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Abstract— Most of the important characteristics of wireless
ad hoc networks such as link distance distribution, connectivity,
network capacity, etc., is a consequence of the long-run properties
of the mobility profiles of communicating terminals. Therefore,
the analysis of the mobility models proposed for these networks
becomes crucial. The contribution of this paper is to provide
an analytical framework that is generalized enough to perform
the analysis of realistic random movement models over two-
dimensional regions. The synthetic scenarios that can be captured
include hotspots where mobiles accumulate with higher proba-
bility and spend more time, and displacement dependent speed
distributions. From the utilization of the framework to random
waypoint mobility model, we derive an approximation to spatial
distribution of terminals over rectangular regions. We validate
the accuracy of this approximation via simulation, and by
comparing the marginals with proven results for one-dimensional
regions point out that it is insensitive to the proportion between
dimensions of the terrain. In addition, we establish an example
that demonstrates the applicability of the results derived to
a scenario where mobile terminals are restricted to move on
predefined paths, and provided long-run distributions by closed
form expressions.

Index Terms— Mobility Modeling, Long-Run Analysis, Ad Hoc
Networks, Two-Dimensional Regions.

I. I NTRODUCTION

IN WIRELESS ad hoc networks communicating termi-
nals move with respect to many different mobility

patterns each one having unique attributes. Therefore, mobility
modeling and its analysis becomes very important for the
performance evaluation of these kinds of networks. In this
paper, we focus on the long-run location and speed distribution
analysis of a generalized random mobility modeling approach
over two-dimensional mobility terrains.

The modeling methodology we are concentrating on is
originally defined in [1] as a generalized model that is flexible
enough to capture the major characteristics of several realistic
movement profiles. In that paper, long-run location and and
speed distributions are given in closed form expressions for
one-dimensional regions. Here, we extend the analysis to two-
dimensional terrains. A variety of examples are also given
to show how the proposed model and its long-run analysis
framework works for a broad range of mobility modeling
approaches.

In what follows, we give a brief description of the gen-
eralized random mobility characterization approach that is
analyzed in this article. LetR denote the two-dimensional
closed region on which mobile terminals operate. A mobile
located at the pointXs = (Xs1

,Xs2
) ∈ R, selects a random

point Xd = (Xd1
,Xd2

) ∈ R as destination according to the
conditional probability density function (pdf)fXd|Xs

(xd|xs),
and moves to pointXd on the straight line segment joining
the two points, and at a speedV that is drawn randomly
from the interval[vmin, vmax], wherevmin > 0, according to
the conditional pdffV |Xs,Xd

. After reaching the destination,
mobile pauses for a random amount of time, denoted byTp,
atXd, which is distributed with respect to the conditional pdf
fTp|Xd

, and whole cycle is repeated by selecting a new desti-
nation. Hence, the pattern of a mobile terminal is composed of
consecutive movement epochs between the randomly selected
pointsXs andXd, and it is uncorrelated with the movement
behaviors of other terminals. Throughout this paper, we use
the triplet< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> to characterize the
movement pattern of a mobile that moves with respect to this
model.

Among the parameters of the triplet< fXd|Xs
, fV |Xs,Xd

,
fTp|Xd

>, the conditional pdffXd|Xs
, which identifies the

distribution ofXd givenXs at the embedded points in time
where a new movement epoch starts. Incorporation of this ker-
nel into this mobility characterization methodology provides
the ability to define hotspots on the two dimensional mobility
terrain where mobiles accumulate with higher probability,
and correlations between consecutive hotspot decisions can
be successfully modeled. Furthermore, sinceV is randomly
drawn fromfV |Xs,Xd

, we have the flexibility of constructing
a correlation between the distribution ofV and the locations
of the starting pointXs and destinationXd. For instance, a
scenario that identifiesV proportional to the distance that is
going to be traveled, that is,|Xs −Xd|, can be easily defined.
In addition, the usage offTp|Xd

makes it possible to capture
different pause distributions at different destinations available
for the mobility model.

For wireless ad hoc networks, there have been proposed a
number of different mobility models. Comprehensive surveys
of these models can be found in [2], [3]. Among them, the
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random waypoint model [4] is one of the most widely used
one for analytic and simulation-based performance analysis of
ad hoc networks. In this model, a mobile selects a destination
point in the mobility terrain with equal probability, and moves
to that point with a speed that is drawn uniformly from a
given range. After reaching the destination, mobile pausesfor a
random time, which has a distribution that is independent from
the current location, and whole cycle is repeated by selecting
a new destination. In [5], [6], [7], analytical frameworks are
presented for the long-run analysis of this mobility model.
The analysis that we propose in this paper is also applicable
to random waypoint model, and to demonstrate the correctness
and superiority of our work, we present a comparison of the
results derived with the ones presented in literature.

The rest of this paper is outlined as follows. In Section II,
we describe analytical framework we developed for long-run
analysis. Section III provides the long-run distributionsfor a
limited version of the exact mobility formulation constructed
according to the methodology explained in the second section.
Section IV extends the results derived in section three and
provides the distributions for the generalized model proposed.
In Section V, we focus on example scenarios, and the final
section presents a summary of the paper.

II. M ETHODOLOGY AND DESCRIPTION OFANALYTICAL

FRAMEWORK

In this section, we describe the analytical framework we
establish for the long-run analysis of the generalized mobility
model proposed.

Now since the movement behavior of mobiles are assumed
to be uncorrelated with each other, we can concentrate on a
single terminal for long-run analysis. Hence, for the termi-
nal whose movement pattern is characterized by the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, let the vectorX(t) denote
the state descriptor whose components identify the current
location, destination, and the speed of that mobile at timet. In
our solution methodology, we discretisize the two-dimensional
mobility terrain R and approximate the random variableV
with a discrete random variable so that the stochastic process
{X(t), t ≥ 0} can be defined on a multidimensional discrete
state space. The assumptions that we have made to generate
this discrete state space are as follows:

A1: The closed regionR is discretisized inton disjoint,
non-overlapping cells of the same shape denoted byci,
i = 0 . . . n− 1, such thatR ⊆ ⋃n−1

i=0 ci wheren > 1. A
mobile terminal is assumed to occupy one of theci’s
at any moment in time, and movement epochs occur
between two randomly picked starting and destination
cells.

A2: The random variableV , that is, the speed during a
movement epoch, is approximated by the discrete ran-
dom variableV ∗ defined on the state spaceSV ∗ =
{z1, z2, . . . , zm} where zr = r∆v, r = 1, . . . ,m, for
some discretization parameter∆v > 0, and an integer
m ≥ 1 such that∆v ≤ vmin andvmax = m∆v.

Based on these assumptions, observe that a mobile can be in
pausing or moving modes at the cell it is currently located.
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Fig. 1. Discretization of the square regionR into squares.

Additionally, instead of observing the state of a terminal
continuously, we observe it at embedded times denoted by
Tk, for k ∈ N, such thatT0 = 0, Tk+1 ≥ Tk, ∀k ∈ Z

+,
which point to the time of occurrence of one of the following
events:

E1: The terminal which is in pause mode, selects a new cell as
destination that is different from the current cell occupied,
and changes its state to moving state in the current cell
it is located,

E2: The terminal which is traveling in the direction of the
target cell, moves out from the current cell and enters the
neighboring cell that lies on the shortest path between the
current and destination cells,

E3: The terminal reaches to the destination cell and enters the
pause mode at that location.

At this point, notice that the discretization of the two-
dimensional regionR into n cells of the same shape, such that
every point inR belongs to one cell, can performed through
the use of triangles, parallelograms (including squares and
rectangles), or hexagons. We note that, the idea of dividing
the region on which mobile terminals operate to regular
polygons of the same shape has been generally used by some
studies concentrating on the performance analysis of cellular
networks. For instance, the studies presented in [8] and [9],
assume radio coverage of a base station to be a hexagon or
a square, and present a performance analysis study that is
done with respect to a mobility model which formulates the
movement behavior of the terminals between those cells on a
macroscopic scale. However, in our analysis, we discretisize
the regionR on a microscopic scale to approximate the exact
location that can be occupied by a terminal at any point in
time. On the other hand, in the performance modeling of
cellular networks, the exact location of a terminal inside the
coverage area of a base station is not the main issue, and the
main problem is to identify the base station that it is attached
to.

In our analysis, to apply assumptionA1, we focus on
the discretization methods that partition the regionR into
squares or hexagons. The reasoning behind concentrating on
two different discretization approaches forR concurrently will
become more clear as we proceed further in the long-run
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Fig. 2. Discretization of the hexagonal regionR into hexagons.

analysis. In Fig. 1 and Fig. 2, we applied these discretization
approaches to square and hexagonal regions. It should be also
noted that, in principle, any closed region can be discretisized
by squares or hexagons. Here we decided to discretisize a
square with squares, and a hexagon with hexagons because
we wanted the discretization technique to be consistent with
the shape of the region.

In Fig. 1 and Fig. 2, we also depicted the scheme we decided
on to identify the cells on the discretisized region. Basically,
the centers of the cells are grouped by lines that are parallel to
each other, and the indexi of cell ci is denoted byi = (ℓi, ℓ

′
i)

where ℓi represents the line that the center ofci is located,
andℓ′i is its location on that line. For the rest of this paper, we
will use the notationsci and c(ℓi,ℓ′i)

interchangeably. Hence,
if there arenℓ lines, and ifqℓ denotes the number of cells on
line ℓ, then set of the cells on the discretisized region can be
defined as follows:

R̃ =

nℓ−1
⋃

ℓ=0

{c(ℓ,0), . . . , c(ℓ,qℓ−1)}, (1)

It should be noted that, as the side lengths of the discretization
hexagons decreases, the total area covered by the union of the
cells in R̃ becomes close to the area ofR.

Clearly, the path traveled during a movement epoch de-
scribed by the discretisized version of the mobility character-
ization we constructed, is composed of consecutive straight
line segments between the centers of the cellsci, i =
0, . . . , n− 1. In other words, a mobile terminal moves to one
of the neighboring cells from the current cell occupied while
traveling towards the destination cell. Hence, ifd denotes the
number of available movement directions for the discretisized
mobility formulation, thend would be equal to the number
of the sides of the regular polygons used in the discretization
process. Thus,d = 4 for square discretization, andd = 6 for
hexagonal discretization, and letγı, ı = 0, . . . , d − 1 denote

those directions (see cellc(2,5) in Fig. 1, and cellc(2,4) in Fig.
2). On the other hand, in principle, if there are no obstacleson
the regionR that can restrict the movement directions, then
mobile should be able to move at any direction. Therefore, by
discretizing the region, we are also forced todiscretisize the
movement direction. Obviously, ifR is discretisized by regular
polygons of the same shape, as we are doing, thend can be at
most equal to six. Furthermore, if the discretization of a region
R with a general shape (e.g. rectangle) with regular polygons
is done for the purpose approximating the exact location of
a terminal, as in our case, then using hexagons is a better
choice because the number of available movement directions
are higher, and a more realistic approximation can be done to
the exact mobility pattern.

