk(t)dt

]
, k = 0, 1,

where ηk(t) is the intensity function. Let hn(mn) be the nth
moment of the service time Y0(Y1). Conditioning that the
server is busy at time t, we define the state of the server
by

ξ(t) =
{

0 if server is transmitting header,
1 if server is transmitting packet.

We also define

P0(t) = Prob [Nq(t) = 0, Nr(t) = 0],
Pi,j,k(x, t)dx = Prob [Nq(t) = i, Nr(t) = j, ξ(t) = k,

x < Xk(t) ≤ x + dx],
i ≥ 0, 1 ≤ j ≤ J, k = 0, 1,

where Nq(t) is the number of packets in the queue at time t,
Nr(t) is the number of remaining packets to be served in the
frame under service at time t, which includes the packet being
served at time t, and X0(t) (X1(t)) is the elapsed service time
of the header(packet) under service at time t. We then can
write the following equations of the process by considering
the transitions occurring in small time interval �t:

P0(t + �t) = P0(t)(1 − λ�t)

+(1 − λ�t)
∫ ∞

0

P0,1,1(x, t)η1(x)dx�t + o(�t),

Pi,j,k(x+�t, t+�t) = (1−λ�t)(1−ηk(x)�t)Pi,j,k(x, t)
+λ�tPi−1,j,k(x, t)(1 − ηk(x)�t) + o(�t),

i ≥ 0, 1 ≤ j ≤ J, k = 0, 1,

where P−1,j,k(x, t) = 0. When �t → 0, we get the following
differential equations:

dP0(t)
dt

= −λP0(t) +
∫ ∞

0

P0,1,1(x, t)η1(x)dx

∂Pi,j,k(x, t)
∂x

+
∂Pi,j,k(x, t)

∂t
= −(λ + ηk(x))Pi,j,k(x, t)

+ λPi−1,j,k(x, t), i ≥ 0, 1 ≤ j ≤ J, k = 0, 1.
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We note that ρ +λh1/J must be strictly less than one for the
existence of an equilibrium solution, where ρ = λm1. Let

P0 � lim
t→∞P0(t),

Pi,j,k(x) � lim
t→∞Pi,j,k(x, t), i ≥ 0, 1 ≤ j ≤ J, k = 0, 1.

Then the differential equations become the following:

λP0 =
∫ ∞

0

P0,1,1(x)η1(x)dx, (1)

∂Pi,j,k(x)
∂x

= −(λ + ηk(x))Pi,j,k(x) + λPi−1,j,k(x), (2)

i ≥ 0, 1 ≤ j ≤ J, k = 0, 1.

These equations are to be solved under the boundary condi-
tions

P0,1,0(0) = λP0 +
∫ ∞

0

P1,1,1(x)η1(x)dx, (3)

P0,j,0(0) =
∫ ∞

0

Pj,1,1(x)η1(x)dx, 2 ≤ j ≤ J − 1, (4)

Pi,J,0(0) =
∫ ∞

0

Pi+J,1,1(x)η1(x)dx, i ≥ 0, (5)

Pi,j,0(0) = 0, i ≥ 1, 1 ≤ j ≤ J − 1, (6)

Pi,j,1(0) =
∫ ∞

0

Pi,j+1,1(x)η1(x)dx (7)

+
∫ ∞

0

Pi,j,0(x)η0(x)dx, i≥0, 1≤ j≤J−1,

Pi,J,1(0) =
∫ ∞

0

Pi,J,0(x)η0(x)dx, i ≥ 0, (8)

and the normalization condition

P0 +
∑
i,j,k

∫ ∞

0

Pi,j,k(x)dx = 1. (9)

Now we define

Gj,k(z; x) �
∞∑

i=0

Pi,j,k(x)zi, 1 ≤ j ≤ J, k = 0, 1.

From (2), we then get

∂Gj,k(z; x)
∂x

= [λz − λ − ηk(x)] Gj,k(z; x), (10)

1 ≤ j ≤ J, k = 0, 1,

and the boundary conditions give the recursive relations

G1,0(z; 0) = λP0 +
∫ ∞

0

P1,1,1(x)η1(x)dx,

Gj,0(z; 0) =
∫ ∞

0

Pj,1,1(x)η1(x)dx, 2 ≤ j ≤ J − 1,

GJ,0(z; 0) =
∞∑

i=0

zi

∫ ∞

0

Pi+J,1,1(x)η1(x)dx,

Gj,1(z; 0) =
∫ ∞

0

Gj,0(z; x)η0(x)dx

+
∫ ∞

0

Gj+1,1(z; x)η1(x)dx, 1 ≤ j ≤ J − 1,

GJ,1(z; 0) =
∫ ∞

0

GJ,0(z; x)η0(x)dx.

(10) has the solution

Gj,k(z; x) = Gj,k(z; 0)[1 − Bk(x)]e−λ(1−z)x, (11)

which yields∫ ∞

0

Gj,k(z; x)ηk(x)dx = Gj,k(z; 0)b∗k(λ − λz), (12)

where b∗k(·) is the Laplace Stieltjes Transform of the service
time distribution Bk(x), k = 0, 1. Let

xi �
∫ ∞

0

Pi,1,1(x)η1(x)dx, 0 ≤ i ≤ J − 1.

