A Generalized Random Mobility Model for
Wireless Ad Hoc Networks and its Analysis:
One-Dimensional Case

Denizhan N. Alparslan and Khosrow Sohraby
School of Computing and Engineering
University of Missouri-Kansas City
5100 Rockhill Road
Kansas City, MO 64110-2499 USA
{dna5a0,sohrabyk@umkc.edu

Abstract— In wireless ad hoc networks, the ability to analyt- assumptions. Traditionally, a mobility model governs the
ically characterize the spatial distribution of terminals plays a changes in the moving direction and speed of terminals ac-
key role in understanding fundamental network QoS measures cording to a deterministic approach or a random procesieln t

such as throughput per source to destination pair, probability of f t path of t inal b tricted t
successful transmission, connectivity, etc. Consequently, iitity ormer case, movement path of terminals can be restricted 1o

models that are general enough to capture the major character Predetermined paths. For ad hoc environments, such mobilit
istics of a realistic movement profile, and yet are simple enough models are impractical since wireless ad hoc networks are
to mathematically formulate its long-run behavior, are highly created “on the fly”, and collecting data to generate thepath
desirable. for all situations can be very complicated. Thus, a mobility

In this paper, we propose a generalized random mobility model -
capable of capturing several mobility scenarios and give a math- model that dictates the movement of hosts due to a random

ematical framework for its exact analysis over one-dimensional Process, that is;andom mobility model, is more appropriate
mobility terrains. The model provides the flexibility to capture for the performance evaluation of these networks. Surveys f
hotspots where mobiles accumulate with higher probability and poth models are presented in [1], [2].

spend more time. The selection process of hotspots is random In general, random mobility models formulate the move-

and correlations between the consecutive hotspot decisions can f bile h b . d | h
be successfully modeled. Furthermore, the times spent at the MeNt pattern of mobile hosts by consecutive random lengt

destinations can be dependent on the location of destination point, intervals called movement epochs. During each epoch, eobil
the speed of movement can be a function of distance that is being terminal moves at a constant speed, and at a constant directi
traveled, and the acceleration characteristics of vehicles can be for 3 random amount of time. The speed and direction choice
incorporated into the model. Our solution framework formulates for each epoch may or may not be correlated with their

the model as a semi-Markov process using a special discretization | in th . h d bili h i
technique. We provided long-run location and speed distributions V&/U€s In the previous epochs, and mobility charactesisy

by closed-form expressions for one-dimensional regions (e.g., aother terminals. For instance, according to the random walk

highway). mobility model [2], each terminals movement is uncorralate
Index Terms— Mobility Modeling, Long-Run Analysis, semi- With others movement, and the speed and direction choices
Markov Processes, Ad Hoc Networks for each epoch are also uncorrelated with their previous
choices. The random waypoint mobility model [3] includes
|. INTRODUCTION pauses at the end of movement epochs in the random walk

IRELESS ad hoc networks are comprised of wirelessodel to make it more applicable to different scenarios.

mobile nodes that can dynamically form a networMore formally, according to the random waypoint mobility
in a self-organizing manner without the need for a prenodel, a mobile node determines a destination point that is
existing fixed infrastructure. Nodes in an ad hoc network catistributeduniformly within the physical terrain and moves in
move according to many different mobility profiles. Therefo the direction of that destination at a constant speed. Taed
mobility models that dictate the movement behavior of i& selected uniformly fromuvmin, Umaez] Wherevy,,, > 0, and
mobile terminal play a key role in analyzing the impact oit is independent from the destination and starting points of
dynamically changing topology on the performance of theglee movement epoch, and also the distance that is going to be
networks, which can be done through analytical or simufatidraveled. After reaching the destination, mobile pausesafo
based studies. In this paper, we consider a generalizedmandandom amount of time, which has tkame distribution for all
mobility model that is flexible enough to capture differentlestination points, and the same movement process is egpeat
mobility scenarios, and provide its long-run location apded by selecting a new destination and speed dependently
distributions by closed form expressions for one-dimemaiio from the same pair of the previous movement epoch.
mobility terrains. A shortcoming of the random mobility models is that the

In what follows, we categorize the existing mobility modelsnovement profiles that are generated with respect to them may

for wireless ad hoc networks, and briefly summarize themot be consistent with the major characteristics of a réalis



scenario. For instance, as it also mentioned in [1], random be general and can be conditionally dependent on the
walk and random waypoint mobility like models may generate  starting point of the movement epoch.
unrealistic movement patterns such as “sudden stops” an@d The random speed for each epoch is drawn from a general
“sharp turns”. In [4], [5], [6], authors propose models that distribution function that can be conditionally dependent
can capture correlation between the speed and the direction on the starting and destination locations of the movement
choices of consecutive movement epochs and therefore these epoch, and the current location of mobile terminal if
models may generate a pattern which is smoother with less necessary.
sharp turns. Furthermore, as it is also criticized in [7], [8 e The pause time at each destination is selected randomly
selecting speed independently from the distance that isggoi from a distribution that is dependent on the location of
to be traveled may end up in unrealistic mobility profiles vene the destination point.
mobiles travel long distances with low speeds. The fact that we make the mobility modeling with respect to
The common limitation of the random mobility modelghese generalized approaches has number of advantaggs. Fir
described above is that one can not model a scenario whigthce destinations are selected from a general distributio
incorporates predefined pathways that mobiles must follodv amovement scenario in which terminals select some specific
specific destinations on those paths where mobiles acctenulacations, for examplehotspots, as destination with higher
with higher probability. The models presented in [9], [16} f probability, can be easily captured. Furthermore, someilmob
cuses on this problem by taking a more deterministic approaiey scenarios may require a Markovian dependency between
that can capture obstacles and predefined pathways betwggndestination points of consecutive movement epochs. For
them on the physical terrain. instance, the probability of selecting a hotspot as detstina
In the analytical studies for the performance analysis ehn be different from different starting points. This case
wireless ad hoc networks, closed form expressions for tban be naturally incorporated into our model by employing
spatial node distribution are very desirable to understang- a distribution function for destinations that is conditdly
run behavior of the network spatial behavior. For instatioe, dependent on the starting points.
analysis that are presented in [11], [12], [13] to estim&& t Second, the generic approach for determining speed pro-
capacity per source to destination pair of these networks &ides a unique opportunity to select speed according to the
significantly dependent on the spatial distribution of ni@bi distance that is going to be traveled, and also a method
nodes. Additionally, for some scenarios in which terminal® model variable speed during movement epochs. Clearly,
can be highly mobile on a wide region, the spatial distriuti if the speed of the terminal can vary during moving, then
of offered traffic may not be ignored in determining th@&ur model can even be used to capture diffeiaateleration
capacity of asynchronous MAC layer protocols. Observe thetiaracteristics of vehicles. Finally, by employing a patirse
the analysis of this case requires an accurate knowleddeof distribution for each epoch that is a function of destinatio
spatial distribution of nodes. The analytical work present coordinate, we reached to the flexibility of pausing differe
in [14] also considers the station locations for the MAGmes at at different locations.
layer throughput analysis but the terminals are assumeeé to bFor some sophisticated mobility models, performing its
uniformly distributed in the region, which may not be validong-run analysis first over one-dimensional regions wél b
for different mobility scenarios. Moreover, this knowledgan useful in gaining some insight into the methodology that has
be also used in evaluating the connectivity properties of & followed for the analysis of higher dimensions. Thushis t
hoc networks, which have been extensively studied in [15japer, we concentrate our analysis to one-dimensionainegi
[16]. In addition to these, the distribution of link distanc and develop an analytical framework that provide closethfor
between mobile terminals, which is an important charastieri expressions for the long-run location and speed distodbsti
of wireless ad hoc networks [17], [18], can be obtained froM/e also believe that the analytical results presented can
the spatial distribution of terminals. provide a methodology to analytically formulate the funda-
Hence in this paper we propose a generalized randenental properties of wireless ad hoc networks for number
mobility model that is general enough to capture the majgophisticated mobility scenarios (e.g., capacity, cotivieg).
characteristics of a realistic movement profile, and yetns s
ple enough to mathematically formulate its long-run bebaviA. Related work
with analytical expressions. The mobility pattern of a tierah There have been a number of works attempting to obtain
that moves according to this generalized model is composggshtial node distribution for the ad hoc environments where
consecutive movement epochs in a closed region and ittégminals move according to random walk or random waypoint
uncorrelated with the movement behavior of other terminalsobility models. The simulation studies that are presented
During each movement epoch, mobile terminal at first mov@s [19] and [20] for the random waypoint mobility model
on the finite line segment joining the starting and destomsti showed that the long-run spatial distribution of mobiles is
points of the epoch at a random speed and then it pausesdependent from their initial placement in the simulation
the destination for a random amount of time. The generalifyea, and also observed that resulting distribution is more
of our model is actually originating from the approach that waccumulated at the center of the region. In [21], the moveémen
took to determine the destination point, movement speedi, ggattern of the same mobility model is characterized as a
pause time at the destination, and can be explained as ®llogtochastic process, and analytical expressions for thg-lon
e The distribution of the destination points are assumed tan location distribution are derived. In [22], authors not



only concentrate on the analytical expressions for long-ru® -~ ¢
spatial distribution of random waypoint model, but alsolb@t @ « =+ <+ =+ + el an s o+ e+ e
limiting distribution of speed and procedures for the aateirr Fig. 1.
simulation of this mobility model as well. The simulation
study presented in [7] also concentrated in the same model,

and examined average node speed at the steady-state. 'Im’e&)) as the pause time spent at destination paipt With

pointed out that the closer,,;,, t0 zero, the more time it takes ggnect to these notations, and the mobility modeling amgro

for the simulation of the mobility model to reach stability. e nroposed in this paper, we define the following parameters
[8], this work is extended by analytical studies and authors

provided steady-state average speed distribution forrakeve /XalXs-
random mobility models in which the speed for a movement ¢ )
epoch is chosen independently from the destination of thafIX..x.: the conditional pdf ofi” given X, and Xy,

epoch. As a byproduct of their analytical formulation, auth | Xar the conditional pdf off}, given Xg.