At this point, it should be noted that, the enforcement of
discretizing movement directions will not arise for the one-
dimensional case because there are only two directions for a
mobile to move on a one-dimensional region and discretization
method does not enforce any kind of restriction on these
directions. Clearly the fundamental difference between the
discretization parametersd, and n and m is that n and m
can be increased, butd, as we have mentioned above, can be
at most equal to six. This difference introduces a new issue
that has to be clarified before continuing. In what follows, we
explain this issue and our solution approach for it.

Now recall that according to our mobility model proposed,
during a movement epoch, mobile travels on the straight line
joining the pointsXs and Xd. In the discretisized version
of this mobility model, movement epochs occur between
randomly selected cells. Obviously if the mobile terminal is
allowed to move at any direction in the regionR, then the
shortest path between those two points is just the straight
line between them, and it is unique. However, for the discrete
formulation, the shortest path is defined in terms of the number
of jumps between cells. More importantly, for a discretization
that is done according to squares (i.e.,d = 4), or to hexagons
(i.e., d = 6), if p̃(d)(i, j), d = 4, 6, denotes the ordered list of
the cells that are located on a shortest path for the movement
epoch that had started atci, and ended up at destination cellcj ,
then the members of̃p(d)(i, j) will not be necessarily unique.
The algorithm that we use in this paper to generatep̃(d)(i, j)
is as follows. Ifcj is towards the directionγı′ for someı′ ∈
{0, . . . , d−1} from ci, then mobile follows that direction until
it reaches destinationcj . On the other hand, mobile proceeds
to the next cell either in the directionγı′ or γı′+1mod d with
equal probabilities for someı′ ∈ {0, . . . , d−1} that generates
the least possible shortest path if selected, and continuesin
that direction until it reaches to a cell that can be joined tocj
by following one of thed available directions. For example, in
Fig. 2, consider the scenario whereci = c(4,1) andcj = c(7,4).
Observe that for this scenario, this algorithm either generates
the path{c(4,1), c(4,2), c(4,3), c(4,4), c(5,4), c(6,4), c(7,4)} or the
path{c(4,1), c(5,1), c(6,1), c(7,1), c(7,2), c(7,3), c(7,4)}. A similar
example can be also found in Fig. 1. It should be also noted
that, according to our notation, the first and the last members
of the list p̃(d)(i, j) areci andcj , respectively.

Having clarified these issues, we now proceed to the formal
definition of the discretisized mobility formulation. DenoteSk,
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k ∈ N, as the state of the mobile terminal at timeTk. Hence,
based on assumptionsA1, A2, and the eventsE1, E2, E3 that
identify observation timesTk, for k ∈ N, the finite-state space
of Sk will be defined as follows:

S = SM ∪ SP (2)

where

SM = {(ci, cj , zr, q) | i, j = 0, . . . , n− 1, i 6= j,

r = 1, . . . ,m, q = 1} (3)

SP = {(ci, q) | i = 0, . . . , n− 1, q = 0} (4)

whereci is the current cell occupied,cj is the destination cell,
zr is the discretisized speed, andq is the indicator function
that is defined as follows:

q =

{

1, mobile is moving towards the target cell
0, mobile is pausing at the destination cell

(5)

Consequently, the stochastic process{X(t), t ≥ 0} can be
formally defined on the finite-state spaceS according to the
following expression:

X(t) = Sk, if Tk ≤ t < Tk+1

Notice that whenX(t) occupies a states ∈ SM, since the
states has a separate dimension for the destination cell, the
next state to be visited can be determined from the components
of it. In other words, the future evolution of the stochastic
process{Sk, k ∈ N} becomes dependent only on the current
state of the mobile terminal, not on its history at previous
observation points. Furthermore, for alls ∈ S, the distribution
of sojourn time in states would be independent from the
previous states occupied and can be determined only from
the components of states.

Therefore, the stochastic process{Sk, Tk; k ∈ N} with
finite-state spaceS satisfies the conditions for beingMarkov
Renewal Process, and the process{X(t), t ≥ 0} can be
called as thesemi-Markov process (SMP) associated with
{Sk, Tk; k ∈ N} [10]. Moreover, since the distributions for
destination, speed, and pause time parameters are assumed
to be time-homogeneous in the mobility model proposed, the
distribution of state holding time in states, given that the next
state to be visited iss′, would be independent ofk. Hence,
the transitions of the processX(t) at the embedded time
instantsTk can be governed by thediscrete-time Markov chain
(DTMC) {Sk, k ∈ N} with finite-state spaceS and transition
probability matrix P = [ps s′ ], where ps s′ = Pr{Sk+1 =
s′ |Sk = s}, such that

∑

s′∈S ps s′ = 1 for all s ∈ S. The
process{Sk, k ∈ N} is also referred asembedded DTMC of
SMP.

Thus, in order to characterize the SMP{X(t), t ≥ 0} at the
long-run, the DTMC{Sk, k ∈ N} must satisfy the ergodicity
conditions and the mean state holding times must be finite.
If these conditions are satisfied, then the long-run proportion
of time spent in a states ∈ S can be obtained, and after
aggregating the states that has the samecurrent cell andspeed
components, the long-run distributions sought can be derived
for this discretisized version of the mobility formulation.

Notice that, as the discretization parametersn → ∞ and
m → ∞, we obtain better approximations to the location

and speed of the mobile terminals, respectively, and in the
limit we converge to a restricted version the continuous model
where the available movement directions are limited by thed
different directionsγ0, . . . , γd−1 given by

γı =

{ 2π ı
d , if d = 4,

2π (ı+1/2)
d , if d = 6,

(6)

for ı = 0, . . . , d− 1. Visualization of these directions are also
provided in Fig. 1 and 2. Clearly because of the methodology
we decided to generatẽp(d)(i, j), at the limit n → ∞, the
path followed during a movement epoch betweenXs andXd

∈ R will generally be composed of two directed finite line
segments towards the directionsγı1 and γı2 where {ı1 =
ı, ı2 = (ı+1)mod d} or {ı1 = (ı+1)mod d, ı2 = ı} for some
ı ∈ {0, . . . , d−1}. This can be also observed from the example
movement scenarios depicted in Fig. 1 and 2. Obviously if
Xd is towards any of directionsγı, ı = 0, . . . , d − 1, from
Xs, then the path will be composed of a single straight line.
For the rest of this report we will use the termcontinuous-
d mobility formulation to refer to this limited version of the
exact continuous mobility formulation. Finally, we note that,
sinced can be at most equal to six, a formal transition from
this limited case to the original continuous formulation cannot
be done. Therefore, in the following sections we will use
distributions of the continuous-d mobility formulation to gain
some insight into the distributions that can be conjecturedfor
the original case.

III. A NALYTICAL RESULTS FORTHE DISCRETISIZED AND

CONTINUOUS-d MOBILITY FORMULATION

In this section, we first concentrate on generating the long-
run location and speed distributions for the discretisizedcase,
and after that we will use those results to derive long-run
distributions of the continuous-d mobility formulation.

Now, to able to identify the transition probabilities of the
DTMC {Sk, k ∈ N}, we first denoteτj|i as the probability of
selecting cellcj as target from cellci. Then, according to the
mobility characterization parameterfXd|Xs

, τj|i will be given
by

τj|i =

∫

xd∈cj

fXd|Xs
(xd|Xs ∈ ci) dxd, (7)

Similarly, denoteνr|i,j as the conditional probability mass
function of V ∗ for a movement epoch that had started at cell
ci with destinationcj . Then, by using the parameterfV |Xs,Xd

we have

νr|i,j =

∫ r∆v

(r−1)∆v

fV |Xs,Xd
(v|Xs ∈ ci,Xd ∈ cj) dv (8)

for r = 1, . . . ,m. In addition, letnh(ci) denote the cells in the
neighborhood of cellci that can be reached in one jump from
it, and let[i′, i, j] denote the index of the cellci′ in the ordered
list that defines the path̃p(d)(i, j). Note that,[i, i, j] = 1, and
[j, i, j] =

∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ where
∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ denotes the number
of the cells on the path̃p(d)(i, j). Hence, if we are interested
in the probability of the cellci′ to be the next cell to be visited
after cell ci, that is,Pr{[i′, i, j] = 2}, thenPr{[i′, i, j] = 2}
is either equal to1, or 1/2, or 0 (i.e. ci′ is not on the path
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TABLE I

TRANSITION PROBABILITIES OF THE PROCESS{Sk, k ∈ N}

Event Transition Probability Condition∗

E1 (ci, 0) → (ci, cj , zr, 1)
τj|i

1−τi|i
νr|i,j i 6= j

E2 (ci, cj , zr, 1) → (ci′ , cj , zr, 1) 1 cj /∈ nh(ci),
Pr{[i′,i,j]=2} =

1

1/2 cj /∈ nh(ci),
Pr{[i′,i,j]=2} =

1/2

E3 (ci, cj , zr, 1) → (cj , 0) 1 cj ∈ nh(ci)
∗ i, i′, j = 0, . . . , n − 1, r = 1 . . . m

p̃(d)(i, j)). For instance, in Fig. 2, whenci = c(4,1), cj =
c(7,4), andci′ = c(4,2), thenPr{[i′, i, j] = 2} = 1/2. On the
other hand, ifci = c(4,1), cj = c(4,4), and ci′ = c(4,2), then
Pr{[i′, i, j] = 2} = 1.

Based on these definitions, the transition probabilities cor-
responding to the eventsE1, E2, andE3, can be grouped as
in Table I.

Next, we examine the irreducibility and aperiodicity of the
DTMC {Sk, k ∈ N} with respect to the transition probabilities
defined in Table I. Letϕi denote the probability of starting a
movement epoch from a cellci, i = 0, . . . , n−1 at the steady-
state. Obviously, in order to satisfy the irreducibility,ϕi must
be greater than0 for all i = 0, . . . , n − 1. Otherwise, some
cells on the two-dimensional discretisized region will never
be visited (i.e., selected as destination) and the chain becomes
reducible. Hence, a steady-state distribution must exist for
Xs. The conditional pdffXd|Xs

(xd|xs), which identifies the
distribution ofXd givenXs at the embedded points in time
where a new epoch starts, is referred asstochastic density
kernel by Feller [11]. Under some “mild” regularity conditions
defined in [11] onfXd|Xs

(xd|xs) the steady-state distribution
of Xs with pdf fXs

(xd) can be uniquely determined from the
solution of the following integral equation

fXs
(xd) =

∫

xs∈R

fXd|Xs
(xd|xs)fXs

(xs)dxs, (9)

andϕi will then be equal to

ϕi =

∫

xd∈ci

fXs
(xd) dxd (10)

Observe that, ifT = [τj|i], and if the integral equation (9) has
a unique solution, thenϕi can be also obtained by solving
ϕT = ϕ, ||ϕ||1 = 1 whereϕ = [ϕ0, . . . , ϕn−1].