From (1) and (12), the recursive relations are represented by

G1,0(z; 0) = x0 + x1,

Gj,0(z; 0) = xj , 2 ≤ j ≤ J − 1,

GJ,0(z; 0) =
1
zJ

[
G1,1(z; 0)b∗1(λ−λz) −

J−1∑
i=0

xiz
i

]
, (13)

Gj,1(z; 0) = Gj,0(z; 0)b∗0(λ − λz) (14)

+ Gj+1,1(z; 0)b∗1(λ−λz), 1 ≤ j ≤ J−1,

GJ,1(z; 0) = GJ,0(z; 0)b∗0(λ − λz). (15)

From (14), we have

Gj,1(z; 0) = [G1,1(z; 0)−x0α(z)][β(z)]j−1

−α(z)
j−1∑
i=1

xi[β(z)]j−i, 2 ≤ j ≤ J, (16)

where α(z) = b∗0(λ − λz) and β(z) = 1/b∗1(λ − λz). From
(13), (15), and (16), we therefore get

G1,1(z; 0) =
β(z)f1(z) − zJ

[
f2(z) + x0{β(z)}J

]
1 − {zβ(z)}J/α(z)

, (17)

where f1(z) =
∑J−1

i=1 xiz
i and f2(z) =

∑J−1
i=1 xi[β(z)]J−i+1.

Applying the L’Hospital’s rule into (17), we get

G1,1(1; 0) =
(1 − ρ)

[
J

∑J−1
i=0 xi −

∑J−1
i=1 ixi

]
+ ρx0

(1 − ρ)J − λh1
, (18)

which is always non-negative for a stable system. Let

Gj,k(z) �
∫ ∞

0

Gj,k(z; x)dx, 1 ≤ j ≤ J, k = 0, 1.

From (11), we then have

Gj,k(z) = Gj,k(z; 0)
1− b∗k(λ−λz)

λ−λz
, 1≤j≤J, k= 0, 1. (19)

Applying the L’Hospital’s rule into (19), we get

Gj,0(1) = h1Gj,0(1; 0), 1 ≤ j ≤ J,

Gj,1(1) = m1Gj,1(1; 0), 1 ≤ j ≤ J.

Let H(z) �
∑J

j=1 Gj,0(z) and F (z) �
∑J

j=1 Gj,1(z). Then
from the recursive relations, we obtain

H(1) = h1G1,1(1; 0),

F (1) = m1

[
x0 + JG1,1(1; 0) +

J−1∑
i=1

ixi − J

J−1∑
i=0

xi

]
, (20)
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where G1,1(1; 0) is given in (18). The normalization condition
(9) is represented by

P0 + H(1) + F (1) = 1. (21)

Let Ξ(z) and Δ(z) be the numerator and denominator of
G1,1(z; 0) in (17), respectively. Then we have

Δ(z) = 0 =⇒ zJ = b∗0(λ − λz){b∗1(λ − λz)}J . (22)

The sequence xi, 0 ≤ i ≤ J − 1 are obtained using the
analyticity of G1,1(z; 0) inside and on the unit circle. At each
root of Δ(z) inside and on the unit circle, Ξ(z) should vanish.
Now, we consider the following iteration with z0 = 0, for
0 ≤ k ≤ J − 1,

zn+1 = b∗1(λ − λzn)b∗0(λ − λzn)1/J
ei2πk/J , n ≥ 0.

It can be easily shown that for each k, if |zn| ≤ 1, then
|zn+1| ≤ 1. Therefore, the iteration provides J roots of (22) on
|z| ≤ 1, which includes a root z = 1 when k = 0. Substituting
J − 1 roots when 1 ≤ k ≤ J − 1 (except z = 1) into Ξ(z),
we get J −1 linear equations in terms of xi, (0 ≤ i ≤ J −1).
Solving these equations with the normalization condition (21),
we obtain all J unknowns, xi, (0 ≤ i ≤ J − 1), resulting in
the complete set of xi’s and hence, all the state probabilities.

Now, we provide the frame size distribution in terms of
the sequence xi found above. Since the header is transmitted
first within a frame, the stationary frame size is identical to
the number of the remaining packets to be transmitted in the
frame while the header is transmitted. Denote π̃J

n(1 ≤ n ≤ J)
as the stationary probability that a frame consists of n packets.
Then we can easily find that

π̃J
n =

Gn,0(1)
H(1)

=
Gn,0(1; 0)
G1,1(1; 0)

,

which yields

π̃J
1 =

x0 + x1

G1,1(1; 0)
,

π̃J
n =

xn

G1,1(1; 0)
, 2 ≤ n ≤ J − 1,

π̃J
J = 1 −

∑J−1
n=0 xn

G1,1(1; 0)
.

The mean frame size J̄ can be also obtained as

J̄ =
J∑

n=1

nπ̃J
n =

F (1)
m1G1,1(1; 0)

=
λ

G1,1(1; 0)
, (23)

where G1,1(1; 0) is given in (18).
Here, we obtain the Laplace Stieltjes Transform(LST)

W ∗(s) of the queue waiting time distribution and the LST
S∗(s) of the distribution of the total time in the system of
a packet by conditioning on the state that the packet sees at
its arrival epoch. Assuming that there are i packets in the
queue at the arrival epoch of a packet, the queue waiting time
of a packet is the sum of the remaining service time of a
frame in transmission and the service time of � i

J � frames.