also proposed a simulation methodology that eliminates thtence, the mobility formulation that is performed accogio
variations in the average nodal speed of these kinds of ihobilthe generalized random mobility model can be characterized
models. In [23], authors provide an analytical framework fdy the triplet< fx, x,, fv|x. x. f1,1xs >-

the steady-state speed and residual distance analysisdafma ~ Before we proceed further, we note thaf and X, actually
waypoint like mobility models, and similar to [8], they alsarepresent the destination points of any two consecutiveemov
proposed methodology for the efficient simulation of thos@ent epochs, and the conditional ptif,| x, that identifies the
mobility models. In [24], a statistical analysis is done tdlistribution of X; given X at the embedded points in time
identify the conditions in which the spatial node distribnt where a new epoch starts, is referred sixchastic density

of random waypoint mobility model, and a variant of twokernel by Feller [25]. We will identify the restrictions on the
dimensional random walk motion can be approximated wighoice of fx, x_ required for the long-run characterization as
uniform distribution. we proceed further in the analysis.

While each of the analytical and simulation studies men- Now as we have noted in Section I, each terminals move-
tioned above provide a comprehensive approach for the lomgent is assumed to be independent from others. Thus, it is
run characteristics of the random walk and waypoint likenough to model a single terminals behavior for the long-
mobility models, none attempts to make major extensions own analysis. For this purpose, 12(¢) denote the state of
these models so that they describe a more realistic pattgfre mobile terminal at time. According to the specifications
It is clear that, mobility models that are defined according ©f the mobility model we proposed, the stochastic process
deterministic parameters such as predetermined pathwalys &X(¢),t > 0} must be defined on a state space that has
obstacles, are more realistic than the random mobility nsodeseparate dimensions for current location, destinatiord an
However, as the deterministic dimension of the mobility iod speed, and more importantly, the ranges of these dimensions
expands the possibility of deriving long-run propertiestttd must be continuous. However, in the analytical framework we
model in terms of closed from expressions decreases. The megnstruct, we use a discretization method and describe the
significant differences between the mobility model propobsenobility behavior of nodes with a stochastic process that is
in this paper and other random or deterministic models ae tefined on a multidimensiondiscrete state space. In addition,
degrees of generality in mobility modeling and simplicity f instead of observing the state of a terminal continuousty, w
the long-run analysis. will observe it at embedded timeg,, for £ € N, such that

The next section provides the mobility formulation accordlo = 0, Tr4+1 > Tk, Vk € Z*. Also, these embedded times
ing to our mobility model, basic definitions, and our apptoacare dependent on the evolution of the system that dictates th
for long-run analysis. In the third section the analytiegults movement behavior of the mobile node. The following list
are presented with example scenarios. Section IV concludegmally defines the assumptions that the analytical fraarew

Discretization ofR = [0, a] according to cells of sizé\z = .

the conditional probability density function
(pdf) of X, given X,

the paper. is built on:
Aq: TheregionR is discretisized inta: cells of the same size,
II. MOBILITY FORMULATION that are denoted by; = [(i-1)Az,iaz], i = 0...n —

1, as shown in Fig. 1, wherdz = & for n > 1. A
In this section, we provide the formal description of the  mobile terminal is assumed to occupy one of ths at
generalized random m0b|||ty model introduced in Sectioor| f any moment in time, and movement epochs start from a
one-dimensional mOblllty terrains, and construct an my cell and ends up at a different destination cell.
framework for its long-run analysis. L&t = [0,a] represent 4,: The random variabld’, which denotes the speed of a
the region on which mobile terminals operate, and denote mobile during a movement epoch, is approximated by

Xs € R and X, € R as the random variables corresponding  the discrete random variablé* taking values in the state
to the starting and destination points of a movement epoch, space

respectively. Furthermore, let the random variabiledefined Sy = {21, 20, ..., 2m} 1)
on the state SPaC®min,vmaz], Where vy, > 0, denote e
the speed of a terminal while moving frodi; to X4. In wherez,. = r Av, r = 1,...,m, for some discretization

addition, denote the random variable, with state space parameterAv > 0, andm > 1 such thatAv < v,;, and



Vmaz < MAv.

TABLE |

TRANSITION PROBABILITIES OF THE PROCES$Sy, k € N}

Asz: Observation timel}, point to the time of occurrence of
one of the following events: Even Transition Probability | Conditior™
E;: The terminal, which is in pause mode, selects [aE: (€i;0) = (ci, ¢4, 20, 1) 1,1'm Vpli | 47 ]
new destination that is different from the current cell E> | (ci,¢j,zr, 1) — (cit1,¢5,2r, 1) 1 j>it1
occupied, and jumps into moving state at the currept ¢i, ¢ zr, 1) = (ciz1,¢5, 2, 1) 1 J<i—1
P Jamp 9 By [ (circyrr ) = (,0) I =1

cell, o —
. . . . . . X i,7j=0,....n—1,r=1...m

The terminal, which is traveling in the direction of

the target cell, moves out from the current cell and

enters the neighbor cell that lies on the path betwegtherefore, the stochastic proceisy,, 7),; k € N} with finite-
the current and destination cells, state spaceS satisfies the conditions for beingarkov Re-
The terminal reaches to the destination cell angawal Process, and the procesgX (t),t > 0} can be called as
enters the pause mode at that location. the semi-Markov process (SMP) associated withSy, Ty; k €

Notice that the higher the degree of discretization for ti¥} [26]. Moreover, since the general distributions for des-
closed regionR is selected, the better approximation catination, speed, and pause time parameters are assumed to
be done to the exact location of the terminals. Also, as tle time-homogeneous in the model proposed, for each pair
discretization parametekv — 0 (i.e., m — oc), the discrete (s,s’) € S x S, the distribution of state holding time in state
approximating random variablé* becomes indistinguishable s before moving to state’, given that the next state to be
from the original random variabl&. Therefore, a§n, m} —  visited iss’, would be independent df. Hence, based on the
oo, we converge to model with continuous state space. For tiesults provided in [26] and [27] for the theory of semi-Mavk
rest of this paper, we will use the terdnscretisized mobility processes, the transitions of the proc&gg) from states to
formulation to refer to the version of the generalized randorstates’ at the time instantg}, can be governed by ttdéscrete-
mobility modeling approach that is constructed accordimg time Markov chain (DTMC){Sy,k € N} with finite-state
the assumptionsl,, A5, and As. spaceS and transition probability matriP = [ps s ], where

Now, letSy, k € N, denote the state of the mobile terminap, ;» = Pr{S; 1 = 5’| Sy = s}, suchthal_ , s p,s = 1 for
at timeT}. Given the assumptiond;, A, and As, the finite- all s € S. The procesqSy, k € N} is also calledembedded
state space db;, will be defined as follows: DTMC of SMP.

Consequently, if the DTMC{S;,k € N} satisfies the
S = ergodicity conditions, and if the mean state holding times are

finite, then the SMP{X(¢),t > 0} can be characterized at
the long-run. Clearly, if long-run proportion of times spen
) . . L at the states of the discrete state sp&care known, then
Wh_ereci |s_the current cell occupl_edj |s_the_3 destlnatlor_1 ce_II, by aggregating the states that has the same current cell
zr IS the discretisized speed, ands the indicator of being in component, that is¢;, the long-run location distribution for

the mode of moving towards the target cell, or pausing at the, giscretisized region can be easily obtained. After, this

destination. _ by observing the limiting behavior of that discrete resut a
Hence, the stochastic procefX(?),t > 0} that represents ;" angy, — oo, the continuous result can be derived.
the state of the mobile terminal at timecan be redefined on The same approach can be also used to obtain long-run speed
the finite-state spacé by the following expression: distribution but in that case, the states with the same speed
component, that isz,., must be aggregated. In the following
section, we will at first generate the irreducible stocltasti
where the timedly, Ts, ... are the successive times of tranmatrix P exp"ciﬂy_ Then, we will app|y this approach to

sitions of X(t), and Sp,S1,S,... represent the successivejerive long-run location and speed distributions of carins
states occupied b¥X(¢). case.