In view of the discussions above, we state the following
result.

Lemma 1: If the p.d.f.fXs
(xd) can be uniquely determined

from the solution of the integral equation (9), and ifνr|i,j > 0,
i, j = 0, . . . , n − 1 and r = 1, . . . ,m, then the embedded
DTMC {Sk, k ∈ N} defined on state spaceS in (2), with
transition probabilities given as in Table I, is irreducible and
aperiodic.

Proof: Refer to Appendix II.
Next, we provide the steady-state distribution of the DTMC

{Sk, k ∈ N}. Using Lemma 1, and a direct substitution

approach that does not require to define the transition proba-
bility matrix of this DTMC in full generality, we reach to the
following:

Lemma 2: For the DTMC{Sk, k ∈ N} defined on the state
spaceS in (2), whered is either equal four or six, letπ(d)

i

and π(d)
(i,j,r) denote the steady-state probabilities of being in

the states of the forms = (ci, 0), i = 0, . . . , n − 1, and
s = (ci, cj , zr, 1), i, j = 0, . . . , n − 1, i 6= j, r = 1, . . . ,m,
respectively. If the conditions of Lemma 1 are satisfied, then
they are uniquely given by

π
(d)
i = ϕi (1 − τi|i)/N, (11)

π
(d)
i,j =

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′ τj|i′ νm|i′,j/N

+ 1
2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′ τj|i′ νm|i′,j/N (12)

where

π
(d)
i,j = [π

(d)
(i,j,1), . . . , π

(d)
(i,j,m)], (13)

νm|i′,j = [ν1|i′,j , . . . , νm|i′,j ], (14)

and

p
(d)
t,1 (i, j) =

{

ci′ |ci′ ∈ R̃,Pr{ci ∈ p̃(d)(i′, j)} = 1
}

, (15)

p
(d)
t,2 (i, j) =

{

ci′ |ci′ ∈ R̃,Pr{ci ∈ p̃(d)(i′, j)} = 1/2
}

,(16)

andN =
∑n−1

i=0 π
(d)
i +

∑n−1
i=0

∑n−1
j=0,
j 6=i

∣

∣

∣

∣

∣

∣
π

(d)
i,j

∣

∣

∣

∣

∣

∣

1
.

Proof: Refer to Appendix II.
It should be noted that, the setsp(d)

t,1 (i, j) in (15) and

p
(d)
t,2 (i, j) in (16) represent the subset of cells iñR from where

a movement epoch originated with destination cellcj passes
through the cellci with probabilities 1 and 1/2, respectively.

Now, let t̄s denote the sojourn time of the SMP{X(t), t ≥
0} in states ∈ S. Then, if s = (ci, cj , zr, 1) (i.e., mobile is
moving towards the destination with discrete speedzr), and
if ∆c(d) denotes the traveled distance in a cell while passing
trough it, then

t̄s =
∆c(d)

zr
(17)

Notice that, if the discretization is done with squares of side
length ∆s, then,∆c(4) = ∆s, and if it is done with respect
to the hexagons of side length∆h, then∆c(6) =

√
3∆h. On

the other hand, ifs = (ci, 0), then we define the following.

t̄s = E[Tpi
] = E[Tp|Xs ∈ ci]

=

∫ ∞

0

Pr{Tp > tp|Xs ∈ ci} dtp (18)

Finally, in order to characterize the SMP{X(t), t ≥ 0} at the
long-run, the following must be satisfied [10]:

∑

s∈S
πst̄s <∞ (19)

Hence, by applying the theory of semi-Markov processes
we obtained the long-run proportion of time that the SMP
{X(t), t ≥ 0} is in a states ∈ S. After aggregating the states
in S that has the samecurrent location andspeed components,
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including the ones with zero speed (i.e,s = (ci, 0)), we reach
to the following result.

Lemma 3: For the mobile terminal, whose mobility pattern
is characterized according to the discretisized version ofthe
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> mobility formulation, letp(d)
i ,

i = 0, . . . , n− 1, d = 4, 6, denote the long-run proportion of
time that terminal stays in cellci, which can be a square or
hexagon. Similarly, denoteψ(d)

r as the long-run proportion of
time that mobile possesses speedzr = rδv, r = 0, . . . ,m. If
the conditions given by Lemma 1 are satisfied, and equation
(19) holds to be true, then

p
(d)
i =

ϕi (1 − τi|i)E[Tpi
] +

m
∑

r=1
k

(d)
i,r

N
(d)
n,m

, (20)

and

ψ(d)
r =























n−1
∑

i=0

ϕi (1 − τi|i)E[Tpi
] /N

(d)
n,m , if r = 0

n−1
∑

i=0

k
(d)
i,r /N

(d)
n,m , else

(21)

where

k
(d)
i,r =

∑

cj∈R̃−{ci}

(

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j ∆c(d)

+ 1
2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j ∆c(d)

)

, (22)

and

N (d)
n,m =

n−1
∑

i=0

ϕi (1 − τi|i)E[Tpi
] + D̂(d)

n (23)

where

D̂(d)
n =

n−1
∑

i=0

m
∑

r=1

k
(d)
i,r (24)

To simplify the formulation ofD̂(d)
n in (24) for some special

cases, we now state the following claim.
Claim 1: If the distribution ofV ∗ is assumed to be inde-

pendent from the location of the starting and destination cells
of the movement epochs, the expression forD̂

(d)
n in (24) is

equivalent to the following:

D̂(d)
n = E[

1

V ∗ ]
∑

ci∈R̃

∑

cj∈R̃

ϕi τj|i dis
(d)(i, j) ∆c(d), (25)

wheredis(d)(i, j) =
∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ − 1, that is, the number of
the discrete jumps made on the pathp̃(d)(i, j).

Proof: Refer to Appendix II.
Before continuing on with the long-run analysis of the

continuous-d mobility formulation, in order to clarify the
interpretation of termk(d)

i,r given in (22), we now concentrate
on a simple example scenario. Now, consider a continuous
mobility formulation (i.e., mobiles can move anywhere at any
direction) over the regionR = [0, a] × [0, a] where V is
deterministic and equalv, and the other mobility character-
ization parameters,fXd|Xs

and fTp|Xd
, can be arbitrary as

c1

c3c2

c0

a0 a
2

Fig. 3. Discretisized version of a simple mobility scenario (n = 4, d = 4).

long as the integral equation in (9) is uniquely solvable and
equation (19) is satisfied. Now to be able to apply Lemma 3,
we need to generate the discretisized version of this mobility
formulation. Hence, assumen = 4, d = 4, and sinceV is
deterministic,m = 1. In Fig. 3 we provided a visualization of
the discretisized mobility model generated according to these
assumptions.

Now for this discretisized mobility formulation, if we are
interested in the long-run proportion of time mobile stays in
cell c0 (i.e.,p(4)

0 ), then according to Lemma 3 we simply have

p
(4)
0 =

ϕ0 (1 − τ0|0)E[Tp0
] + k

(4)
0,1

N
(4)
4,1

, (26)

where

k
(4)
0,1 =

a

2v
(ϕ0τ1|0 + 1

2ϕ2τ1|2 + ϕ0τ2|0 + 1
2ϕ1τ2|1 + ϕ0τ3|0),

(27)
which is equal to the average time spent over the cellc0
while moving between randomly picked cells. In other words,
k

(4)
0,1 is equal to a/2

v multiplied with the probability of a
movement epoch between two randomly picked cells to pass
trough the cellc0, including the ones starting or ending at cell
c0. Notice that in this simple formulationνr|i′,j = 1 for all
i′, j = 0, . . . , 3. However, if the distribution ofV is dependent
onXs andXd in the original continuous mobility formulation,
thenm > 1, and we have to multiply each additive term of
k

(4)
0,r , r = 1, . . . ,m with the probability of selecting speed
zr = rδv, (i.e.,νr|i′,j) and 1

zr
for the the movement epoch that

passes trough cellc0, as it is shown by the formulation ofk(d)
i,r

in (22). Observe that, for all choices ofV , the term
∑m

r=1 k
(d)
i,r

corresponds to the expected time spent over cellci while
moving between two randomly picked cells that are drawn
from the distributionsϕi′ in (10) andτj|i′ in (7), respectively.

Next we proceed to the long-run analysis of the continuous-
d mobility formulation. At first, recall that in this case since
movement directions are restricted to 4 or 6 different direc-
tions, the path followed during a movement epoch between
the pointsXs ∈ R andXd ∈ R will be composed two or
one line segments each directed towards one of the available
directions γı in (6), ı = 0, . . . , d − 1. Thus, in order to
keep the formulation of this case separate from the exact
case, where movement epochs occur on a single directed line
segment that can have any direction, let the random variables
X(d)(t) = (X

(d)
1 (t),X

(d)
2 (t)) andṼ (d)(t), whered is either 4
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or 6, denote the location and the speed of a mobile terminal
at time t, respectively. Note thatX(d)(t) ∈ R, and since the
mobile can be in moving or pausing modes at any point in
time, Ṽ (d)(t) is either equal to0, or in the range[vmin, vmax].

Now let X(d) = (X
(d)
1 ,X

(d)
2 ) and Ṽ (d) denote the random

variables having the long-run distribution ofX(d)(t) and
Ṽ (d)(t), respectively. Recall that in the discretisized version
of the mobility formulation, we assumed the random variables
X(d)(t) and Ṽ (d)(t) to take only discrete values, and in
Lemma 3, provided the long-run proportion of times that a
mobile stays in cellci, (i.e., p(d)

i in (20)), and possesses
speedzr (i.e., ψ(d)

r in (21)). Therefore, in order to derive
the distributions ofX(d) and Ṽ (d), we need to focus on the
limiting behavior of the discrete distributions given by Lemma
3 as discretization parametersn andm approaches infinity.

As an illustration of the methodology that is going to be
applied during this transition, lets concentrate on the simple
mobility formulation whose discretisized version is depicted
in Fig. 3. Recall that, in that simple modelV = v (i.e., de-
terministic) and the other mobility characterization parameters
can be arbitrary. Now for the discretisized case, letP

(d)
n (a

2 )
denote the long-run proportion of time mobile is located in
the regionR(a

2 ) = [0, a
2 ]× [0, a

2 ]. Hence, ifd = 4 andn = 4,
we have

P
(4)
4 (a

2 ) = p
(4)
0 (28)

wherep(4)
0 is defined by (26). Notice that in this formulation

the discretization parameterm is skipped because sinceV =
v, m = 1.