Let r∗0(s) = 1−b∗0(s)
sh1

(
r∗1(s) = 1−b∗1(s)

sm1

)
be the LST of the

remaining service time distribution of the header (packet)
when sampled at a random point and

Pi,j,k �
∫ ∞

0

Pi,j,k(x)dx, i ≥ 0, 1 ≤ j ≤ J, k = 0, 1.

By the PASTA (Poisson Arrivals See Time Averages)[12, p.
71] property, W ∗(s) is obtained as

W ∗(s)� E[e−sWq ]

=P0 +
∑
i≥0

∑
1≤j≤J

r∗0(s) [b∗1(s)]
j
[
b∗0(s){b∗1(s)}J

]� i
J
�
Pi,j,0

+
∑
i≥0

∑
1≤j≤J

r∗1(s)[b∗1(s)]
j−1

[
b∗0(s){b∗1(s)}J

]� i
J
�
Pi,j,1.

The total time in the system of a tagged packet is the sum of
its queue waiting time and the service time of its frame. The
frame size is determined by the number of packets arriving
during the queue waiting time. Assume that there are i packets
in the queue, j remaining packets in a frame and the header
is being transmitted at the arrival epoch of a tagged packet.
Let i = nJ + r, for n ≥ 0 and r = 0, 1, · · · , J − 1. Then the
number of packets arriving during the queue waiting time of
the packet has the probability generating function (PGF)

r∗0(λ − λz)[b∗1(λ − λz)]j+nJ [b∗0(λ − λz)]n.

Let ux be the probability that the frame size is equal to x
given this scenario. Then it is clear that ux is equal to the
coefficient of zx−r−1 in above PGF for r + 1 ≤ x ≤ J − 1
and uJ = 1 −

∑J−1
x=r+1 ux. Let vx be the probability that the

frame size is equal to x, given that there are i packets in the
queue, a packet is being transmitted, and there are j remaining
packets in the frame at the arrival epoch of the tagged packet.
Similarly, vx is obtained as the coefficient of zx−r−1 in PGF

r∗1(λ − λz)[b∗1(λ − λz)]j−1+nJ [b∗0(λ − λz)]n

for r + 1 ≤ x ≤ J − 1 and vJ = 1 −
∑J−1

x=r+1 vx. Therefore,
S∗(s) is obtained as

S∗(s)�E[e−sT ]
=P0b

∗
0(s)b

∗
1(s)

+
∑
n,r,j

∑
r+1≤x≤J

r∗0(s)[b∗1(s)]
j+nJ+x[b∗0(s)]

n+1uxPi,j,0

+
∑
n,r,j

∑
r+1≤x≤J

r∗1(s)[b∗1(s)]
j−1+nJ+x[b∗0(s)]

n+1vxPi,j,1.

Thus, the mean queue waiting time E[Wq] and the mean total
time E[T ] in the system can be found as − d

dsW ∗(s)
∣∣
s=0

and
− d

dsS∗(s)
∣∣
s=0

, respectively.
We remark that significant numerical challenges have been

observed even in the case of exponential packet service time
unless the maximum frame size J is small. The problem
appears to be in finding xi’s, (i = 0, · · · , J −1) requiring the
solution of a system of linear equations. This system becomes
ill-conditioned for even moderate J . We have checked various
performance measures such as mean frame size, mean queue
length, and mean total delay of a packet and observed the
quick convergence to their asymptotic values as J increases.
Thus, in the next section, we consider the case of infinite
J resulting in a functional equation [13] satisfied by the
generating function of the sequence xi. The solutions turn
out to be significantly easier to represent and compute.
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III. ASYMPTOTIC ANALYSIS AND BOUNDS

In this section, we consider the case of infinite J . Whenever
a transmission is ready to take place in this system, all packets
in the queue are aggregated in a single frame, which is
transmitted with a header. Packets arriving during the trans-
mission of a frame cannot be added to the current transmitting
frame and will be inserted into the next frame. Upon arrival
at an empty buffer with no current transmission, the single
arriving packet itself forms a frame and its transmission
starts immediately. We assume that ρ (= λm1) is strictly
less than one for the stability of the system. This system is
also formulated by the equations (1) and (2), the boundary
conditions (3) to (8) except (5) and (8), and the normalization
condition (9) with J = ∞. We define

Gk(z, w; x) =
∞∑

i=0

∞∑
j=1

Pi,j,k(x)ziwj , k = 0, 1.

From (2), we then get the differential equation

∂Gk(z, w; x)
∂x

= [λz − λ − ηk(x)] Gk(z, w; x), k = 0, 1,

which has the solution

Gk(z, w; x) = Gk(z, w; 0)[1 − Bk(x)]e−λ(1−z)x. (24)

From the boundary conditions, we get

G0(z, w; 0)=λP0w +
∞∑

j=1

wj

∫ ∞

0

Pj,1,1(x)η1(x)dx, (25)

G1(z, w; 0)=
1
w

∫ ∞

0

G1(z, w; x)η1(x)dx (26)

+
∫ ∞

0

G0(z, w; x)η0(x)dx −
∞∑

i=0

zi

∫ ∞

0

Pi,1,1(x)η1(x)dx.