Observe that by constructing a state space that has a separat
dimension fo'r the destination ceI'I of moving terminals, the 1. ANALYTICAL RESULTS FORDISCRETISIZED AND
future evolution of the stochastic proce$$;,k € N} CONTINUOUS MOBILITY FORMULATIONS
becomes dependent only on the current state of the mobile . . i )
terminal, not on its history at previous observation points N this section, we apply our solution framework with
Furthermore, assume that current state occupieX by is s. 1€ ultimate aim of finding closed form expressions for the
Once the state’ € S has been selected with some probabilit}Pn9-run location and speed distributions over the givee-on
as the next state to be visited, the distribution of sojoimet dimensional mobility terrain? = [0,a].
in states can be determined from the components of state Now to describe the transition probabilities of the embedde
Consequently, the following relationship will be valid fai DPTMC {Sk,k € N}, we first define:

k € N, and all possible setgs, s’} C S.

FEs:

FEs:

{(Ciacjvaaq) | Z,]:O,,n—l,l#j,
r=1,...,m,qg=1}

U {(627Q)|Z:037n717q:0} (2)

X(t) = Sy, if T, <t< Tk+1

Pr{Xd S Cj|Xs S Ci}

Tl =

Pr{Sit1 =5 Thr1 — Tp < t|Sy = s, Tk, .. (G+1) Az

r{Sit1 =5, Thy1 — T < t|Sk = s, Tk, _ / dza f,ix. (@l Xs € 1),
J

= Pr{sk+1 = S/,Tk+1 — Tk S t ‘ Sk = S}

'7SOaTO} (3)

Az
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‘,,,ml/uzn -

where the matricest(”, A", andAY), i=0,....n—1, are
1

Bk Coni ! (m(n —1) +1) x (m(n — 1) 4+ 1), and defined as
ETRZIE TR0 . €, . I(i—1)
e [ A0 = |15 A - .
\ B I7n(n71’—2) eg”
e — - S Agl) =| B ... BY, ‘ ‘ BY, ... BY, @)
T Y1103 m”um Vi =,
- G _

fmwl/z\n:x [ ‘1/2 1.3
4’1 Camant )———= where upper left block 0f4§’) is a zero matrix of sizeni x

, - m i, andI;, denote theh x h identity matrix for some positive
zlngdsl. :SQtate transition diagram for the proc€&;, k € N}, wheren = 4 integer .. Moreover, thel x m row vectorB(.’), for i,j =

0,...,n—1, wherei # j, and column vectorseff), eg) of

respective sizesi(i+1) x 1 andm(n—i) x 1, are respectively
for 4,5 = 0,...,n — 1. Next, sinceV is allowed to be defined by

dependent onX, and X,;, we define the probability mass @
function of V* given X, € ¢; and X, € ¢;, that is, for a B’ =
movement epoch that had startedcatind destined te;, by

T .
J (1) _ T
Vm|i,j7 e[) —[0,...,0,€m,1] )
177'1‘

(2) T
€y = [em—laoa"'ao} (8)
= Pr{V* = 2|X, € ¢;, X € ¢;} ’

/T»AU wherev,,; ; = [V1)ij, - - - » Vmli,j]» @ndey, is thel x h vector
(

Vrli,j

fvix. x.(v|Xs € ¢i, Xa € ¢j) dv,(4)  of ones. The remaining blocks of the matricés’, A'”, and
Ag) are zero matrices of sizes that can be easily derived from
forr=1,...,m. the dimensions of the other blocks.

Based on the eventd;, E,, and Ej that cause state Before we can proceed with the long-run analysis of the
changes, and;; and v,;; and given above, the possiblesmp {X(t),t > 0}, we must first find the steady-state
transitions and the corresponding transition probaeditf the distribution of the embedded DTMES;, k¥ € N} with the
embedded DTMC can be grouped as in Table I. transition probability matrix? given in (6). Clearly, this

It should be noted from Table | that whefty occurs, the distribution exists if and only if a steady-state distribat
mobile that is located at; jumps to moving mode in the exists for X, !, and {S;,k € N} satisfies the ergodicity
current cell occupied. We enforced these transitions fer t@onditions. Hence, we focus on these issues now.
purpose of uniquely identifying moving and pausing terrtina  Under the “mild” regularity conditions defined by Feller
In Fig. 2 we depicted the state transition diagram of the ggec [25] on fx,|x.(za|zs), there exists a steady-state distribution
{Sk,k € N} for a simple case where n=4 and m=2. for X, with pdf fx_(z4), which can be uniquely determined

Next, we formulate the transition probability matri® from the solution of the following integral equation
of the process{Si,k € N} in full generality. Clearly the

structure of the matrixP? depends on the order imposed on fx.(zq) :/ Fxoix., (@alws) fx, (vs)dzs (9)
the states inS. The ordering that we have decided on is 0

S = {S50,81,...,8,-1}, where eachS; hasm(n — 1) + 1 We note that the integral equation given above, which is
states according to the following order: used to obtain the steady-state behavior of the discnete
continuous-state Markov proce$X}, has an analogy to the
linear systemypT = ¢, with o], = 1 whereT = [rj].

r—1)Av

Si = {(Ci,CQ,Zl, 1)7 ey (Ci,Co,Zm, 1), ey

(ciy cim1, 21, 1), (€3 €im1, 2m, 1), (€0, 0), Basically, it is theanalog version of T = . Clearly if
(circiv1,21,1), - (Cis Cig1s Zms 1), the distribution of X; is assumed to be independent from
(cisen—1,21,1), ..., (i, en—1, 2m, 1)} (5) X, then the solution of the integral equation (9) would be

simple. However, for other cases, deriviffg,(z4) can be

Based on this ordering, the transition probability matix . . : . .
9 b y a very tedious task. We will return back this point later in

has the following discrete-time level-dependent quadhbi

Subsection 1lI-B that concentrates on the mobility scersari
and-death process (QBD) form [28]: . :
P (QBD) [28] where the choice o, is dependent orX,.
A A0 Hence, if the pdffy, (x4) can be uniquely determined from
Aél) Agl) Aél) the solution of (9), then the probability of starting a mowsn
P = ' ' (6) 1Since X4 is the X of the next mobility epochXs and X, can be used

A(n—z) A(n—2) A(n—Q) interchangeably at the long-run.
2 (1n71) (()nil) 2The stochastic procedsX;} changes its state at embedded time instants
As Al that represent the starting time of a new movement epoch.



epoch from celk; at the steady-state, which is denoteddyy pausing (i.e.g = 0) terminals. Therefore, sinc& = [0, a

1=0,...,n—1, will be given by is discretisized by cells of sizAz, the expected time that is
(i+1) Az going to be spent in a cell; by moving terminals is simply
i = dx T 10
© /iA:c d fx,(d) (10) 5 Az 14
Next, we examine the ergodicity ¢fS;, k € N}. -
Lemma 1. If the pdf fx_(z4) can be uniquely determinedwhere s = (ci,¢j, 2, 1), 4,5 = 0,...,n — 1, andr =
from the integral equation (9), and if,;; > 0, i,j = 1,...,m, such thati # j. To formulate the mean time that is

0,...,n—1andr = 1,...,m, then the embedded DTMC Spent in a state of the form= (c;,0), i = 0,...,n — 1, we

{Si, k € N} defined on state spac®= {S;,S1,...,S,_1}, also define the following notation:

with transition probability matrix” defined as in (6), will be - _ _

irreducible and aperiodic. ts=Ell] = EE”'XS € el
Proof: Please refer to Appendix. ] = / Pr{T, > t,| X, € ¢;}dt, (15)

Thus, when the conditions ofrgodicity for the DTMC 0

{Sk,k € N} are satisfied, the steady-state distribution of il\otice that the following equation

which we denote byr, for states € S;, i =0...n—1, can -

be uniquely determined by solving the matrix equation Z Tsls < 00 (16)

seS
7P =, with |r|; =1 (11) . o ) o ) o
is satisfied only if the minimum speed a mobile can attain is

wherenw = [mg,71,...,m—_1], @and; is a (row) vector of nonzero, and mean pause time spent at destinations are finite

sizem(n—1)+1 whose elements are;, Vs € S;, according Hence, if the mobility characterization parametgfis and

to the order given by (S)r; can be also called the solutionfr, |, are selected appropriately to satisfy these conditions,

vector for leveli, i =0,...,n — 1, as in [29]. then the conditions given in [26] for the long-run character
Next, we examine the solution of the linear system given byation of SMPs are satisfied, arfé,, which corresponds to

(11). To the best of our knowledge, if there are no additionkdng-run proportion of time that the process is in statds

assumptions made on the properties of the matixhe most simply

efficient direct computational procedure to find the stesidye p— s Vs € S 17)

distribution of finite-state level-dependent QBDs is prasd s S mwerts

in [28]. By using that procedure, one can obtaimumerically s'es

for some moderate values ofandm. However, as we made Finally, after aggregating the states that belong to theesam

clear before, we are aimed at finding the limiting behaviqgye| (j.e.,s;, i = 0,...,n — 1) of the level-dependent QBD

of the long-run distributions for the discretisized case Frocess{S;,k € N}, we obtained the following result for

{n,m} — oco. Clearly this can only be done after deriving thghe |ong-run location distribution of the discretisizedeen

location and speed distributions in closed from expressioRjimensional regions.