Next, the important question is what will be the limiting
form of P (4)

n (a
2 ) in (28) asn→ ∞. Hence, if we assumen =

16, then discretisized region given in Fig. 3 will be transformed
to form given in Fig. 4. By applying Lemma 3 we have

P
(4)
16 (a

2 ) =

∑

ci∈R̃( a
2 )

ϕi (1 − τi|i)E[Tpi
] +

∑

ci∈R̃( a
2 )

k
(4)
i,1

N
(4)
16,1

, (29)

whereR̃(a
2 ) = {c0, c1, c4, c5}, that is, the set of discrete cells

located on the regionR(a
2 ).

Now based on the interpretation ofk(d)
i,r in (22), the term

∑

ci∈R̃( a
2 ) k

(4)
i,1 corresponds to the average time spent over

R(a
2 ) while moving between randomly picked two cells.

Notice that both of those cells or one of them can be also
belong toR̃(a

2 ). Hence we reach to the following:

∑

ci∈R̃( a
2 )

k
(4)
i,1 =

∑

cj∈R̃

∑

ci′∈R̃

ϕi′ τj|i′ P( a
2 )(i

′, j)
1

v
J( a

2 )(i
′, j)∆c(d)

(30)
where P( a

2 )(i
′, j) denotes the probability passing over the

region R(a
2 ) while moving from ci′ to cj , and J( a

2 )(i
′, j)

represents the number of discrete jumps overR(a
2 ) while mov-

ing. Notice that the termJ( a
2 )(i

′, j)∆c(d) represents the total
distance traveled overR(a

2 ), which is required to calculate the
average time spent.

Therefore, in order to obtain the limiting form ofP (4)
n (a

2 )
as n → ∞, we need to derive the limiting expression of

c0 c1 c2 c3

a0 a
2

c4 c5 c6 c7

c8 c9 c10 c11

c12 c13 c14 c15

Fig. 4. Increasing the discretization scale of Fig. 3 (n = 16, d = 4).

the double summation given in (30) which requires a proper
formulation ofP( a

2 )(i
′, j) andJ( a

2 )(i
′, j).

Thus, we now focus on the formalization of the observations
we mentioned above. In order to keep our formulation as
simple as possible, we concentrate on deriving the long-run
distributions of the continuous-4 (i.e., d = 4) and continuous-
6 (i.e., d = 6) mobility formulations over square and hexag-
onal mobility terrains of side lengtha, respectively. Denote
these terrains with the generic notationR(d)(a), whered is
substituted by 4 if it is a square, else by 6 (i.e., hexagon).
Also, to describe long-run location distribution consistently
with d and the shape of mobility terrain (i.e.,R(d)(a)), we
focus on defining the probability mass function (pmf) ofX(d)

over a square subregion inR(4)(a), and a hexagonal subregion
in R(6)(a). Let R(d)(x, b) denote these subregions, which is
a square ifd = 4, and a hexagon ifd = 6, with center
x ∈ R(d)(a) and side lengthb such thatR(d)(x, b) ⊆ R(d)(a).
In Fig. 5 and Fig. 6, we provided illustrations ofR(d)(a) and
R(d)(x, b), d = 4, 6. Notice that,R(6)(x, b) represents the
subregion surrounded by the vertices(x1±b, x2), (x1± b

2 , x2±
b
√

3
2 ), wherex = (x1, x2). We also denote byS(d)(a, b) the

set of all nonintersectingR(d)(x, b) ⊆ R(d)(a).
In addition to the these notations, letL(d)(p, xs, xd, x, b, a)

denote the length of the total distance traveled over the subre-
gion R(d)(x, b) for a movement epoch that occurs between
the pointsxs and xd, and passes throughR(d)(x, b) with
probability p, which can be equal to1, 1

2 , or 0 for the
continuous-d mobility formulation. In Fig. 5 and Fig. 6 we
depictedL(d)(p, xs, xd, x, b, a) for example movement epochs.
Finally, we define

S(d)(p, xd, x, b)

= {xs|xs ∈ R(d)(a), L(d)(p, xs, xd, x, b, a) 6= 0} (31)

Based on the notations given in the preceding three para-
graphs, we are now ready to state the main theorem of this
section.

Theorem 1: For the mobile terminal, whose mobility pat-
tern is characterized by the continuous-d mobility formulation
over the mobility terrainR(d)(a), d = 4, 6, let FX(d)(x, a, b)
denote pmf ofX(d) over the subregionR(d)(x, b) ⊆ R(d)(a).
Also, let fṼ (d) denote the pdf of̃V (d).

If the pdf fXs
(xd) can be uniquely determined from the in-

tegral equation (9), andE[Tp|Xs = xs] <∞, ∀xs ∈ R(d)(a),
and fV |Xs,Xd

> 0, ∀ v ∈ [vmin, vmax], and ∀xs, xd ∈
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x

b

b
a

xs

xd

L(4)(1
2, xs, xd, x, b, a)

R(4)(x, b)
xs xd

L(4)(1, xs, xd, x, b, a)

Fig. 5. Illustrations ofR(4)(a), R(4)(x, b), andL(4)(p, xs, xd, x, b, a).

R(d)(a), then

FX(d)(x, a, b)

=

E[Tp|Xs∈R(d)(x,b)] Pr{Xs∈R(d)(x,b)} +
vmax
∫

vmin

K(d)(x,v,b,a) dv

E[Tp|Xs∈R(d)(a)]+D̂(d)
, (32)

and

fṼ (d)(ṽ)=



















E[Tp|Xs∈R(d)(a)]δ(ṽ)

E[Tp|Xs∈R(d)(a)]+D̂(d)
, ṽ = 0

P

R(d)(x,b)∈S(d)(a,b)

K(d)(x,ṽ,b,a)

E[Tp|Xs∈R(d)(a)]+D̂(d)
, ṽ ∈ [vmin, vmax]

(33)

where

K(d)(x, v, b, a)

=

∫

xd∈R(d)(a)

dxd

(

∫

xs∈S(d)(1,xd,x,b)

dxs k(d)(1,xs,xd,x,v,b,a)

+ 1
2

∫

xs∈S(d)(1/2,xd,x,b)

dxs k(d)(1/2,xs,xd,x,v,b,a)
)

, (34)

k(d)(p,xs,xd,x,v,b,a)

=fXs (xs)fXd|Xs
(xd|xs) 1

v
fV |Xs,Xd

(v|xs,xd)L(d)(p,xs,xd,x,b,a),(35)

and

D̂(d) =
∑

R(d)(x,b)∈S(d)(a,b)

∫ vmax

vmin

dv K(d)(x,v,b,a) (36)

Proof: Refer to Appendix II.
We may note that the term

∫ vmax

vmin
K(d)(x,v,b,a) dv, where

K(d)(x, v, b, a) is given in (34), corresponds to the expected
time spent over the regionR(d)(x, b) while moving between
the pointsXs andXd that are respectively drawn from the
distributions fXs

and fXd|Xs
. Also, in order to formulate

L(d)(p, xs, xd, x, b, a) and the regionS(d)(p, xd, x, b) explic-
itly we need to partitionR(d)(a) with respect toR(d)(x, b).
Clearly this will increase the complexity of the results pre-
sented by Theorem 1. However since we are aimed at using
the distributions of the continuous-d case to reach some
conclusions about the exact case, we decided to keep the

b

ax

xd

xs xd

xs

L(6)(1
2, xs, xd, x, b, a)

L(6)(1, xs, xd, x, b, a)

R(6)(x, b)

Fig. 6. Illustrations ofR(6)(a), R(6)(x, b), andL(6)(p, xs, xd, x, b, a).

presentation of the results given by Theorem 1 as simple as
possible.

Now, in view of the result given by Claim 1 for̂D(d)
n (25),

if V (i.e., the speed for a movement epoch) is assumed to be
independent from the distributions ofXs andXd, then we get
the following for D̂(d) in (36).

D̂(d) = E[
1

V
]D̄(d) (37)

where

D̄(d) =

∫

xs∈R(d)(a)

dxs

∫

xd∈R(d)(a)

dxd fXs
(xs)fXd|Xs

(xd|xs) |xs − xd|(d)

(38)
where |xs − xd|(d) represent the total distance traveled be-
tween the pointsxs = (xs1

, xs2
) andxd = (xd1

, xd2
) for the

continuous-d mobility formulation. Clearly ifd = 4, then

|xs − xd|(4) = |xd1
− xs1

| + |xd2
− xs2

| (39)

which is also know as theManhattan distance [12]. Also,
notice that|xs − xd|(4) > |xs − xd|(6) , ∀xs, xd ∈ R.

Finally, based on the definition of̄D(d) in (38), theE[Ṽ (d)]
will be given by the following even if the distribution ofV is
dependent on the distributions ofXs andXd.

E[Ṽ (d)] =
D̄(d)

E[Tp|Xs ∈ R(d)(a)] + D̂(d)
(40)

IV. PROPERTIES OF THECONTINUOUS MOBILITY

FORMULATION

In this section, we concentrate on the long-run properties of
the continuous mobility formulation. In order to be as generic
as possible, the mobility terrainR is assumed to be rectangular
defined byR = [0, a1] × [0, a2]. DenoteX(t) and Ṽ (t),
respectively, as the location and speed of a mobile terminalat
time t. Because we are interested in the long-run distributions,
let X and Ṽ respectively denote the random variables having
the long-run distribution ofX(t) and Ṽ (t). Notice that the
state spaces ofX andX(d), andṼ andṼ (d) are the same but
since the continuous-d mobility formulation puts restriction
on the movement directions, their distributions will be always
different from each other.
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xd

xs

x10 a1

0

a2

xx
2

L(xs, xd, x, ∆x1, ∆x2)

∆x1

∆
x

2

: The regionS(xd, x, ∆x1, ∆x2)

Fig. 7. Illustrations ofS(xd, x, ∆x1, ∆x2) and L(xs, xd, x, ∆x1, ∆x2)
for the continuous mobility formulation.

Now as mentioned before, sinced can be either equal to four
or six, the results provided by Theorem 1 can not be extended
formally to cover the exact case that allows mobile to move
at any direction. However, we feel that since the formulation
of FX(d)(x, a, b) in (32) andfṼ (d)(ṽ) in (33) are completely
dependent the formulation of the regionS(d)(p, xd, x, b) in
(31) that is composed of the pointsxs where a movement starts
with destinationxd and passes through the regionR(d)(x, b)
(see Fig. 5 and Fig. 6) with probabilityp, the formulation
of the distributions for the continuous case should be also
dependent on identifying the starting points where a movement
epoch with a prespecified destination passes through a given
subregion.