Let F (z) �
∑∞

i=0 xiz
i, where

xi =
∫ ∞

0

Pi,1,1(x)η1(x)dx, i ≥ 0.

From (24), we have∫ ∞

0

Gk(z, w; x)ηk(x)dx = Gk(z, w; 0)b∗k(λ − λz), k = 0, 1,

and therefore (25) and (26) are represented by

G0(z, w; 0) = λP0(w − 1) + F (w), (27)

G1(z, w; 0) =
1
w

G1(z, w; 0)b∗1(λ − λz) (28)

+G0(z, w; 0)b∗0(λ − λz) − F (z).

Substituting (27) into (28), we get

G1(z, w; 0) =
[λP0(w−1) + F (w)]b∗0(λ−λz)−F (z)

1 − 1
w b∗1(λ−λz)

. (29)

Applying the L’Hospital’s rule into (29), we get

G1(1, 1; 0) =
F ′(1) − λh1F (1)

ρ
, (30)

where F ′(1) = dF (z)
dz

∣∣∣
z=1

. Let Ξ(z, w) and Δ(z, w) be the

numerator and denominator of G1(z, w; 0) in (29), respec-
tively. Then we have

Δ(z, w) = 0 =⇒ w = b∗1(λ − λz).

Now, we define σ(z) on |z| ≤ 1 as

σ(z) � b∗1(λ − λz).

It can be easily shown that |σ(z)| ≤ 1 for |z| ≤ 1. Since
G1(z, w; 0) is analytic on {(z, w) : |z| ≤ 1, |w| ≤ 1}, Ξ(z, w)
should vanish at (z, σ(z)), which provides the functional
equation

F (z) = a(z) + b(z)F (σ(z)), (31)

where a(z) = λP0{σ(z)−1}b∗0(λ−λz) and b(z) = b∗0(λ−λz).
Let σk(z) be the kth iteration of σ(z), i.e.,

σ0(z) = z, σk+1(z) = σ(σk(z)), k ≥ 0.

It can be shown that σk(z) converges to 1 as k goes to infinity
for |z| ≤ 1. Iterating (31) formally, we therefore obtain its
solution as

F (z) =
∞∑

k=0

a(σk(z))
k−1∏
j=0

b(σj(z)) + F (1)
∞∏

j=0

b(σj(z)). (32)

From (31), we get F ′(1) = λ{ρP0+h1F (1)}
1−ρ , which represents

(30) as

G1(1, 1; 0) =
λ {P0 + h1F (1)}

1 − ρ
. (33)

Let Gk(z, w) =
∫ ∞
0

Gk(z, w; x)dx, k = 0, 1, then from (24),
we have

Gk(z, w) = Gk(z, w; 0)
1 − b∗k(λ − λz)

λ − λz
, k = 0, 1. (34)

Applying the L’Hospital’s rule into (34), we then get

G0(1, 1) = h1G0(1, 1; 0) and G1(1, 1) = m1G1(1, 1; 0).

From (27) and (33), we thus have

G0(1, 1) = h1F (1),

G1(1, 1) =
ρ {P0 + h1F (1)}

1 − ρ
. (35)

Therefore, the normalization condition (9) is represented by
P0 + G0(1, 1) + G1(1, 1) = 1, which gives

F (1) =
1 − ρ − P0

h1
. (36)

Substituting F (1) in (36) into (35), we obtain G1(1, 1) = ρ.
Since F (0) = λP0 by definition of F (z), we get P0, which
results in the complete stationary probabilities, by substituting
F (1) in (36) into (32) and putting z = 0 on both sides of (32):

P0 =
(1 − ρ)C∞

λh1 [1 +
∑∞

k=0{1−σk+1(0)}b(σk(0))Ck−1] + C∞
,

where C−1 = 1 and Ck =
∏k

j=0 b(σj(0)), k ≥ 0.
The frame size distribution can be found by the similar

argument used for finite J . Denote π̃n as the stationary
probability that a frame consists of n packets, then

π̃1 =
x0 + x1

F (1)
, π̃n =

xn

F (1)
, n ≥ 2,

and the mean frame size J̄ is obtained as

J̄ =
∞∑

n=1

nπ̃n =
x0 + F ′(1)

F (1)
=

λ

F (1)
,



6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 2, FEBRUARY 2010

where F (1) is given in (36).
Let Q(z) be the probability generating function of the

number of packets in the queue. Then Q(z) is obtained as

Q(z) �
∞∑

n=0

P [Lq = n]zn = P0 + G0(z, 1) + G1(z, 1)

and the mean queue length is obtained as E[Lq] = dQ(z)
dz

∣∣∣
z=1

.

It can be shown that E[Lq] is represented by

E[Lq] =
λ2h1(2h1m1 + m2) + λh2(1 − ρ − P0)

2h1(1 − ρ2)
. (37)

By Little’s law [12, p. 47], we also get the mean queue waiting
time E[Wq] as E[Lq]/λ. We note that P0 = 0 (P0 = 1) gives
the upper (lower) bound for E[Lq].