Therefore, we focused on an alternative direct approach anqd emma 3: For the mobile terminal, whose mobility pattern

derived the following result. is formulated according to the discretisized version of the
Lemma 2: If the conditions given in Lemma 1 for thefxﬂxsafwxsxd,fT x, > mobility characterization, lep;,

ergodicity of the DTMC{Sy,k € N} are satisfied, then ; — " " 5 ~'1, denote the long-run proportion of time that

the solution vectorr; for level i, i = 0,...,n — 1, of the terminal stays in celt;. If the conditions given in Lemma 1

level-dependent QBD process given in (6), with the matricgg)ds, and if the equation (16) is satisfied, then
A AY and A defined as in (7), is gi b
0 A’ 1 , is given by

st

™, = [71'7;707...,TI'i’z',...,ﬂz'_’n_ﬂ/N (12) bi = n—1 R (18)
> 0. (1 =1,,)E[Ty,] + Dy, Az
where +=0
n—1 o where
D Pe Tl Vmjeg,  If <1 ey
{=1i L ) i—1 n— m 1
i = @ii (1 - Ti|1’,)a if j=1i , (13) ki = Z Z Pe Tjle Z 2 Vrle,j
. . j=0 4=t r=1
> Pe Tl Vmjeg, if j > ne1 i m
=0 1
YD e > = vijes (19)
n—1 J 5]
andN =} 75 |mil;. j=i+1 =0 =1
Proof: Please refer to Appendix. ] q
To characterize the SMRX(t),t > 0} at the long-run, an 1
it remains to formulate the expected state holding times. Fo D, = Z k, (20)
this purpose, let, be the expected holding time in state =0

S. Recall that in Section Il, we decomposed the state space
S into two groups that represent moving (i.e.= 1), and Proof: Please refer to Appendix. [ ]



Next, we turn our attention to the limiting behavior ofcomponent, and take the limit of the resulting expression
the discrete result derived in Lemma 3, and summarize s {Axz,Av} — 0. Thus, for the mobile terminal whose
fundamental result for the long-run location distribution movement behavior is characterized according to the triple

Theorem 1: For the mobile terminal, whose mobility pat-< fx,x,, fv|x, x. fr,;x, >, et the continuous random
tern is characterized by fx,x., fv|x.,x.: fr,1x, >, let variable V(t) defined on the state spad@} U {v|vmin <
[x(z), z € [0,al], denote the pdf of its location distribution aty < v,,,,} denote the speed of a mobile terminal at time
the long-run. If the pdffx, (z4) can be uniquely determinedNote that, since the mobile can be in pausing mode at some

from the integral equation (9), an®[T,|X, = z,] < pointin time,V(¢) can also attain the zero value. Next, 16t
o0, Vg € [0,a], and fyx, x, > 0, YU € [Umin,Umaz], represent the random variable having the long-run distidbu
andVzg, x4 € [0,a], then of V(t), and denote its pdf byf;. Finally, referring back
D)E[T,| X, = ] + kx (x to assumptiond,, denote the discrete approximation to the
fx(z) = Fx. @ EIT,| Lt kx(o) (21) continuous random variable by V*. Clearly, the state space

E[T,0 < Xs <a]+ D of V* must be

SV* = {O}USV* = {Z(],Zl,,227...72m} (30)

:/dxd/dxs gX(xsyxd)+/dxd/dxs 9x (7, z4) (22) wherez, = rAv, r=0,1,...,m.
0 T 0

Now, let ¢,. denote the long-run proportion of time that a
where mobile possesses speed r =0, 1, ..., m. After aggregating
the components of the vectors ;, ¢, = 0,...,n—1, defined
9x (s, 2a) = fx,(Ts) fxa1x, (Tal2s) Bl 1 Xo=z:, Xa=2a], (23)  py (13) according to the states & that have the same speed
and component, and using the mean times that are going to be
spent in those states we get

where

Umaxz 1
X Xamed = [ (el ), (29

n—1 . .
min ( S i (1— Ti‘i)E[Tpi] )/N, if r=0
and N i=0
D= [ drkx(z) (25) - n=1  i=ln-
0 wr_ (Z (Z Z ZTJM Vrle,j
1=0 =0 ¢=1
Proof: Please refer to Appendix. o [ ] " = 2’: o T L l/rw,]))/N clse
It should be noted that if the distribution &fis independent j=it+16=0
from X, and X, then the pdff, can be employed instead of (31)
fvix..x, for mobility characterization, anéy (22), andD Where N = Yiso @ (1= 7)E[T,,] + Dy, A, Taking the
(25) simplifies to limit of this discrete result a§Axz, Av} — 0, we reached to
L e a the following theorem, which we state without proof.
kx(z) = E[—]/ da:d/ ds fx,(xs) fxax, (Talzs) Theorem 2: For the mobile terminal, whose mobility pat-
Y o z tern |s characterized t_Jg( f)c_dlxsva\XS7depr|Xd >, if the
+ E[—]/ dxd/ dzs fx.,(2s) fx,x. (2 2)(26) conditions that are given in Theorem 1 for the parameters
‘1/ 0 ’ i fxaix., ElTp|Xs = x4], and fyx, x, are satisfied, then
D = E[;]D @7) BIT,[0SX.2d66) i 5 —
h f (~) E[T,|0<X;<a]+D’
where v (0) = . ) )
L za S i 9 € [Umin: Vi)
D =/ dﬂfd/ dus(za — xs) fx, (@s) fx o x, (Talzs) pEsTes (32)
and _
+ [ dna [ oo, =) (@) P (ol 28) E[7] — D A )

ET,|0< X, <a]+D
Notice thatD is actually the average distance between the two
points X, and X, drawn at random according to the pdfg,, Where

andfx, x,, respectively. In addition, iX; is also independent L o . a . ) a4
from X, thenfx, can be used instead ¢, x_, andkx (22) v(2,0) = , e 59y (s, 24,0)  (34)
further simplifies to a z
x a + / dl’d/ dxsg\?(xsaxd71~))7
T 0

) =2 Bl [ dea [ o predtxten @)
z Wi

Having defined the long-run location distribution, we now 1
concentrate on the long-run speed distribution. Clearly -H'V(l'&l'da{)):sz(xs)fXd\Xs(xd|173)5fV\Xs,Xd(ﬁ|x37xd)
order to achieve this, we need to aggregate the steady-state (35)
probabilities of the states 6 that has the same speed



It should be noted that, if the distributions &F; andT}, are in (40) (i.e., E[T,] = 0 for first case, andE[;] = L for the
independent fromX,, and if distribution ofV is also inde- other case), then the results will match the pdfs presemted i
pendent ofX; and X4, then the mobility characterization can[21].
be done by the triplek fx,, fv, fr, >, and the formulation  Example 2: In the random waypoint mobility model we
of fy(v) and E[V] for this simplified mobility formulation analyzed by Example ¥/ is assumed to be independent from
will match to the results that are derived in [8] for a class dfX; — X4/, that is, the distance traveled during a movement
mobility models where speed is selected independently fragpoch. However, in most of the realistic scenaridsends to
the distance that is going to be traveled. increase a$X, — X,4| does. Thus, for this example, we make

Finally, from the results presented by Theorems 1 and 2, itas improvement on the random waypoint model by proposing
clear that the dependency &f; on X, makes the fundamentala fv|x, x, that provides the opportunity to determirié
difference. Therefore, in the following two subsectionsg wproportional to the random variabl® = |X, — X,| with
will at fist concentrate on some example scenarios that uségh probability.
fx, (i.e. distribution of X, is independent fromXj) for Now, considered a truncated normal distribution [30] Yor
mobility characterization. Then, we will proceed to moraccording to the pdf given by
complicated scenarios by employing the stochastic densit

kernel fx, x, for mobility formulation. VX, Xq (V[T Ta)
= z : (42)
A. Variants of mobility characterizations done by fx, o (P (Lmaz—tlZeTa)y g Umin—(TeTa) ))

o [oa

Example 1: The random waypoint model [3] representsor v,,;,, < v < v,.. Wheres > 0, and
the simplest nontrivial case of our generalized modeling -
approach, and can be characterized according to the triplet (., z4) = vpi, + M |25 — 24 (43)
< fxq» fv, f1,1x, >, where the parameters are defined by a
7 and® are the probability density and cumulative distribution

fx,(xq) = { o o< Tq < a ’ (36) functions for the normal distribution [30].
' 0, otherwise Hence, we reached to the following results for this improved
I S << .
fV (U) _ Vmam —Vmin’ if ’Umzn-f VU = Umax (37) case:
, otherwise L piT
_ a [ p]“‘kX(x) 44
and fx(@) = S—/———, (44)
E[T,] + D
B h(tp), ift, >0 S a/3
fryx.(tplra) = { 0, otherwise (38) EV] = m (45)
where h(t,) is the pdf of the random variabl&,, which is \yhere
independent from the location of the destination. Denotirgy 9 o a Vmas |
average time spent at the destinationsBi{,] (i.e., E[T,] = kx(z) = — /dxd /d:vs/ dv=fyvix.,x,(0]zs, zq) (46)
Jo” tp h(ty) dtp), observing o> Jo Je Jomin Y
1 I (Lmas ) where fy|x, x, is defined by (42).
Bl=]=— tmin’ (39) Clearly, because of the complicatednesggfx, x,, kx ()
V' (Umas — Vmin) can only be evaluated numerically for a givere [0,a], and

and using Theorems 1 and 2, we obtained the following fatso D. However, for the extreme case— 0, we have
the pdf of the long-run location distribution and the expect

value of speed at the long-run: Foix. xa(vles 2a) = 0(v — (s, 24)) (47)
1E[T,] + zm(aﬂ)EH] From a different point of view, for the limiting case where
fx(z) = «—2 o Vo (40) o — 0, V will be linearly dependent thX, — X 4| with respect
E[j}’] +5Ely] to the following transformation:
- a/3
EV] = —/—————— 41 — Vi
M= e “ V= b+ L) ey