Therefore, analogous to the definition ofR(d)(x, b) inside
R(d)(a) (see Fig. 5 and Fig. 6), we define the following
rectangular subregion for the continuous case:

R(x,∆x1,∆x2) = [x1 − ∆x1

2 , x1 + ∆x1

2 ]

× [x2 − ∆x2

2 , x2 + ∆x2

2 ] (41)

wherex = (x1, x2), and∆x1 and∆x2 are selected such that
R(x,∆x1,∆x2) ⊆ R. Also denoteS(∆x1,∆x2) as the set
of all nonintersectingR(x,∆x1,∆x2) ⊆ R.

Now since the direction of movement is not restricted, a
movement epoch that starts from a pointxs with destination
xd passes through the regionR(x,∆x1,∆x2) with probability
one or zero. Therefore, it is enough denote the distance trav-
eled overR(x,∆x1,∆x2) by L(xs, xd, x,∆x1,∆x2). Hence,
the correspondent ofS(d)(p, xd, x, b) in (31) is simply

S(xd, x,∆x1,∆x2)

= {xs|xs ∈ R,L(xs, xd, x,∆x1,∆x2) 6= 0} (42)

In Fig. 7, we illustratedS(xd, x,∆x1,∆x2) and the line
segmentL(xs, xd, x,∆x1,∆x2) for a destination pointxd

outside the regionR(x,∆x1,∆x2).
In view of these discussions, we conjecture the following

result, which is a plausible one but since the continuous-d
mobility formulation is not defined ford > 6, it cannot be
proven formally.

Conjecture 1: For the mobile terminal, whose mobility
pattern is characterized by the triplet< fXd|Xs

, fV |Xs,Xd

, fTp|Xd
>, over the mobility terrainR = [0, a1] × [0, a2],

let FX(x,∆x1,∆x2) denote pmf ofX over the subregion
R(x,∆x1,∆x2) in (41). Also, letfṼ denote the pdf of̃V .

If the pdf fXs
(xd) can be uniquely determined from the

integral equation (9), andE[Tp|Xs = xs] < ∞, ∀xs ∈ R,
andfV |Xs,Xd

> 0, ∀ v ∈ [vmin, vmax], and∀xs, xd ∈ R, then

FX(x,∆x1,∆x2)

=
E[Tp|Xs∈R(x,∆x1,∆x2)] Pr{Xs∈R(x,∆x1,∆x2)}

E[Tp|Xs ∈ R] + D̂

+

vmax
∫

vmin

K(x, v,∆x1,∆x2) dv

E[Tp|Xs ∈ R] + D̂

(43)

and

fṼ (ṽ)=















E[Tp|Xs∈R]δ(ṽ)

E[Tp|Xs∈R]+D̂
, ṽ = 0

P

R(x,∆x1,∆x2)∈S(∆x1,∆x2)

K(x,ṽ,∆x1,∆x2)

E[Tp|Xs∈R]+D̂
, ṽ ∈ [vmin, vmax]

,

(44)
where

K(x, v,∆x1,∆x2)

=

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs k(xs, xd, x, v,∆x1,∆x2), (45)

k(xs, xd, x, v,∆x1,∆x2)

=fXs (xs)fXd|Xs
(xd|xs) 1

v
fV |Xs,Xd

(v|xs,xd)L(xs,xd,x,∆x1,∆x2),(46)

and

D̂ =
∑

R(x,∆x1,∆x2)∈S(∆x1,∆x2)

∫ vmax

vmin

dv K(x,v,∆x1,∆x2) (47)

Now recall that for the continuous-d mobility formulation,
if V is assumed to be independent fromXs and Xd, then
D̂(d) = E[ 1

V ]D̄(d), where D̄(d) is given by (38). Thus, we
conjecture the following result:

Conjecture 2: If the distribution of V is assumed to be
independent fromXs and Xd, then theD̂ in (47) will be
given by

D̂ = E[
1

V
]D̄ (48)

where

D̄ =

∫

xs∈R

dxs

∫

xd∈R

dxd fXs
(xs)fXd|Xs

(xd|xs) |xs − xd| (49)

where |xs − xd| denotes the euclidean distance betweenxs

andxd.
In addition, from the formulation ofE[Ṽ (d)] in (40), we

reach to the following conclusion.
Conjecture 3: The expected value of̃V with the pdf defined

by (44) is

E[Ṽ ] =
D̄

E[Tp|Xs ∈ R] + D̂
(50)

Having definedE[Ṽ ] for the most generic case, we note
that the analytical work presented in [7] also derivesfṼ and
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E[Ṽ ] for a class of mobility models where the speed of a
movement epoch is selected independently from the distance
that is going to be traveled for that epoch. In order to be able
to compare our results with the ones given in that paper, we
must consider the scenarios that the triplet< fXd

, fV , fTp
>

is enough for mobility characterization, that is, distributions of
Xd andTp are independent fromXs, andV is independently
selected fromXs andXd. Hence, after simplifyingfṼ in (44),
andE[Ṽ ] in (50), we get

fṼ (v) =











E[Tp]δ(v)

E[Tp]+E[ 1
V

]D̄
, v=0

1
v

fV (v)D̄

E[Tp]+E[ 1
V

]D̄
, v∈[vmin,vmax]

, (51)

whereδ(v) is defined as the direc delta function, and

E[Ṽ ] =
D̄

E[Tp] + E[ 1
V ]D̄

, (52)

which are consistent with the ones given in [7].

A. Approximation to the pdf of long-run location distribution

Let fX denote the pdf ofX, that is, the random variable
having the long-run distribution ofX(t). It then follows from
the result given by Conjecture 1, and the definition given in
[13] for the pdf of bivariate random variables that

fX(x) = lim
∆x1→0
∆x2→0

FX(x,∆x1,∆x2)

∆x1 ∆x2
(53)

At this point, the important question is, given the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, whether it is possible to find
a closed form expression for the termK(x, v,∆x1,∆x2) in
(45) so that the above limit can be taken explicitly.

To answer this question, we first concentrate on a simple
scenario whereXd is uniformly distributed overR for a given
Xs, and V is characterized byfV . Obviously for this case,
K(x, v,∆x1,∆x2) simplifies to

K(x, v,∆x1,∆x2)

=
fV (v)

v(a1 a2)2

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs L(xs, xd, x,∆x1,∆x2) (54)

Therefore, to be able to derive a closed form expression
for K(x, v,∆x1,∆x2), the integrandL(xs, xd, xi,∆x1,∆x2)
must be expressible in terms of a function that can be
analytically integrated over the given integration region.

Now from the definition ofL(xs, xd, x,∆x1,∆x2), and
also from Fig. 7, observe that

L(xs, xd, x,∆x1,∆x2) = (g(xs, xd, x,∆x1,∆x2))
1/2 (55)

for a functiong(xs, xd, x,∆x1,∆x2) that is piecewisely con-
tinuous onS(xd, x,∆x1,∆x2) for given xd ∈ R. Clearly,
the analytical integration ofL(xs, xd, x,∆x1,∆x2) in (55)
over the given 4-dimensional integration region (see (54))
is complicated. Hence, we conclude that obtaining a closed
form expression forK(x, v,∆x1,∆x2) even for the simplest
of all possible mobility characterization parameters is nearly
impossible.

:S1(xd, x, ∆x1, ∆x2)

:S3(xd, x, ∆x1, ∆x2)

:S2(xd, x, ∆x1, ∆x2)

∆x1

x1

xd

0 a1

a2

0

∆
x

2

x
2

xs

xs

xs

Fig. 8. Partitioning the regionS(xd, x, ∆x1, ∆x2)

However, if some exceptional choices ofxs = (xs1
, xs2

)
and xd = (xd1

, xd2
) are not taken into consideration, for

example, suppose thatxs, xd /∈ R(x,∆x1,∆x2), |xd1
− x1|

> ∆x1

2 , and |xd2
− x2| > ∆x2

2 , thenL(xs, xd, x,∆x1,∆x2)
will be expressible in terms of an easily integrable function
for some mobility characterization choices.

To be more precise, on the rectangular mobility terrain
R = [0, a1] × [0, a2] assumexd1

> x1 + ∆x1

2 and
xd2

> x2 + ∆x2

2 . Furthermore, letℓR(x1) denote the line
segment joining the pointsxd and (x1 + ∆x1

2 , x2 − ∆x2

2 ),
and assumeℓR(0) > 0. In Fig. 8, we provided a visual-
ization of these assumptions. Notice that this special case
also implies |xd1

− xs1
| > |xd2

− xs2
|. In addition, con-

sider the partitioning of the subregionS(xd, x,∆x1,∆x2)
into three subregions as shown in Figure 8, and denote
Lr(xs, xd, x,∆x1,∆x2), r = 1, 2, 3, as the distance traveled
overR(x,∆x1,∆x2) whenxs ∈ Sr(xd, x,∆x1,∆x2). Next,
formulatingLr(xs, xd, x,∆x1,∆x2) explicitly we get

Lr(xs, xd, x,∆x1,∆x2)

=







|xd−xs| ∆x1

xd1
−xs1

, r=2

|xd−xs|(
x2+cr

∆x2
2 −xs2

xd2
−xs2

− x1+cr
∆x1

2 −xs1

xd1
−xs1

), r=1,3

(56)

wherec1 = 1 andc3 = −1.
Before we proceed further, it should be noted that, for

the formulation that assumesxd1
> x1 + ∆x1

2 and xd2
>

x2 + ∆x2

2 , if we had concentrated on the case that only
allows |xd2

− xs2
| > |xd1

− xs1
|, and had partitioned

S(xd, x,∆x1,∆x2) in the same way as we did in Fig. 8, then
theLr(xs, xd, x,∆x1,∆x2), r = 1, 3, would be also defined
by (56). However, ifr = 2, then

L2(xs, xd, x,∆x1,∆x2) =|xd−xs| ∆x2
xd2

−xs2
, (57)

which is expected intuitively.
Now returning back to case that is constructed according

to the assumption|xd1
− xs1

| > |xd2
− xs2

|, it is clear
thatL2(xs, xd, x,∆x1,∆x2) > Lr(xs, xd, x,∆x1,∆x2), r =
1, 3 (also observe it from Fig. 8). Hence, concentrating on
L2(xs, xd, x,∆x1,∆x2) observe the following:

L2(xs, xd, x,∆x1,∆x2) = ∆x1

s

1+
(xd2

−xs2
)2

(xd1
−xs1

)2
, (58)
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Obviously as the difference between|xd1
−xs1

| and|xd2
−xs2

|
increases, the term

(xd2
−xs2

)2

(xd1
−xs1

)2 converges to zero. Hence, we
can state the following:

L2(xs, xd, x,∆x1,∆x2) ≈ ∆x1 (59)

Finally, sinceL2(xs, xd, x,∆x1,∆x2) is always more dom-
inant thanLr(xs, xd, x,∆x1,∆x2), r = 1, 3, we conclude the
following approximation.