For infinite J , the queue waiting time of a packet is the
same as the remaining service time of a frame in transmission
and the total time in the system of a packet is the sum of its
queue waiting time and the service time of its frame, which
can be derived by conditioning on the state of the system at
its arrival epoch. Let

Pi,j,k �
∫ ∞

0

Pi,j,k(x)dx, i ≥ 0, j ≥ 1, k = 0, 1.

By the PASTA property [12, p. 71], the LST W∗(s) of the
queue waiting time distribution and the LST S∗(s) of the total
time distribution in the system of a packet are obtained as

W∗(s) � E[e−sWq ]

=P0+

∞∑
i=0

∞∑
j=1

r∗0(s)[b∗1(s)]
jPi,j,0+

∞∑
i=0

∞∑
j=1

r∗1(s)[b∗1(s)]
j−1Pi,j,1

=P0 + r∗0(s)G0(1, b∗1(s)) +
r∗1(s)

b∗1(s)
G1(1, b∗1(s)),

S∗(s) � E[e−sT ]

=P0b
∗
0(s)b

∗
1(s) +

1∑
k=0

ckGk(b∗1(s), b
∗
1(s)b

∗
1(λ − λb∗1(s))),

where c0 = b∗0(s)b
∗
1(s)r

∗
0(s)r∗0(λ − λb∗1(s)) and c1 =

b∗0(s)r∗
1(s)r∗

1 (λ−λb∗1(s))
b∗1(λ−λb∗1(s)) . Thus, we have the mean queue waiting

time E[Wq] and the mean total time E[T ] in the system as
− d

dsW∗(s)
∣∣
s=0

and − d
dsS∗(s)

∣∣
s=0

, respectively. It can be
shown that these means are represented by

E[Wq] =
λh1m2 + 2h1

2ρ + (1 − ρ − P0)h2

2(1 − ρ2)h1
,

E[T ] = m1 +
d + (1 + 2ρ)(1 − ρ − P0)h2

2(1 − ρ2)h1
,

where d = 2(1+ρ+ρ2)h1
2+(1+2ρ)λh1m2. Here, we remark

that as ρ → 0, we have E[Wq] → 0 and E[T ] → m1 +h1, as
expected. Since 0 ≤ P0 ≤ 1, we obtain the upper and lower
bounds for the mean total time E[T ] as

U = m1 +
d + (1 + 2ρ)(1 − ρ)h2

2(1 − ρ2)h1
, (38)

L = m1 +
d − ρ(1 + 2ρ)h2

2(1 − ρ2)h1
. (39)

We note that the exact P0 approach to zero (one) as ρ goes to
one (zero). Therefore, we expect that the upper (lower) bound
should be close to the exact value in heavy (light) traffic.

In the next section, we address the question of “aggregate
or not to aggregate?" and the optimum level of aggregation.

IV. SIMPLE HEURISTICS ON OPTIMUM LEVEL OF

AGGREGATION

Recall that the stability condition for a finite system is ρ +
λh1/J < 1, where ρ = λm1, m1(h1) denotes the mean
packet (header) size, J is the maximum number of packets in
a frame, i.e., referred to the level of aggregation, and λ denotes
the arrival rate of packets to the system. It is clear that for
sufficient system utilization ρ, a system with no aggregation
(J = 1) may be unstable depending on the header size. But the
stability (finite delay) is achieved as the level of aggregation
J increases. In fact, we must have J > λh1

1−ρ . Therefore, the
aggregation process acts as a system “stabilizer" in the heavy
load. It is also possible to reduce the packet end-to-end delay
significantly for marginally stable systems (ρ close to unity)
when we aggregate.

We now address two fundamental questions. The first
one is what the minimum system utilization is for a given
(fixed) header size where aggregation improves the system
performance. The second one is what the optimum level of
aggregation should be (i.e., finding the optimum J to minimize
the average packet end-to-end delay).

We formulate the first question by considering the same
average packet delay for the two extreme cases of J = ∞
(maximum aggregation) and J = 1 (no aggregation). Here,
we use the simple upper bound for E[T ] in (38) as an
approximation for the average packet delay for J = ∞. We
note that the case of J = 1 is a classical M/G/1 queue,
where the service time S is the sum of the packet and the
header transmission times. The overall system load (including
the header) is a = λ(m1 + h1) and E[T ] is given as [11, p.
190]

E[T ] = E[S] +
E[S2]
2E[S]

a

1 − a
. (40)

We assume a deterministic header (i.e., h2 = h1
2) and express

the second moment of the packet service time in terms of
its squared coefficient of variation, i.e., m2 = (1 + c2)m1

2.
Equating (40) to the upper bound for E[T ] in (38), we then
get the following quadratic equation in h;

ρ(1 + ρ)(2 + ρ)h2 +
{
−1 + ρ2 + (1 + 2ρ)ρ2(1 + c2)

}
h

− (1 − ρ)ρ2(1 + c2) = 0, (41)

where h = h1
m1

is the normalized header size. We note that h
approaches to zero as the utilization ρ approaches to one. We
solve (41) for h and present its non-negative solution as the
following heavy traffic expansion:

h=
1−ρ

3
+

2(1−ρ)2

9
+

4(2+c2)(1−ρ)3

27(1 + c2)
+O

(
(1−ρ)4

)
. (42)

We note that the first two terms in (42) are independent of
c2. As it will be demonstrated numerically in section V, the
first two terms provide an excellent approximation for the
minimum header size in the moderate to heavy traffic. The
first three terms in (42) can be an excellent approximation
for all range of utilizations and c2. However, we may have to
decide if aggregation should take place depending on the level
of utilization ρ, since the header size is fixed in practice. It
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TABLE I
AVERAGE FRAME SIZE J̄ FOR ρ AND MAXIMUM FRAME SIZE J .

ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=0.95 ρ=0.98
J=2 1.0742 1.2021 1.4252 1.8350 1.9917 unstable
J=5 1.0888 1.2718 1.6900 3.0524 4.0040 4.9837
J=7 1.0890 1.2739 1.7124 3.3548 4.7531 6.4830
J=9 1.0890 1.2742 1.7186 3.5088 5.2334 7.6844

J=12 1.0890 1.2743 1.7210 3.6207 5.6690 9.0512
J=15 1.0890 1.2743 1.7215 3.6716 5.9187 10.0388
J=17 1.0890 1.2743 1.7216 3.6901 6.0274 10.5462
J=18 1.0890 1.2743 1.7216 3.6967 6.0701 10.7645
J=∞ 1.0890 1.2743 1.7216 3.7277 6.3825 13.5412

would be best to consider just the first two terms in (42) and
solve for ρ as function of h. We then get

ρ� =
1
4

(
7 − 3

√
1 + 8h

)
, (43)

which provides a simple heuristic to determine the level of
utilization for which aggregation should take place for a
given header size to improve the system performance, i.e.,
we aggregate if the system utilization ρ > ρ�. For example,
if the normalized header size h is 0.1, we need a minimum
utilization ρ� = 0.744 to warrant any level of aggregation.
If h = 0.05, then ρ� is increased to 0.863. We note that for
h > 5

9 (about 56%), ρ� becomes negative and we always
need to aggregate. This size of header is certainly unrealistic
in practice.

The question of optimal J is much harder to be addressed
analytically. We can either resort to (pure) numerical com-
putations or use a heuristic approach supported by numerical
experiments. We discuss the latter in this section.

Let’s concentrate on the typical behavior of average packet
delay vs. J . If the optimum level of aggregation J� is 1
(i.e., no aggregation), then the average delay is monotonically
increasing and reaches its asymptotic value for J = ∞.
However, if J� > 1, then the average packet delay is a
decreasing (increasing) function of J for J ≤ J� (J > J�).
We observe numerically that around J�, the the average packet
delay E[T ] is rather insensitive to J . This observation is
useful since the “penalty" for not choosing the exact optimum
aggregation level is minimal, as long as this level is in the
neighborhood of the optimal value.

The optimum level of aggregation depends on two param-
eters, namely the system utilization ρ (excluding the header)
and the packet service time variability c2. Here, we propose
the following heuristics. For a given (normalized) header size
h, we do not aggregate (i.e., J� = 1) if the system utilization
(excluding the header) is less than ρ�. Otherwise, the optimum
aggregation level is given by the following heuristic:

J� =

⎧⎪⎪⎨
⎪⎪⎩

max
(

1,

⌊
1

3(1 − ρ)

⌋)
, ρ ≥ ρ�, 0 ≤ c2 ≤ 1,

max
(

1,

⌊
1 + c2

6(1 − ρ)

⌋)
, ρ ≥ ρ�, c2 ≥ 1,

(44)

where �·� denotes the largest integer not exceeding the argu-
ment.

In the next section, we discuss numerical results obtained
from the analytical model.

TABLE II
HEADER SIZE FOR THE SAME AVERAGE TOTAL PACKET DELAY IN CASES

OF MAXIMUM AGGREGATION (J = ∞) AND NO AGGREGATION.

c2=0.5 c2=1 c2=2 c2=5 c2=10
ρ=0.3 0.4241 0.4250 0.4267 0.4299 0.4325
ρ=0.5 0.2451 0.2457 0.2465 0.2478 0.2486
ρ=0.7 0.1240 0.1241 0.1243 0.1246 0.1248
ρ=0.9 0.0357 0.0357 0.0357 0.0357 0.0357

ρ=0.99 0.0034 0.0034 0.0034 0.0034 0.0034

V. NUMERICAL RESULTS

In this section, we use the constant header size for numerical
results, which is most common in packet communications
systems. We normalize the average packet size m1 to 1. For
a different distribution of the packet size, we use different
squared coefficient of variation, c2 (variance divided by mean
squared). For c2 = 0.5, Erlang-2 distribution is used. For
c2 ≥ 1, we use hyperexponential distribution with parameters
p1, p2(= 1 − p1), μ1, and μ2 and assume p1

μ1
= p2

μ2
(i.e., the

hyperexponential distribution has “balanced mean"), leaving
us with two degrees of freedom for the determination of the
parameters. As long as c2 ≥ 1, we can use arbitrary mean
and variance (satisfying the obvious moment inequalities). In
the case of J = 1, i.e., no packet aggregation, we have a
classical M/G/1 queue, where the service time is the sum of
the packet and the header transmission times.