We note that if the speed choice for each movement ep
is deterministic with a parametes, then E[{;] must be
substituted with%. In addition, the analytical work presented y (z) = g(ln((vmaz(a,z)ﬂvmm) /@) (@(Vmans —Vmin)—Vmasa)
in [21], considers two different limited variations of thee
dimensional result we derived for location distributiors.
first, they concentrate on the case whé?f,] = 0. Next,
they extend their analysis, and provide the location distion ;4 A will be given by
for the scenario where pause time is nonzero, and speed is
deterministic (i.e., constant speed). For these two cifse®, b a(v

make the appropriate changes in the formationf gf given (Vmaz — Vmin)3

Oﬁ?us, thekx (x) given by (46) simplifies to

+ In((z(Vvmaz —Vmin ) +Vmin@)/a) ((Vmin —Vmaz) —AVmin)

+ avmin IN(Vmin)+aVmaa ln(vmw)> / (a(vmw —vmm)z) ,(49)

2 2 Vmaw
thaz — Vmin — 2VminUmaz (724 ))

(50)




Now, after substituting theD given above by (50) to the fx,(xq) uniquely from integral equation (9), it must satisfy

equation for E[V] (45), a comparison of thaF[V] with the conditions of ergodicity at fist. Therefore,or 3 can not
the one defined by (41) in Example 1 reveals that siné equal ta) or 1, which is already required in the formulation
D (50) is less thar(a/3)"{naz/tnin) (e D) in Example of fx,x,.

1) for all ey > vUmin > 0, the E[V] obtained for the ~ Hence, by applying the integral equation defined in (9), we
uniformly distributedV’ is always smaller than its counterpar€an derive thefx, (xq) for this example as follows:

for the V' that is defined by (48). This is consistent with the l1—a [c

. . . c fo fXS (xs)dxs

intuitive expectations because whé&h = vy + ((Vmes — 5 ra d it 0

Vmin)/a) &5 — 24|, the possibility of moving long distances ¢ () — e fccfxs (@s)dzs, if zq € [0,¢) (53)
with low speeds becomes zero. On the other hand, for the™” - ) fx.(xs)d,

original random waypoint mobility model, sincé is not o2 [ fx (@) dug, i @ € [c,a)

directly proportional taD, lower speeds might be selected for =~ =
longer distances and as a result, expected value of thertong-Vich implies

speed decreases. It should be also noted thafy[&s] — 0 ki, if x4 €[0,¢)
and vmae — Umin, E[V] converges tan,;, for both choices fx.(za) = { ko, if 24 € [c,a)
of V, which is also expected because it corresponds to

scenario where mobile travels with fixed speagl, at all Now, let 74 denote the steady state distribution of the

times without pausing at any destination. . o .
The other extreme case of interest for this example PTMC {Xa,, - € N} with transition probabilityA. Observe

_ B a i i

o — oo, which simplifies to the scenario whe¥eis uniformly :ﬁ:tgéb;a[%w’ m;tggd;?cit‘xd“ k € N} determines

distributed in [vmin, Umaz]. Therefore, we conclude that, if 9 d 5 ' 9

fvix..x, is defined according to (42), the lower bound for /C _ /“ _ o

E[lf/] is given by (41) in Example 1, and the upper bound for ofXS (wa)dzq (a+p8)’ CfXS (@a)dwq (a+5) (55)

it is given by (45) with theD defined as in (50). Obviously, which concludes

the difference between these bounds decreasg$g$ — oo, 51

Or Umin — Umaz- sz (xd) — { (azﬁ) 571

(a+p) (a—c)’

B. Variants of mobility characterizations done by fx, x, Next, we focus on a more generic form for this scenario.
Example 3: As a basic example of a scheme where districonsider a partitioning of the regio®R = [0,a] into M

bution of X, is dependent orX,, consider a scenario wheresubregionsk; = [a;,a;11),% = 1,..., M such thata; ;1 > a;

the closed regiorR = [0, a] is partitioned into two subregionsWith a; = 0, ax+1 = a, and let the stochastic density kernel

Ry = [0,¢) and Ry = [c,a) such that0 < ¢ < a. In this be defined by

(54)

t]%er some constants; andk, € R.

if 24 €10,¢)

if 24 € [c,a) (56)

setting, when the starting poink, € R;, the destination A if o€ R andzy € R

point X, for that epoch will be distributed uniformly over aj+1—a;’ 0 TE v '

either R, or R, with respective probabilities and (1 — a) Xl (walrs)= hj=1,....M 7
where0 < « < 1. Similarly, if Xy € Ry , then X, will be 0, otherwise

distributed uniformly ov_er eitheR?; or Ry with probabilities \ynere A; ; denote the probability of selecting, uniformly
f and (1 — /), respectively wheré) < § < 1. Hence, the i supregionR; given thatX, is located in subregiot;.

stochastic density kernglx,|x, will be formulated by Similar to the discussions for the solution of the integral
1o if 2, € [0,¢) andzy € [0, ¢) equation given by (53), since the functigfix, x, (z4|zs) is
c independent fromx, in all of the different subregions for
azer It @5 €[0,¢) andzy € [c,a) 25, fx.(zq) will be equal to a constant value in all of the
Ixax.(Talzs)= %, if x5 € [c,a) andzy € [0,¢) (B1) subregionsR;, i = 1,...,M, as in (54). Therefore, if the
1-8 DTMC {X,,_,k € N} with the M x M transition probability
e I EI[C’ a) andz, € [, a) matrix ;El - [A; ;] }is irreducible and aperiodic, then the
0, otherwise stationary pdf of the destination points is given by
where0 < <1 and0 < g < 1. A f g e Ry i=1,...,M
Now, let X, denote theX, (i.e. destination point) of the  fx.(va) = { T (58)
kth movement epoch. Then, based on the definitiofif x ’
given above (51), we can construct the DTMX,,k € Wheremq = [m4,,...,7a,] is the solution of the linear
N1 with states that represent the subregidtis Ry, and a SystemmaA =74, |7al, = 1.
transition probability matrix4 given by As an application of this scenario, we focused on the one-
R l—a o Fhmensmnal version of the random dlrgctlon model desdribe
A= R; [ 3 1-3 ] (52) in [31]. In this model, nodes are restricted to move between

the destinations that are located at theneighborhood of
Obviously, the DTMC{X,,,k € N} governs the decisions boundaries. After reaching the destination, mobile pafises
of X, at consecutive movement epochs, and in order to solaespecified amount of time, and travels to a new destination,
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’—\ «d}» ’7 ’—\ From a practical point of view, this partitioning can be
0 b Sy (a="b) a considered as a highway scenario whetg and H; represent
Bz H, Ez H Ezs exit areas and highway segments, respectively. The exisare
can be also considered as hotspots where mobile accumulate
Fig. 3. Highway scenario for Example 4. with higher probability. Hence, for the purpose of using
which is also located at the neighborhood of boundaries.our < fx,x. fvix.,x. fr,|x, > mobility characterization
Similar to the random waypoint mobility model, for eact@pproach to capture a highway scenario that is composed of
movement epochy is selected independently fropiy, — X,|. movement epochs between exit ares or hotspots, suppose that
Now, in order to capture this model with tife, |, defined if X, € Ex;, then X, will be uniformly distributed either
by (57) on a one-dimensional topology, we have toMdet= 3, over Ex;, for j # i, or over H;, j = 1,2, with respective
and divide R into subregionsR; = [0,¢), Ry = [e,a — ¢), probabilitiesa and 1/2 — o where0 < « < 1/2. Notice
and R = [a — ¢, a). Since, the stochastic matri# must be that, asa — 1/2, the possibility of a movement epoch to
irreducible and aperiodic, we define it by start from a highway segment, or to pause at somewhere on
a highway segment becomes negligible. Furthermore, assume