L(xs, xd, x,∆x1,∆x2)≈
{

∆x1, |xd1
−xs1

|>|xd2
−xs2

|
∆x2, |xd1

−xs1
|<|xd2

−xs2
|

(60)

V. EXAMPLE SCENARIOS

Example 1: The random waypoint model proposed in [4],
which is commonly used to model node movement by the
performance analysis studies for wireless ad hoc networks,
can be considered as the simplest nontrivial case for the
mobility characterizations that can be analyzed accordingto
the triplet < fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>. For this model,
the distributions ofXd and V are assumed to be uniform
in the regionsR and [vmin, vmax], respectively. Moreover,
the distribution ofTp is considered to be the same at all
destinations. Therefore, for the rectangular mobility terrain
R = [0, a1] × [0, a2], we simply have

fXs
(xd) =

{

1
a1 a2

, if xd ∈ [0, a1] × [0, a2]

0, otherwise
(61)

Hence, form Conjectures 1 and 2 we reach the following end
result for the pmf ofX overR(x,∆x1,∆x2) in (41):

FX(x,∆x1,∆x2)=

E[Tp]∆x1 ∆x2

a1 a2
+ E[ 1

V ]KX(x,∆x1,∆x2)

E[Tp] + E[ 1
V ]D̄

(62)
where

KX(x,∆x1,∆x2)

=

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs
1

(a1a2)2
L(xs, xd, x,∆x1,∆x2)(63)

where E[ 1
V ] =

ln( vmax
vmin

)

(vmax−vmin) , and D̄ is given by (49). In

addition, fṼ andE[Ṽ ] can be derived respectively from the
equations in (51), and (52).

In order to establish confidence in the correctness of
the FX(x,∆x1,∆x2) we provided above by (62) for the
random waypoint model, we will now focus on the task
of evaluatingFX(x,∆x1,∆x2) in (62) numerically for all
R(x,∆x1,∆x2) ∈ S(∆x1,∆x2), and validating them using
the results derived from the simulation of the random waypoint
mobility model.

Hence, observe first that to generateFX(x,∆x1,∆x2)
from (62) for a givenR(x,∆x1,∆x2), we need to evaluate
KX(x,∆x1,∆x2) numerically in (63), which is defined by
a 4-dimensional integral. Obviously, the accuracy of a result
that can be derived from a numerical integration methodol-
ogy is dependent on thesmoothness of the integrand over
the integration region [14]. Therefore, to increase the accu-
racy of our numerical experiments, we partition the region
S(xd, x,∆x1,∆x2) into sr subregions, wheresr ≥ 1, so that

xd

• • • • • sr1

x
2

∆
x

2

x1

∆x1

: The regionS(xd, x, ∆x1, ∆x2)

Fig. 9.Partitioning ofS(xd, x, ∆x1, ∆x2) into sr subregions for a givenxd.

the integrandL(xs, xd, x,∆x1,∆x2) (see (63)) evaluated for
a fixedxd deviates less for all of thexs that belongs to those
subregions. In Fig. 9, we illustrated this partitioning method-
ology for a givenxd. Next, to evaluate the 4-dimensional
integrals for each of these subregions, we first transformed
them to an integral over a hypercube [14]. Then, each of the
resulting integrals are evaluated by repeated one-dimensional
integrations according to the Gauss’ Formula [15]. Clearly, this
is not “economical”, however, it is required in order to provide
an evidence for our conjecture. The program implementing this
methodology is designed in a generic form in order to also
capture different mobility characterization parameters,and it
is available from authors.

To findFX(x,∆x1,∆x2) from simulation, a simple simula-
tion model is developed consisting of a single node moving ac-
cording to the random waypoint mobility profile. In this model,
during each simulation run, the node travels forne number of
movement epochs. For each movement epoch, the time spent at
eachR(x,∆x1,∆x2) ∈ S(∆x1,∆x2), while passing through
it or pausing at it, is exactly calculated, and added to the total
time spent at the subregionR(x,∆x1,∆x2) for the whole
simulation run. At the end of the run,FX(x,∆x1,∆x2) is
derived by normalizing the total time spent atR(x,∆x1,∆x2)
to the total run time of the experiment.nr independent replica-
tions of this experiment is run, and the finalFX(x,∆x1,∆x2)
is obtained by averaging the results of these runs. Also, at
the beginning of each replication, the initial location, and
speed and pause time distributions of the node is determined
according to the methodology explained in [6] for the efficient
and reliable simulation of random waypoint mobility model.

Now to be able to represent a comparison of the results ob-
tained form (62), and from the simulation model we described
above, consider the region[b(1)1 , b

(1)
2 ]× [b

(2)
1 , b

(2)
2 ] ⊆ R where

b
(1)
i , i = 1, 2, and b(2)j , j = 1, 2, are multipliers of∆x1 and

∆x2, respectively. Notice that ifPX(b(1), b(2)) denotes the
probability of the mobile terminal to be located over the region
[b

(1)
1 , b

(1)
2 ]× [b

(2)
1 , b

(2)
2 ] at the long-run, thenPX(b(1), b(2)) can

be easily derived by accumulating all of theFX(x,∆x1,∆x2)

such thatR(x,∆x1,∆x2) ⊂ [b
(1)
1 , b

(1)
2 ] × [b

(2)
1 , b

(2)
2 ]. Hence,

let P (C)
X (b(1), b(2)) and P

(S)
X (b(1), b(2)) respectively denote

the correspondent ofPX(b(1), b(2)) obtained from (62) (i.e.,
Conjecture 1) and from the simulation model. Based on
these notations, we define the following metric to asses the
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Fig. 10. E
(S,C)
X (b(1), b(2)) in (64) andE

(S,A)
X (b(1), b(2)) in (70) for Example 1 (a1 = 1200, a2 = 900, b

(1)
1 = i a1/8, i = 0, . . . , 7, b

(1)
2 = b

(1)
1 +a1/8,

b
(2)
1 = j a2/6, j = 0, . . . , 5, b

(2)
2 = b

(2)
1 + a2/6, vmin = 1 m/s, vmin = 20 m/s, Tp = U [0, 30] sec).

correctness of our conjecture for this mobility model.

E
(S,C)
X (b(1), b(2)) =

|P (S)
X (b(1), b(2)) − P

(C)
X (b(1), b(2))|

P
(S)
X (b(1), b(2))

,

(64)
Finally, for our experiments, we considered a[0, 1200]m

×[0, 900]m mobility terrain, and set the parameters of mobility
as follows:vmin = 1m/s, vmin = 20m/s, andTp is uniform
over the range[0, 30]sec. Then, we chose∆x1 = ∆x2 = 5m,
and setne = 107, nr = 100 for the simulation experiment,
and evaluatedE(S,C)

X (b(1), b(2)) for various choices ofb(1)i

and b(2)i , i = 1, 2. The results are presented in Fig. 10.(a).
Simulation results are acquired with a95% confidence in-
terval lower than0.001. Since the percentage of error, (i.e.,
E

(S,C)
X (b(1), b(2))×100) is at most1.29% we conclude that the

application of the Conjecture 1 to random waypoint mobility
model is correct.

Thus, usingFX(x,∆x1,∆x2) in (62) we can obtain the pmf
of X = (X1,X2) over the subregionR(x,∆x1,∆x2) numer-
ically. With this knowledge at hand, we will now concentrate
on findingE[X1], E[X2], andCorr(X1,X2). Hence, we set
∆x1 = a1

n1
and∆x2 = a2

n2
for some discretization parameters

n1, n2 ∈ Z
+, and define the discrete bivariate random variable

X∗ = (X∗
1 ,X

∗
2 ) with the finite state space

S∗={∆x1
2 ,

3∆x1
2 ,...,

(2n1−1)∆x1
2 }×{∆x2

2 ,
3∆x2

2 ,...,
(2n2−1)∆x2

2 } (65)

to denote the subregionR(x∗,∆x1,∆x2) in (41), wherex∗ ∈
S∗, that the mobile is located at the long-run. Clearly, asn1 →
∞ and n2 → ∞, X∗ converges to the continuous bivariate
random variableX.

Evaluating the distribution ofX∗ from FX(x,∆x1,∆x2)
in (62) we obtainedE[X∗

1 ], E[X∗
2 ], and Corr(X∗

1 ,X
∗
2 )

numerically for several different parameter choices for the
random waypoint mobility model. For all of the scenarios
we considered, we setn1 and n2 sufficiently large enough
to closely approximateX = (X1,X2) with X∗ = (X∗

1 ,X
∗
2 ),

and observed the following:

E[X∗
1 ] =

a1

2
, E[X∗

2 ] =
a2

2
, Corr(X∗

1 ,X
∗
2 ) = 0 (66)

The simulation studies presented in [16], [17] points out that
the long-run location distribution of the random waypoint
mobility model is more accumulated at the center of the
mobility terrain. More importantly, it is symmetric with respect
to center. Therefore, obtainingE[X∗

1 ] andE[X∗
2 ] as in (66)

is expected. However, the result forCorr(X∗
1 ,X

∗
2 ) = 0 is

not observed before. Obviously, it does not conclude that the
distributions ofX1 andX2 are independent.

It should also be noted that analytical work presented in
[5] for the spatial node distribution generated by this mobility
model concentrates on the case whereR = [0, a] × [0, a],
V is deterministic with parameterv, and E[Tp] = 0, and
formulates the long-run cumulative distribution functionover
a region with an area ofδ2. If we substituteE[1/V ] with 1

v ,
andE[Tp] = 0, and assume∆x1 = ∆x2 = δ, anda1 = a2,
theFX(x,∆x1,∆x2) we defined by (62) becomes consistent
with the formulation of the cumulative distribution function
given in [5].