Table I provides the average number of packets aggregated
in a frame, J̄ , for various ρ (= λm1) and the maximum frame
size J using h1 = 0.1 and exponential packet size. Table
I shows that J̄ approaches quickly to the limiting case as J
increases even if the system utilization ρ is high. It also shows
that J̄ is rather insensitive to the maximum frame size J for
moderate utilization (ρ = 0.5 or 0.7). On the other hand, for
high utilization (ρ ≥ 0.9), J̄ is rather large, implying that a
considerable level of packet aggregation takes place. For light
load (ρ ≤ 0.5), the reverse is true.

Table II provides the constant header size yielding the
same average packet end-to-end delay for J = ∞ (maximum
aggregation) and J = 1 (no aggregation). For ρ = 0.9 and
c2 = 1, packet aggregation will reduce the average total packet
delay when the constant header size is larger than 0.0357, i.e.,
about 3.5% of the (average) packet length. In the very heavy
load region of ρ = 0.99, a header size of 0.34% of a packet
size is sufficient to justify packet aggregation. It is remarkable
that the header size giving the same average packet delay for
the two extreme cases is not sensitive to the variability of a
packet transmission time. We note that the simple three-term
heavy traffic approximation expressing h as function of ρ from
(42) is accurate for all entries in Table II. It is observed that the
simple approximation ρ� in (43) obtained from the first two
terms in (42) is also accurate for moderate to high utilization
(ρ ≥ 0.5) but the accuracy diminishes for lighter load. We have
checked the variance of the total delay for the given header
size in Table II. It is interesting to note that the variances are
almost the same.

The goal of the next experiment is to investigate the degree
of aggregation for J = ∞. Here, h1 = 0.1 is assumed. Table
III shows the dependency of J̄ , the average number of packets
in a frame, for different ρ and c2. When ρ = 0.9, J̄ is 46%
higher for c2 = 10 comparing to c2 = 1, i.e., J̄ increases as



8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 2, FEBRUARY 2010

TABLE III
AVERAGE FRAME SIZE FOR DIFFERENT ρ AND c2 (J = ∞).

c2=0.5 c2=1 c2=2 c2=3 c2=5 c2=10
ρ=0.3 1.073 1.089 1.110 1.126 1.147 1.176
ρ=0.5 1.232 1.274 1.326 1.361 1.408 1.467
ρ=0.7 1.620 1.722 1.839 1.919 2.024 2.156
ρ=0.9 3.368 3.728 4.166 4.476 4.896 5.451

ρ=0.99 21.708 24.324 30.284 33.345 38.333 45.462

c2 does for a higher system load. In other words, for a high
system load, packet aggregation takes place more often as
packet size variability increases (unless limited by maximum
frame size J). However, for light traffic, J̄ is very close to
unity for any c2, which indicates packet aggregation takes
place rarely.

Table IV, V, and VI present the average packet end-to-end
delay for different aggregation levels (finite and infinite J),
system utilizations (ρ), and squared coefficients of variation
for packet service time (c2). Here, a (normalized) header
size h of 0.05 is assumed. The numbers in bold represent
the minimum average packet delay achievable for each case,
which provides the exact optimum level of aggregation. These
tables also show the accuracy for the upper and lower bounds
in (38) and (39).

Table IV shows that J = 1 (i.e., no aggregation) is optimum
for light and moderate utilizations. However, the penalty for
aggregation is rather minimal even though it may not be
needed. The reverse may not be true. Table V shows that
packet aggregation improves the system performance in the
heavy load. For ρ = 0.97, the system is even unstable with
no aggregation (J = 1), resulting in an infinite delay. But
it becomes stable as soon as packet aggregation takes place.
These results are consistent with ρ� = 0.863 in (43), i.e., we
aggregate if ρ > 0.863 for the header size of h = 0.05.

It is interesting to note that the optimum aggregation levels
obtained from the exact numerical results in Table V closely
match to the heuristic result, J�, in (44). For c2 = 2, ρ = 0.9
and 0.95 even gives the same results with the heuristic. For
c2 = 0.5, ρ = 0.9, the exact optimum J is 4 and J� = 3.
However, the penalty for choosing a slightly less or greater
aggregation level is minimal even if the difference between
the heuristic and the optimum results tends to increase as the
system utilization and c2 become higher. For c2 = 4, ρ =
0.95, the exact optimum J is 12 resulting in average packet
delay of 57.56. If we opt for J = 16 as given by the heuristic
result J�, the average delay increases very slightly to 57.93
(not shown in the table). For c2 = 0.5, ρ = 0.97, the optimum
J is 12 and J� = 11. For very high load, we have experienced
severe numerical stability issues in getting exact result when
J is high, especially as c2 increases.

Table VI shows that the highest difference between the
heuristic ρ� and the exact numerical results occurs when
system utilizations are close to but less than ρ�. The heuristic
result, ρ� = 0.863 in (43) suggests no aggregation since
ρ < ρ� for all ρ in Table VI. However, the penalty for no
aggregation is not significant as observed in Table VI even
if the penalty increases as the squared coefficient of packet
service time increases.

TABLE IV
AVERAGE TOTAL DELAY FOR DIFFERENT VALUES OF ρ AND c2 .