N I T (59) that if X. € H, then X, will be uniformly distributed
o R2 1 2 (2) over eitherEz; or Ez;,1 with equal probabilities. Thus, the
3 _ ¢ E stochastic density kerngly, x, will be given by
where0 < e < 1. Obviously, sincec cannot be equal t@, N )
mobile terminals may select destination points locate&at D 'f fEs.G Ex; andzy € Ex;y,
However, asc — 0, the possibility of this case diminishes, i#J
and we reach to desired scenario. ((;g)b;/‘g, if 2, € Ex; andzy € H;
Hence, after obtaining thgy, (xa) from (58) for a nonzero fx,|x. (zalzs)=9 |,"""" (61)
¢, applying Theorem 1, and finally, by taking the limit of the o 'f Ts € H, andzq € Ex;,
result ase — 0, we derived the following for the long-run J=di+l
location distribution of this mobility model: 0, otherwise
BIT,)/20) + B(/VIs/e g o e [0, ¢) where0 < a < 1/2
E[T,)+D . . i -
BV ] Based on this definition of x| x_, the transition probability
fx(z)= BIL+D’ if z€le,a—e¢) (60) matrix A corresponding the DTMG X4, , k € N} is
E[Tp]/(QELTTZ[ig/](%I)/E7 if 2 €fa—c¢,a) Exq 0 % —a « % —a «
€ [ 0o 1 o0 o0
where D = E[1/V](a — ¢), and E[T},] is the expected pause A= Ez; |a t1—-a 0 j—a « (62)
time spent at the destinations. Notice that;(xz) converges Hy 0 0 z 0 2
to 1 as B[T,] — 0 ande — 0. Exs [ 3-a a 3-a 0

Before proceeding to a more sophisticated scenario, Wserve thatd satisfies the conditions of ergodicity if and

would like to emphasize an important issue about the usa&ﬂy if o  1/2, which is also required by the definition of
of the stochastic density kerngl,|x (za|zs) for mobility fx

characterization. Now observe thit, x, provides a mecha-
nism to accumulate the consecutive choices of destinatimnsf
subregions insidé?. The transitions between the subregionsxd|
can be also controlled by the transition probability matfix %7 if g€ Fa;, i=1,3
we defined above. Howevefx, x, can not be employed in _ 1 ;
controlling the direction of thedr‘nobile terminal at consear %+ (P4) = =a7p ?f Za € Bz (63)
movement epochs. For example, on the regln= [0, a), S ajeegyy,  if wa € Hj, j=1,2
our formulation can not be used to capture a case wh
mobile selects the destinations towards the pejntith higher
probability for each movement epoch. In order to have a pro
bilistic mechanism to control the direction, we must extémel
mobility model with an underlying modulating Markov chain BT, X, = { C, if X,e€BEr,1=1,2,3 (64)
that controls direction by making transitions at the emieedd P 0, otherwise
times at which a new movement epoch starts. This is doable {here ¢ is a constant> 0. In addition, we assume that
the discretisized version of the mobility formulation. Hever,
it will never end up with tractable closed form expressiaks | V = Upin + MD (65)
the ones we presented by Lemmas 2 and 3.

Example 4: Consider the partitioning of the regioR = whereD = | X, — X|.
[0,a] shown in Fig. 3 where mobile terminals are expected Based to the mobility characterization parameters we de-
to move between destinations located in the subregions scribed, we generatelly and D defined in Theorem 1 by
1 =1,2,3, without pausing at the subregioiif, and Hs. the dividing the ranges of the double integration operation

alXse
Hence, by applying the result given by equation (58) for the
x. of the form (57), we get

#8rthermore, since we want the terminals to pause at onty exi
areas, we decided on the following function for the expected
use times at the destinations
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confidently to the subregions defined above. After this, we
derived the limiting expressions of them as— 1/2, and
finally we obtained the pdfx for that limiting case (i.e., the
case where destinations are only selected at the exit areas)
Since V' is dependent onD, the final form of fx is not
simple enough to fully present here. However, plots gffor
different cases, and a graphical comparison of it wfith can

be found in Fig. 4. From Fig. 4, first observe thyat and fx,

are substantially different. This is expected becauseingur
moving mobile terminal passes through highway segments and v x x x N
although they don’t pause at highways, the proportion oétim — "

spent at highways locations increases as they move betW%E,.”s.
exit areas. Furthermore, as the expected value of pauss #éitne

the exit areas (i.&”) increases, the value ¢f; at the highway
segments decreases because they spend more time on thee@@ith, a mobile terminal increases its speed fioro V
areas at the long-run. In addition, this example also shbass tuniformly with an acceleration that hamnstant magnitude,

a performance analysis study that makes assumptions ah@aliels at speed’ for a distance, and when it gets close
the location distribution can not ignore the times spent @B destination, it decreases its speed frbimto 0 uniformly
the highways that connect hotspots, or the subregions wh@fiégh an deceleration that is alsmnstant in magnitude. Let

(XX gV By X)

Mobile slows down before reaching target sp&ed

mobile terminals accumulate with higher probability. bace and ¢q.. denote the magnitudes of acceleration and
_ _ deceleration, respectively. Before we proceed furtherhia t
C. Modeling Acceleration analysis, we assume that the distance between the point

The obvious unrealistic characteristic of the movemeand the location at which mobile starts slowing down must be
behavior generated by our generalized approach of mobilgyactly equal to the distance required to decrease speed fro
modeling is that at the beginning of a movement epoch th&tto 0 with a deceleration that is equal #.. in magnitude
had started ak', and destined td,, the instantaneous speed(i.e., a symmetric environment). In addition, in the rest of
that is, speed at any instant of time, of a mobile termin#is subsection, since terminals accelerate to and froradspe
jumps from 0 to V' abruptly implying an acceleration thatV, which is drawn randomly fromum,in, Umaz], the random
is oo in magnitude. In addition, when mobile reaches to theariable V' will be also called as “target speed”. Hence, let
destination, it decreases froba to 0 with a deceleration that f4(Xs, X4, V. Gace, Pdec, X) denote the speed of the mobile
is alsooo in magnitude. However, in realistic situations, théerminal at the point X for the movement epoch betweéén
magnitudes of acceleration and deceleration are finite,aanénd X, with target speed’, constant acceleratiof,.., and
mobile terminal cannot immediately increase its instagtais constant deceleratiopy... Notice that acceleration becom@s
speed from) to V' at the pointX,, and also immediately drop when the terminal reaches target spé&&dHowever, for some
it from V to 0 at the pointX,. Clearly other random walk or exceptional cases, the absolute distance betwéeand X,
random waypoint like mobility models that we have mentionechn be so small that the mobile might be forced to decelerate
in Section | also possesses this unrealistic characteristi  before reaching to target spe&d In order to illustrate these

Now in order to remove this unrealistic movement behaviaharacteristics, in Fig. 5 and Fig. 6, we focused on a single
from our mobility formulation, assume that for each movetnemovement epoch between the poifs and X,; where X; >
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X, and plotted the instantaneous speed of a terminal versimaracteristics with the long-run location distributian,is
its location (i.e.X). Observe that when destinatidfy; is too enough to replacéﬂ[%|Xs = x,, Xq = z4] (24), which has
close toX, mobile terminal cannot reach instantaneous spetite same value for alk between the pointX; and X4, with
V', which is selected as the speed of the movement interval

betweenX, and X,, and has to decelerate after an acceleratioh|[—|Xs = x5, X4 = 24, X = x|

period. More 2forma||y, for the case whet¥; > X, let vaaz

X1 = X+ 55—, andX, = Xg— 57— Hence, ifX; < X5,  _ dv e (70

then " f¢($37-rd;v7¢acc;¢dec)x) fV‘XS7Xd( ‘ > d)7 ( )
V290 (X-X2),  XE(X.Xi] o _

Fo(Xe,Xa,Vibace,baee, X )=V, Xe(X1,X:]  (66) andkx (22) must be redefined by

a

VVZ=2¢dec (X—X2), XE(X2,X4]

On the other hand, if{; > X, (i.e., mobile must slow down kX(x):/dxd dxs gx (zs, T, ) +/d$d dzs gx (x5, Ta, )
before reaching speed), then 0 z 0 71)

x

2baee (X—X1), X€(Xo,Xmidl where
(X, Xa,V,bace,Pdec, X )= 67
Fo(XaXa,Vibacerbace. X) { (LX), Xe(Xuu g 07