We now focus on applying the approximation we defined
by (60) forL(xs, xd, x,∆x1,∆x2) to derive an approximation
to fX(x) in (53) (i.e., the pdf ofX). First, notice from
the formulation ofKX(x,∆x1,∆x2) in (63) that when this
approximation is used, the integration of the integrand over
the regionS(xd, x,∆x1,∆x2), will be equal to∆x1 or ∆x2

times the area of the regionS(xd, x,∆x1,∆x2). Hence, by
partitioning the boundaries of the 4-dimensional integration
that formulatesKX(x,∆x1,∆x2) according to the condition
|xd1

−xs1
| > |xd2

−xs2
| and its counterpart appropriately, we

obtained a closed form expression for (63). Finally, evaluating
the limit FX(xi,∆x1,∆x2)

∆x1 ∆x2
as ∆x1 → 0 and ∆x2 → 0, we

reached the following approximation forfX :

fX(x) ≈ f̃X(x) (67)

where

f̃X(x) =
E[Tp]

1
a1 a2

+ E[ 1
V ]k(x)/Ñ

E[Tp] + E[ 1
V ]D̄

(68)

wherek(x) is defined by the equation in (85) in Appendix I,
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Fig. 11. Comparison ofFX1
in (72) andF

(C)
X1

in (73) for Example 2 (a1 = 1000 m, ∆x1 = ∆x2 = 5m, vmin = 1 m/s, vmax = 20 m/s,
Tp = U [0, 30] sec).

and Ñ is the normalization term given by

Ñ =
(

∫

x∈R

k(x) dx
)

/D̄ (69)

It should be noted that since the termL(xs, xd, x,∆x1,∆x2)
is either substituted by∆x1 or ∆x2, the functionk(x) in (85)
must be normalized in the regionR so thatf̃X(x) will be a
probability density function.

In order to asses the validity of the approximation we
presented above by (67), we define

E
(C,A)
X (b(1), b(2)) =

|P (C)
X (b(1), b(2)) − P

(A)
X (b(1), b(2))|

P
(C)
X (b(1), b(2))

,

(70)
whereP (A)

X (b(1), b(2)) is the integration of̃fX(x) in (68) over
the region[b

(1)
1 , b

(1)
2 ] × [b

(2)
1 , b

(2)
2 ].

In Fig. 10.(b) we provided theE(C,A)
X (b(1), b(2)) for the

same mobility parameter choices we considered in Fig. 10.(a).
From the values ofE(C,A)

X (b(1), b(2)) for different [b(1)1 , b
(1)
2 ]×

[b
(2)
1 , b

(2)
2 ] ⊆ R, we reached to the conclusion that the approx-

imation we stated by (67) for the long-run spatial distribution
of the random waypoint model over the given rectangular
mobility terrain is quite accurate.

In addition, if one is interested in variant of random way-
point mobility model where mobiles may pause at different at
differentXd, that is,fTp|Xd

needs to be employed in mobility
characterization in stead offTp

, then the approximation given
in (68) can be redefined as follows:

f̃X(x) =
E[Tp|Xs = x] 1

a1 a2
+ E[ 1

V ]k(x)/Ñ

E[Tp|Xs ∈ R] + E[ 1
V ]D̄

(71)

Finally, we note that in [5] authors also present a very
accurate approximation for the pdf ofX for the special case of
the original random waypoint model whereR = [0, 1]× [0, 1],
and speed choice for all movement epochs is constant. In order
to compare that approximation with the one given in this paper
numerically for this special case (i.e.,R = [0, 1] × [0, 1] and
speed is constant), we evaluated cumulative long-run location
distributions for several subregions overR according to both of

them. We observed for various choices ofE[Tp] andV that the
relative error between the results obtained from approximation
and simulation is at most2% for both of the approximation
methods defined in [5] and in (67).

Example 2: According to the results that are proved in
[1] for the one-dimensional version of the random waypoint
mobility model, the probability distribution function ofX1

(i.e., the first component ofX = (X1,X2)) over the mobility
terrainR = [0, a1] is

FX1
(x1) =

x1

a1
E[Tp] +

x2
1(a1−2x1/3)

a2
1

E[ 1
V ]

E[Tp] + a1

3 E[ 1
V ]

(72)

In principle, if the application of Conjecture 1 to random
waypoint model holds to be true, then the marginal distribution
of X1 derived from the joint probability distribution function
FX(x,∆x1,∆x2), which is defined by (62) in Example 1 (i.e.,
the probability thatX = (X1,X2) ∈ R(xi,∆x1,∆x2) at the
long-run), and the probability distribution functionFX1

given
above by (72) should match with each other. Thus, to provide
an additional confidence to theFX(x,∆x1,∆x2) in (62) we
conjectured for the random waypoint mobility model, we now
concentrate on examining the correctness of this statement.

For this purpose, we first set∆x1 = a1

n1
and∆x2 = a2

n2
for

somen1, n2 ∈ Z
+. Hence, the marginal distribution function

of X1 can be derived fromFX(x,∆x1,∆x2) (62) as follows:

F
(C)
X1

(x1) = Pr{X1 ∈ [0, x1] × [0, a2]}, x1=i∆x1,i=1,...,n1,

=

x1
∆x1
∑

i1=1

n2
∑

i2=1

FX(xi,∆x1,∆x2) (73)

where x = (x1, x2), that is, the center of the unit area
R(x,∆x1,∆x2) in (41).

In Fig. 11, we considered several proportions betweena1

and a2 for the given mobility parameters, and provided a
comparison ofFX1

in (72) andF (C)
X1

in (73) after evaluating
FX(x,∆x1,∆x2) in (62)∀ R(xi,∆x1,∆x2) ∈ S(∆x1,∆x2)
numerically according to the methodology we explained dur-
ing the discussions for Example 1. As it can be observed from
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Fig. 11, the two distribution functions perfectly matches with
each other. Thus, we accomplished our goal in providing a
second evidence for the application of Conjecture 1.

In addition, it is clear that an approximation to the marginal
distribution of X1 can be derived from the approximation
defined by (68) for the joint probability density function of
X = (X1,X2). Therefore, we now define this approximation
by

F
(A)
X1

(x1) =

∫ x1

0

du

∫ a2

0

dvf̃X(u, v) (74)

wheref̃X is given by (68).
Now from the comparisons ofFX1

in (72) andF (A)
X1

in
(74) that are depicted graphically in Fig. 12 for the given
mobility parameters, notice that the approximating results are
very accurate for several proportions betweena1 and a2.
This observation is very important because it points out that
the quality of approximation done byF (A)

X1
is insensitive to

the frequency of the movement epochs that happen over the
regionR = [0, a1] × [0, a2] on the vertical and the horizontal
directions.

Example 3: In Section IV we conjectured that if the dis-
tribution of V (i.e., the speed for a movement epoch) is
independent fromXs andXd, then the pdf ofṼ (i.e.,, fṼ )
and its expected value (i.e.,E[Ṽ ]) are given by equations (51)
and (52), respectively. As we have mentioned before, those
equations are consistent with the ones given in [7] for a class
of mobility models whereV selected independently from the
distance that is going to be traveled (i.e.,|Xs −Xd|).

Thus, for this example, we consider a variant of random
waypoint mobility model which incorporates the ability to
determineV according to|Xs −Xd|, and concentrate on the
correctness on the distribution ofṼ we provided in Conjecture
1 for the most generic mobility characterization.

Now for the original random waypoint model, keeping the
distributions ofXd and Tp the same as before, consider a
truncated normal distribution [18] forV according to the pdf
given by

fV |Xs,Xd
(v|xs, xd)

=
Z(v−µ(xs,xd)

σ )

σ
(

Φ(vmax−µ(xs,xd)
σ ) − Φ( vmin−µ(xs,xd)

σ )
)

(75)

for vmin ≤ v ≤ vmax whereσ > 0, and

µ(xs, xd) = vmin +
(vmax − vmin)

a
|xs − xd| (76)

Z andΦ are the probability density and cumulative distribution
functions for the normal distribution [18].

Before proceeding further, observe from the formulation of
fV |Xs,Xd

that asσ → 0 the possibility of determiningV
proportional to|Xs − Xd| increases. Also, asσ → ∞ we
converge to the original case, that is,V is uniformly distributed
in [vmin, vmax].

Now formulating thefṼ according to the equation (44)
provided in Conjecture 1, observe first that the integrand of
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∼ 

Fig. 13. Comparison ofFṼ derived from Conjecture 1 and Simulation for
Example 3 (a1 = 1200 m, a2 = 900 m, ∆x1 = ∆x2 = 5m, vmin = 1 m/s,
vmax = 20 m/s, Tp = U [0, 30] sec).

K(x, v,∆x1,∆x2) in (45) will be given by

k(xs, xd, x, v,∆x1,∆x2)

=
1

v(a1 a2)2
fV |Xs,Xd

(v|xs, xd)L(xs, xd, x,∆x1,∆x2),(77)

which implies that finding a closed form expression for
K(x, v,∆x1,∆x2) is very complicated even if the approxi-
mation defined by (60) forL(xs, xd, x,∆x1,∆x2) is applied.

Therefore, to obtain the distribution of̃V we use the
numerical integration methodology we explained before in
Example 1. Also, to test the accuracy of the numerical results
obtained, we modified the simulation model we presented in
Example 1 according the new mechanism to selectV , and
finally obtained the probability distribution function of̃V ,
(i.e., FṼ (v) =

∫ v

vmin
dufṼ (u)) both from thefṼ given in

Conjecture 1 and the simulation model. In Fig. 13 we provided
a comparison of these two results for different values ofσ for
the given mobility parameters. Simulation results are acquired
with a95% confidence interval lower than0.003. Observe that,
the two distributions perfectly matches with each other forall
cases.

Having provided this confidence for the distribution ofṼ
defined by Conjecture 1, we now focus on the effect of the
choice ofσ on the value ofE[Ṽ ], which is also formulated
by (50). In Table II we providedE[Ṽ ] for different choices
of σ andE[Tp]. The other parameters are the same with the
experiments performed for the results depicted in Fig. 13. First,
observe that for a givenE[Tp], E[Ṽ ] increases asσ decreases.
Also, for a given finite value ofσ, the difference between
the E[Ṽ ] obtained, and theE[Ṽ ] evaluated for theσ → ∞
case increases asE[Tp] increases. Both of these results are
expected because asσ decreases, the possibility of moving
long distances with artificially low speeds diminishes, andas
a result, the expected value of the long-run speed increases.

Example 4: In the previous examples we assumed the dis-
tribution of Xd to be independent fromXs. To demonstrate
the applicability of the generalized mobility framework we
proposed to the scenarios where the choice ofXd is correlated
with the starting pointXs, we will now concentrate on a
variant of the Manhattan model introduced in [19] for the
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Fig. 12. Comparison ofFX1
in (72) andF

(A)
X1

in (74) for Example 2 (a1 = 1000 m, ∆x1 = ∆x2 = 5m, vmin = 1 m/s, vmax = 20 m/s,
Tp = U [0, 30] sec).

TABLE II

E[Ṽ ] FOR EXAMPLE 3

E[Ṽ ] (m/s)
(vmin=1 m/s, vmax=20 m/s)

E[Tp] (sec) σ → ∞ σ = 10 σ = 5 σ = 1
0 6.342 6.517 6.867 8.106
15 5.408 5.985 6.279 7.299
30 4.713 5.535 5.785 6.638

I

I I

I

Fig. 14. Mobility terrain for the Manhattan mobility model.

simulation based performance analysis of wireless ad hoc
networks.