ρ=0.3 ρ=0.5 ρ=0.7
c2 0.5 1 2 0.5 1 2 0.5 1 2

J=1 1.40 1.51 1.73 1.89 2.16 2.68 3.17 3.83 5.15
2 1.45 1.57 1.80 2.00 2.28 2.81 3.26 3.90 5.15
3 1.47 1.59 1.83 2.07 2.36 2.91 3.40 4.05 5.31
4 1.47 1.60 1.85 2.10 2.40 2.98 3.50 4.17 5.47
5 1.47 1.60 1.86 2.11 2.42 3.03 3.56 4.27 5.60
6 1.47 1.60 1.86 2.11 2.44 3.06 3.61 4.34 5.71
7 1.47 1.60 1.87 2.12 2.45 3.08 3.64 4.39 5.80

∞ 1.47 1.60 1.87 2.12 2.45 3.12 3.69 4.51 6.16
U 1.50 1.63 1.90 2.15 2.48 3.15 3.72 4.54 6.19
L 1.46 1.59 1.85 2.08 2.42 3.08 3.60 4.43 6.07

* h1 = 0.05 assumed. U(L) represents the upper (lower) bound for infinite J .

VI. CONCLUSION

In this paper, we presented a mathematical model for packet
aggregation systems. We showed that in the heavy load,
system performance can be significantly improved if packet
aggregation takes place. For a given header size, we found
the minimum system utilization where aggregation improves
the system performance. We also provided a simple heuristic
result for the optimum level of aggregation. Our results were
in close agreement with the exact numerical results derived
from our mathematical model for such systems.
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TABLE V
AVERAGE TOTAL DELAY FOR DIFFERENT VALUES OF ρ AND c2 .

ρ=0.9 ρ=0.95 ρ=0.97
c2 0.5 1 2 4 0.5 1 2 4 0.5 1 2 4

J=1 14.16 18.25 26.43 42.80 305.53 400.53 590.53 970.53 ∞ ∞ ∞ ∞
2 10.51 13.42 19.23 30.85 29.62 38.66 56.76 92.95 132.37 174.54 258.89 427.56
3 10.03 12.70 18.01 28.61 23.35 30.30 44.21 72.02 55.85 73.37 108.43 178.55
4 10.00 12.57 17.68 27.86 21.47 27.71 40.19 65.12 43.94 57.51 84.64 138.91
5 10.09 12.63 17.65 27.61 20.71 26.60 38.36 61.84 39.34 51.29 75.19 122.98
6 10.22 12.76 17.74 27.57 20.40 26.08 37.42 60.04 37.04 48.11 70.26 114.53
7 10.37 12.92 17.88 27.65 20.28 25.85 36.91 58.96 35.74 46.27 67.32 109.39
8 10.51 13.08 18.05 27.78 20.29 25.78 36.66 58.31 34.97 45.14 65.44 106.00
9 10.64 13.24 18.23 27.95 20.36 25.80 36.55 57.92 34.50 44.41 64.18 103.65

10 10.76 13.39 18.41 28.14 20.46 25.87 36.54 57.69 34.22 43.95 63.32 101.96
11 10.87 13.53 18.59 28.35 20.58 25.98 36.59 57.58 34.07 43.66 62.72 100.72
12 10.96 13.66 18.77 28.56 20.72 26.12 36.69 57.56 34.01 43.49 62.31 99.80

J = ∞ 11.67 14.98 21.61 34.87 23.66 30.73 44.85 73.11 39.66 51.72 75.85 124.10
U 11.70 15.01 21.64 34.91 23.69 30.76 44.88 73.14 39.69 51.75 75.88 124.14
L 11.33 14.64 21.28 34.54 22.95 30.01 44.14 72.40 38.45 50.51 74.64 122.89

* h1 = 0.05 assumed. U(L) represents the upper (lower) bound for infinite J .

TABLE VI
AVERAGE TOTAL DELAY FOR DIFFERENT VALUES OF ρ AND c2 .

ρ=0.74 ρ=0.78 ρ=0.82 ρ=0.86
c2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

J=1 3.71 4.54 6.20 4.50 5.58 7.73 5.78 7.25 10.20 8.15 10.37 14.80
2 3.75 4.53 6.07 4.42 5.41 7.36 5.42 6.72 9.30 7.10 8.92 12.56
3 3.89 4.68 6.22 4.56 5.54 7.46 5.52 6.79 9.29 7.07 8.81 12.26
4 4.01 4.82 6.39 4.69 5.70 7.63 5.67 6.94 9.43 7.19 8.91 12.30
5 4.10 4.94 6.54 4.81 5.84 7.80 5.80 7.10 9.60 7.34 9.06 12.43
6 4.16 5.03 6.67 4.89 5.95 7.96 5.91 7.24 9.78 7.47 9.22 12.60
7 4.20 5.10 6.79 4.96 6.05 8.10 6.01 7.37 9.94 7.60 9.37 12.78

J = ∞ 4.30 5.31 7.34 5.13 6.41 8.96 6.34 7.99 11.30 8.24 10.49 14.98
U 4.33 5.35 7.37 5.17 6.44 8.99 6.37 8.02 11.33 8.27 10.52 15.01
L 4.19 5.21 7.24 5.00 6.28 8.83 6.17 7.82 11.13 8.01 10.26 14.75

* h1 = 0.05 assumed. U(L) represents the upper (lower) bound for infinite J .
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