9x (s, 24, )= fx, (Ts) fx o x, (Ta|Ts) B[ | Xo=0s, Xa=24, X=2]

where X p,iq = X, + 24=X=te), (72)
For the other case wher¥, < X,, let X; = X, — % _ Next, notice thst when acc.eIerat|on-?eceler?t|on formula
and Xy — X, + V> Hence, ifX; > Xo, then tion comes into the picture, since mobile accelerates (dece
2face erates) to (from) target spedd, V' (¢), that is, the speed of
Ve (X=X),  XE(X1.X.] the mobile at time, must be defined on the sgd} U {v[0 <
Fo (KXo s XasVibaoesbaee, X =4V, Xe(Xa,xy]  (68) U< Umac). Therefore, the distribution of (i.e., the random
V200 (X—X2), X€(Xu,Xo] variable having the long-run distribution df(¢)) can only
) ) ) be determined by considering all possible target spééds
However, if X; < X, (i.e., exceptional case), then [Vmin, Umaz] fOr @ given movement epoch betweéd, and

oV b o = V260ee (Ko X), X€(Xmia X.] (69) Xa, and checking whether it is possible to have spé(edt_a
s Xd,ViQace, Pdec; V2baee (X—Xa), XE(Xi Xomid] point X on t_he path betweeX, and Xd. As a result,_ using
the formulation ofw; ; (13), we obtained the following pdf
where X0 = Xs — W for V, which was first defined in Theorem 2 for the infinite
We note that if¢,.. = co and ¢4.. = 0o, thenX; = X, acceleration-deceleration case,

and X, = X, for all of the cases we defined above, and EIT, |0<X, <a]8() o

consequentlyfy (X, Xa, V, Gace, ddec; X) = V at all points BIT,0<X.<a]+D’ if =0

betweenX, and Xj. fy(0) = 14 da ky (@:3) . , (73)
It is now apparent from these formulations that in order BT 0<X.<a1 D’ if 0 € (0, Umaa]

to capture acceleration-deceleration characteristiegbicles, . . . o

mobility formulation must keep the information about théNherekV(ai’”) IS de'fmed by (35), but the integrand of it, (i.e.,

starting point (i.e.,X,) of each movement epoch that is des?? (Zs: Za, ?) (35)), is reformulated by

tined to the pointX,. Since we employ the stochastic density g9 (

Egrsnz:rﬁ;;ﬁisbér;nm:;:!?i/egharactenzatlon, this requirement Fx @) Fap, (2al22) (20, 20, B, Gucer bucer ) (74)
Now in order to formulate the long-run location and speeghere

distributions according to the acceleration and decetsrat

parameters, we first need to extend the results given for thé (Zs, Za, U, Pace, Pdec, )

discretisized mobility formulation. Returning back to Lera Ymae 1

2, observe from the formulation of; ; (13) (i.e., the prob- = [dvfy|x, x,(VTs, Td) =L (o=, (ce 24,0, bace.daee,z)}s (7D)

ability of being in cellc; and moving towards celt; at the v

steady-state) that the steady-state probability of being fr

a movement epoch that had started,and destined to; with

a target speed of, = rAv is simply o, 75, vy, ;/N. Hence, - D

the acceleration and deceleration characteristics carasigy e ElV]= 2 (76)

. . . S E[T,|0 < Xy <a]+ D

incorporated into the formulation qf; (18) given in Lemma X

3 by substituting thez, appearing inside the formulation ofwhere D is simply given by (28), and is again defined by

k; (19) with the discretisized version of speed that can H{&5), but its integrand is thex formulated above by (71).

achieved at celt; for a movement epoch that had startedat At this point, it should be noted that since the function

and destined te;. Thus, using the limiting approach that wasf(Xs, Xq, V. @ace, Pdec, X) iS determined according to the

applied to derive the result presented in Theorem 1, it can bemparison of the variable¥; and X5, which are defined in

easily proven that, in order to capture acceleration-@éeagbn terms of X, X4, V, dace, aNddyee, it is very complicated to

xs,xd,v,x)

VUmin

which implies
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Fig. 7. fx for Example 5. ¢ = 1000 M, vin, = 1 M/S, vmae = 20 /s,
E[T,]) = 15sec)

find a closed form expressions fér (71) even for the sim-
plest nontrivial case (i.e., random waypoint mobility mbde

Therefore, in the following example scenarios, which are

presented to demonstrate the effects of different acdalara
deceleration parameters on the long-run location digighu
and expected value of speed at the long-run, we evaluated
and alsoD using numerical integration methods.

Example 5: In this example, we focus on the original
random waypoint mobility model (i.e., uniformly selected
destination and speed, location independent pause tinré dis

bution). Fig. 7 depicts severdk that are obtained for different
acceleration-deceleration parameters.

First, observe that a,.. and¢,.. increases, the plot ofx
gets close to the plot of the case whexg, = co and¢ge. =
oo, Which is consistent with the intuitive expectations. Seto
for reasonable values of acceleration and deceleratiam,

probability of the mobile terminal to be located at the cent@mi, = 1 m/s, vmae = 20m/s,C = 10sec

of the region is lower than the case of infinite acceleratiod a
deceleration.

13
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O = 0.5 m/sz, Pgec = 1 m/s2
- @ =15m/s% @ _=3m/s
ace — A decis e
77(oac072.5mls,(puec— m/s’

Guee =@ mis?, Poe = MIS

0.4

0.2

0
0 100 200 300 400 500

X

600 700 800 900 1000

Fig. 8. fx for Example 6. ¢ = 1000m, V' is uniform in [vmin, Vmaz],
Umin = 1 M/S, Umaz = 20m/s, C' = 10 sec)
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H?g. 9. fx for Example 6. & = 1000 m, fVSXSqu is given by (42)g = 5,

difference between finite and infinite acceleration-deaedien

Example 6: For this example, we assume that the districases becomes noticeable as acceleration-deceleratiam-pa

bution of X, is independent fromX, and is given by the
following sinusoidal function

3m(1 + sin(3rxq/a))
a(2 + 3n)

which has maximums at the poinig6 and 5a/6, and mini-
mum ata/2. Furthermore, we assume that

E[TP‘XS =5 = aC fx,(v) (78)

whereC > 0, which impliesE[T,|0 < X, < a] =~ 1.31C.
Observe that, these mobility characterization parametars

Ix.(xa) = (77)

eters decreases, especially at the center of the region.
For comparison purposes, we also concentrated on the case
where fy|x_ x, is defined by the truncated exponential dis-
tribution defined in Example 2 by (42). Remember that, since
u(xs, zq) is linearly dependent tor, — x5, the possibility of
selectingV” directly proportional td X, — X,| increases as
decreases. In Fig. 9, we set= 5 and plottedfx for different
acceleration-deceleration parameters. Notice that wiheis
proportional to the distance that is going to be traveled
(i.e., | Xs — X4|), the long-run location distribution becomes
less sensitive to the acceleration-deceleration charstits

be used model a scenario where mobiles select the destisatiof vehicles. In addition, long-run proportion of times spah

around the points/6 and5a/6 with higher probability, and
pause for a longer amount of time around those locations.

In Fig. 8, we assumed” to be uniformly distributed in
[Umin, Umaz), @nd plottedfx for different acceleration and
deceleration parameters. Clearly the first observatiohwiea

the locations connecting hotspots that are accumulateddro
the pointsa/6 and 5a/6 decreases whefr is proportional

to | Xs; — Xg4|. These are expected because in this scenario,
mobility model do not assign a spe&dfor a movement epoch
that is impossible to achieve, for example, high speed for a

have made in Example 5 for the effects of the acceleratioshort distance, or a speed that is unrealistically low farglo
deceleration on the random waypoint model is also valid falistance. We also note that, the experiments that are pgegken

this scenario. However, it is clear that for this scenarf® t

by Fig. 9, can be also done for less valuescofHowever,
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TABLE II : ~ . . -
- (i.e., E[V]), then the acceleration-deceleration characteristics

E[V E 7 i i ili
[V] FOR ExAMPLE of the mobile terminals must be captured by the mobility

E[V] (m/s) model.
(Vinin=1M/S, viyaz =20 MIS)

bace bdec E[T] c—o || c=10 | 6=5 | o=1

(m/s’) | (m/s?) | (sec) IV. CONCLUSIONS
05 1 0 5.03 5.31 571 | 6.39 ) _
15 3 0 5.82 6.15 6.62 | 7.41 For ad hoc wireless networks, we proposed a generalized
2.5 5 0 6.02 6.37 6.84 | 7.65 random mobility model capable of capturing several scesari
g‘; Of (5) i‘zg i';g ;;; g'gg including hotspots and displacement dependent speedbdistr
15 3 5 535 563 602 T 667 tions. The anglyncal frlamewc')(k we presented for tr_\e |oung-r
25 5 5 550 581 6.20 6.86 analysis of this generic mobility model over one-dimenalon
00 00 5 5.79 6.09 648 | 7.15 mobility terrains provided closed form expressions for the
0.5 1 15 4.10 4.26 455 | 497 long-run location and speed distributions. We also praviae
%g 2 12 2'3}1 j'gg g'gg g'gg extension on our results so that they can be used to exangne th
o = 15 193 515 | 542 | 588 effects of acceleration characteristics of vehicles onlding-

run location and speed distributions. Our example scemario
verify the usefulness of our analytical framework for the-mo

since we are evaluating they and D numerically, the cost bility analysis and yield significant insights into how rieét
of the numerical integration procedures increases as thé p.mobility scenarios can be brought into the capacity anslysi

fvix..x, converges to the form given by (47) (i.e., the unitof wire_less ad hoc networks. Futu.re wo_rk will cqnsider the

impulse function at the point(z., z4)). extension of these results to two-dimensional regions.
Example 7: As a final example, we concentrated on the

measureE[V], that is, expected speed at the long-run, which APPENDIX

is formulated by (76) for the finite acceleration-decelerat Proof of Lemma. 1
parameters. In order to also analyze the case that caphees t

method of determining” according to the distance that is Proof: Since the integral equation (9) IS uniquely solv-
E?.Qle, a movement epoch starts from the eglvith a nonzero

going to be traveled, we considered the mobility paramete .
of Example 2. probability o, at the steady-state. Hence, we can concentrate

Recall that, thefy|x, x, defined by (42) in Example 2 on the reachable stat'es from the state; of Fhe fmmj)
converges to the e ddistribution [onins Vmae] ST — Now from the ordering of the states given in partitiSn(5),
co. Hence, we evaluate[V] for four dizf:flér;r&wvalues of and the transition probabilities specified in Table 1, it dzn
o, and for infinite and various finite acceleration-decelerat observed that .'t is possible to jump from a pause s_(tat@) to
parameters. Results are shown in Table Il all of the moving states of the forrr;, ¢;, 2, 1) with some

As it can be seen in Table II, the valuesigi’] for the finite nonzero probability. Consequently, if the states of thenfor

acceleration-deceleration parameters are always lesstiba (c;,0) is reachable from other pausing stafes, 0), where

counterparts that are evaluated by assuming acceleratidn %7é J ther;the Markov ch(;a_un bfc??ets wret_:i_uuble. -It;hll;s'llidsn’isasy
deceleration to be infinite. Obviously, the difference tesw 0 prove because according fo the fransition probabiliiies

them increases as the parameters. and ¢q.. decreases. the Markov chain, the process jumps to the sfajec;, 2, 1)

On the other hand, the gap between tg/] obtained for O™ State(c;, 0) with probability ;=v,; ; and enters the
the same infinite and finite pairs of,.. and ¢,.. decreases, Staté(c;;0) with probability 1 in|i — j| transitions.

as E[T,] increases, which is expected because the proportiortience, since the Markov chain is irreducible, all states are
of time V possesses zero speed also increases. In addit@riodic with the same period, or else all states are aperiod
for given values ofpcc, daee, and E[T}], a comparison of Without loss of genera_llty, assume we want to find out whether
the value of E[V] with its counterpart for the infinites,.., € Stateé(co,c1,21,1) is aperiodic or not. Due to the rules
bae. Case reveals out that the difference between them 9k transitions given in Table |, if the mobile seleats as
more or less the same for all values @fconsidered. From destination after reaching, then the process may go back to
this observation, we conclude thatiif,(X,, X,, V) denotes (co,¢1,21,1) in di = 4 transitions. However, after pausing at
the total distance traveled while accelerating and deathgy ¢1 Sincen is assumed to be greater thanit may also choose
during a movement epoch betwedh and X, with a target €2 @S destination c_eII W|th some nonzero probablllty_. Suppose
speed of/, then the proportiongﬁgfjf(‘“lv) averaged over It selectsc, as destination. If it selects, as target again when
all possibleX,, X,, andV is rather insensitive to the choicelt '¢aches:, then process may return back(i, 1, 21, 1) in

of . Hence, even i/ is determined according to the distancd2 = 7 Steps. On the other hand, if it chooses at fissand
that is going to be traveled with high probability, there Iwilt"€Nco as destination when it is located @t then it may go

always be periods of acceleration and deceleration thaetsff P2cK 10 (co, ¢1,21,1) after leaving it ind; = 8 steps. Since
the value ofE[f/}. the greatest common divisor @f, ds, andds is 1, the state

1) becomes aperiodic. Therefore, the Markov chain
[ |

Consequently, the results presented in Table 1l shows thaf§o: €1, 21
a performance measure of interest evaluated for an wirakksdS @periodic and the proof completes.
hoc network is dependent on the expected speed at the long ruRroof of Lemma 2
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Proof: The proof is by direct substitution. First, observe  Proof: According to the state partitioning given in (5),

that all of the states in partitiod; are located at celt;. Hence,
T‘-OAg()) = [07 9007—1\0’/7”,\0,1, o720V m|0,2) - - -5 Di is Slmply

<pOTn71|OVm\On71]7 pi = Z Ps; t=0,....,n—1 (82)
71 A = [0 (1 = 79/0), 0, - .., 0], sES:
ﬂ'oAg ) +7r1A§ ) _ 0. (79) Using the above equation, the; ; formulated in (13), and

expected state holding times derlved in (14), and (15), we
In the same way, obtained thep; given as in (83), located at the bottom of the
e age.

Tl'nflAg b= [SpnflT()\nflym\nfl,Oa(pnflTl\nflym\nfl,la pad

Now, defining
< Pn—1Tp-2In—-1¥Ym|n—1,n—2> 0]7

i—1ln—1
n—2
7Tn72Aé ) = [0» . 0, ‘Pnfl(l - Tnfl\nfl)L ki = Z PeT, Z Vrie,j
7Tn_1A§n_1) + 71_7’L_2Aé7z—2) -, (80) 7=0 = zi
For1 < i <n — 2, observe the following + Z ZW Tjle Z Urle,j
Jj=1i4+14=0

(%)
ﬂ’A — Ta i 05 ey PiTi1|iV - 70’ . . . g .
AL = [P0 mli0; s PiTic1 iV i1 the formula given in (83) simplifies to form given by (18l
PiTit+1[iVmli,i41s -+ (piTn71|iVm|i,n71}7

- ‘1 Proof of Theorem 1

G- _ 0 0 Z _ Z o Proof: To derive this result, we first formulate the
Tim180 = bt 2 Pl 2 PeTik1|eVmiit1s equations given in (18), (19), and (20) in terms fof, fx.,

=1 =0 =0 fxqx..andfy|x, x,. and then take the limit of the expression
‘ ’ZWTn—l\Z’/m\e,n—l]a asn — oo (i.e., Az — 0), andm — oo (i.e., Av — 0).
n—1 ¢=0 n—1 : :
i First, for smallAz and Av observe the following:
7l'i+1Aé - [ Z PeTo[eVmle,05 - - - 72 PeTi—11eVml|ei—15
t=i+1 t=i+1 pi = fx(x})Ax, (84)
n—1
> @m0, 0], o= Ix (x")fx’ (85)
oy Y . T = fxux. (@ Xs € ¢;) A, (86)
w14, + m AV i Ay = ;. (81) Vriey =  Jvix,,x.(vrlXs € ¢, Xa € ¢j) Av - (87)

Finally, using equalmes (79), (80), (81) and normalg@ach \here the numbers:, 2*, andv’ are chosen arbitrarily within

J!
m, i =0,...,n—1,with N = Y070 ||, it is easy to yhe subinterval§ A, (H—l)AJc) [jAz, (j+1)Az), and[rAv,
see thatn-P =, with |7, =1 holds which concludes the (r+1)Av), respectivelyj, j = 0,...,n—1,andr = 1, ..., m.

proof. By inserting these approximations back to (18), (19), arﬁlj,(z
Proof of Lemma 3 and canceling\z from both sides of the equation, we obtained

M \

pi(1 =7 E[Tp,] + (Z e Tile Ypy 3s Vrieg 5 2 PeTiIe PO rw,j)m‘

Jj=i+14=

.

0 =1
Pi = 1 ,—1n—1 (83)
2, (1= Z ( 2 2 peTile Tyl z; Vrleg + ZH; e Tl 0 5 Vr\Lj)M
1= 1=0 “j=0 £=2 Jj=t
. Ix.(@F) (1= fx,x, (2} Xs € ¢;) Ax)E[T),] + kf
f(xb) = n—1 ::I 1 : . _ (87)
Z:O BT, ] fx,(x7) Az — ZO E[T},]f%,x. (@] |Xs € ¢) (Az)> + D},
i—1l n—1 m 1
ki = > ; Ix. (@) Az fx, x, (25| Xs € ¢r) Az Z . fvix. x, (07| Xs € co, Xa € ¢j) Av
J= 7 r=1
n—1 7
+ DD fx (@) A fx,x, (@3] X € ¢) Ax Z Fuix.x, (Vi1 Xs € e, Xq € ¢5) Av (88)
j=i+1 £=0 r=1 Zr
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the equation given in (87), shown at the bottom of the pagg] z. Haas, “A new routing protocol for the reconfigurable reless

wh

erek; is defined by (88), and

n—1
= Zk;

1=0

(90)

(6]

(7]

To complete the proof, we have to take the limit of (87) aﬁs]
Az — 0. Clearly, (1 — fx,x,(z}|Xs € ¢;)Ax) — 1 as
Axz — 0. Now, observe the following:

lim E[T,,]=

Azx—0

. e gt Pr{T, > t,, iAz < X, < (i+1)Azx}
im
Az 50 P Pr{iAz < X, < (i +1)Azx}

) Joy dt Jips ™" du fr, x (1)
= lim

Az—0 Jq P L‘(X;l)Az du fx. (u)

/ ft dt fT X (E»,t)
a ' fx. (@)

/ dt / dt fr, Ix. (z7,1)

dtp Pr{T, > tp|Xs = 2} } = E[Tp| X, = z;], (91)

0

Jim ZE ' 1fx (@ )Ax:/ EIT,|X, = ulfx, (u) du
0
_BL0< X, <d,  (92)
and
lim &}
Az—0
Av—0
:/dxd dx, sz(JUs)fXd\XS(l"d\l‘s)E[%IXs:rs,Xd:wd]
—|—/dxd ds fx,(Ts) fx, x, (Talrs) Bl& X o=, Xa=24](93)
0

In addition, the terny"" | E
converges to 0 adx — 0. Combining limits (91), (92), (93),

and substitutingz; with =, we obtained the result presente
in Theorem 1.

(1]

(2]

(3]

(4]

E| pz]fxd\x (z7|Xs € c) (Az)?
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