In Manhattan model, mobile terminals are restricted to
move towards horizontal and vertical directions on a mobility
terrain that is composed of paths, which can be also call
as “streets”, forming a grid structure, as shown in Fig. 14.
When a mobile enters to an intersection of streets it goes
straight with probabilityp, which is set to1

2 in the model
description. If it changes its direction, it selects eitherof
the opposing directions with equal probabilities. Since this
model is originally developed for simulation based studies,
the speed of mobile terminals is characterized according toa
sophisticated mechanism that imposes a correlation between
the speed choices at the consecutive time slots of the discrete
event simulation, and it can be dependent with the speed
characteristics of other mobile terminals on the same street.

Now notice that in this model, the movement directions are
limited by four, that is,d = 4, and they are given byγı, ı =
0, . . . , d−1 in (6). Hence, if the mobility profile formulated by
Manhattan model can be characterized according to the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, then the results presented in
Theorem 1 for the continuous-4 mobility formulation can
be directly applied for long-run analysis. Clearly since we
assume the mobiles to move independently from each other,
we cannot capture the speed formulation proposed by the
Manhattan model. Hence, we can only concentrate on a variant
of the original model where speed choices of terminals are
independent from each other. We believe that even if this
simplification is required, the other characteristic of themodel
is very important for the usability of our model because it
corresponds to a scenario where mobiles are restricted to move
on predefined paths.

For this purpose, and to be consistent with the notation used
in Theorem 1, we assume that the two-dimensional mobility
terrain R can be divided into equal size square subregions
R(4)(x, b) of side lengthb with centerx, as shown in Fig. 15.
Also, each street is composed of manyR(4)(x, b) forming a
rectangle with side lengthsb anda, wherea is a multiple of
b. In addition, intersections, which are represented by a single
R(4)(x, b), either connect streets with each other, or streets to
border of the mobility terrain.

Now to define the parameterfXd|Xs
(i.e., the pdf ofXd

given Xs), assume that mobility epochs either start from a
point over an intersection or a street. If epoch starts from
a point belonging to an intersection, then with probability
α, where α < 1, it moves to a destination point that is
distributed uniformly over one of the closest intersections, and
with probability 1−α it selects a destination point uniformly
over either of the connecting streets. On the other hand, if
movement epoch starts from a point over a street, then with
probabilityβ, whereβ < 1, it moves to a destination over one
of the connecting intersections, which is selected with equal
probabilities, and with probability1 − β the destination is
selected at the same street. Again, in both cases, the destination
point at the target subregion is uniformly distributed. In
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Fig. 15. Partitioning of the mobility terrain shown in Fig. 14.

addition, we assume that when a movement epochs ends(starts)
at(from) an intersection it travels a total distance ofb

2 inside
that intersection. In other words, movement epochs occur
between the centers of the intersections.

Clearly with this setting, mobiles may stop at streets.
However, asα → 1, we converge to the scenario in which
mobiles moves between intersections, which is also required
by the original mobility model. We can not setα = 1 because
in that case locations over streets will never be selected as
destination and the steady-state distribution forXs will never
exists. Also notice that by choosingfTp|Xd

(i.e., the pdf of
pause time at the destination) appropriately, we can force the
mobiles to not to stop at the intersections.

Now according to the Manhattan model when the mobile
enters to the intersection, it either goes straight or turns. In
order to model this, we need to have a mechanism that controls
the direction of mobile terminals at consecutive movement
epochs, which is not incorporated by the generalized mobility
model we proposed. In our mobility framework, the destination
point of the current movement epoch is dependent to the
destination of the previous one, which becomes the starting
point of the current, but not to its direction. However, if we
separate the terminals entering an intersection accordingto
the direction that they are coming trough, then we will have
the opportunity to bring direction control into the mobility
formulation.

More formally, consider the notations depicted in Fig. 15 for
the identification of streets and intersections. When a mobile
enters to an intersection, it takes a phase corresponding tothe
direction that it is coming trough. In Fig. 15 we provided a
visualization of these phases for the intersectionsI0,1, I1,1,
I2,1, and I3,1. Hence,Xs ∈ I

(ı)
i,j corresponds to the case

where the mobile terminal enters toIi,j trough the direction
γı. SinceI(ı)

i,j keeps the memory of previous direction, we can
immediately model a scenario where mobile keeps the same

direction with higher probability.
Thus,fXd|Xs

must be defined separately for allXs belong-
ing to intersections and streets. Concentrating on the special
caseXs ∈ I

(0)
1,1 , the stochastic density kernelfXd|Xs

will be
defined as follows:

fXd|Xs
(xd|xs) =



















































p α
b2 , Xs∈I

(0)
1,1 , Xd∈I

(0)
2,1

p (1−α)
a b , Xs∈I

(0)
1,1 , Xd∈H1

1,2

(1−p) α
2 b2 , Xs∈I

(0)
1,1 , Xd∈I

(1)
1,2

(1−p) (1−α)
2 a b , Xs∈I

(0)
1,1 , Xd∈V 1

1,2

(1−p) α
2 b2 , Xs∈I

(0)
1,1 , Xd∈I

(3)
1,0

(1−p) (1−α)
2 a b , Xs∈I

(0)
1,1 , Xd∈V 1

0,1

, (78)

Clearly if the intersection is located near the border, then
mobile is supposed to reflect back, and the kernel must be
defined in a different way. For example, ifXs ∈ I

(2)
0,1 , then we

have

fXd|Xs
(xd|xs) =

{ α
b2 , Xs∈I

(2)
0,1 , Xd∈I

(0)
1,1

1−α
a b , Xs∈I

(2)
0,1 , Xd∈H1

0,1

, (79)

Finally, concentrating onXs ∈ H1
0,1, we have

fXd|Xs
(xd|xs) =















β
2 b2 , Xs∈H1

0,1, Xd∈I
(2)
0,1

β
2 b2 , Xs∈H1

0,1, Xd∈I
(0)
1,1

1−β
a b , Xs∈H1

0,1, Xd∈H1
0,1

, (80)

For the rest of the cases, the kernelfXd|Xs
can be defined

in a straightforward manner according to the conditions we
considered in (78), (79), and (80).

As we have mentioned before, we cannot exactly capture
the mobility formulation proposed by the original model. We
have to assume that the speed characteristics of mobiles are
independent from each other. In addition, as it is mentioned
in Example 3, if the distribution ofV is assumed to be
dependent to the locations ofXs andXd, then finding a closed
from solution for the long-run location distribution is nearly
impossible. Hence, we assume that the distribution ofV is
not correlated with the distributions ofXs andXd. This is an
reasonable assumption because since we are interested in the
scenario where a movement epochs starts from a point on a
intersection and without stopping at the streets ends up at one
of the closest intersection (i.e., asα→ 1), the distribution of
speed can be immediately selected proportional to the length
of a street, or according to the speed limit on streets.

Having defined the parameters of the mobility characteriza-
tion, the next step is to derive the steady state distribution of
Xs, that is to derivefXs

(xd) from the integral equation in (9).
For this purpose, letSdk

denote the subregion (that is, street
or intersection) that theXd (i.e., destination point) of thekth
movement epoch belongs to. Hence, the DTMC{Sdk

, k ∈ N}
with states corresponding to the subregionsI

(ı)
i,j , Hk

i,j , andV k
i,j

shown in Fig.15, and the transition probability matrixA that
is constructed according to the formulation offXd|Xs

can be
used to govern the decisions ofXd at the embedded points
in time when a new epoch starts. For instance, according to
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(78) Pr{Sdk+1
= I

(0)
2,1 |Sdk

= I
(0)
1,1} = pα and Pr{Sdk+1

=

I
(1)
1,2 |Sdk

= I
(0)
1,1} = (1 − p)α/2.

Thus, since we assume the destinations points to be uni-
formly distributed over an intersection or a street once that
subregion is selected as destination, a steady-state distribution
for Xs exists only if the DTMC{Sdk

, k ∈ N} satisfies the
conditions of ergodicity. Therefore,α andβ can not be equal
to 1, which is already required in the formulation offXd|Xs

.
Now, letπ denote the steady-state distribution of the DTMC

{Sdk
, k ∈ N}. After some algebraic manipulations we found

out that

π
I
(ı)
i,j

= 1
C , πHk

i,j
= πV k

i,j
= 2(1−α)/β

C

where C = 24(1 + (1 − α)/β). Since the{Sdk
, k ∈ N}

determines the subregionXs is located, it can be easily shown
that the steady-state distribution ofXs has the following pdf:

fXs
(xd) =

{ 1
C b2 , xd∈I

(ı)
i,j

2(1−α)/β
C a b , xd∈Hk

i,j , xd∈V k
i,j

, (81)

Next, for the caseα → 1 (i.e., mobiles only stop at the
intersection), letRs denote subregion which represents the
streets or the intersections, and denotePRs

as the long-run
proportion of time mobile terminals located at the at subregion
Rs. Now, PRs

can be derived as follows.
Since we have assumed the distribution ofV to be inde-

pendent fromXs and Xd, applying Theorem 1 we get the
following form for PRs

:

PSr
=
E[Tp|Xs ∈ Rs] Pr{Xs ∈ Rs} + E[ 1

V ]KRs

E[Tp|Xs ∈ R] + E[ 1
V ]D̄(d)

(82)

Now focusing on the termPr{Xs ∈ Rs}, assume thatRs =

I2,1. Since I2,1 is composed ofI(ı)
2,1 for ı = 0, . . . , d − 1,

Pr{Xs ∈ I2,1} = 4 b2 1
C b2 = 1

6 . Clearly, if Rs was
representing an intersection on the border, then it will be
composed of a singleI(ı)

i,j for someı ∈ {0, . . . , d− 1}. Hence
we can state the following:

Pr{Xs ∈ Rs}=















1
6 , Rs = Ii,j , andIi,j is not on the border
1
24 , Rs = Ii,j , andIi,j is on the border

0, otherwise

(83)
It should be thatPr{Xs ∈ Rs} = 0 when Rs represents
streets because asα→ 1 the probability of selecting locations
on streets as target diminishes.

In order to obtain the expression forKRs
, we need to

identify all of the movement epochs that pass trough subregion
Rs including the ones starting and ending atRs. Similar to
what we did above assumeRs = I2,1. The epochs that start
from I

(0)
1,1 andI(3)

2,2 will end up atI2,1 with probability p, and

the ones that originate fromI(1)
2,0 andI(2)

3,1 will will target I2,1

with probability 1. Also, the ones that start fromI(1)
1,1 , I(3)

1,1 ,

I
(0)
2,2 , and I(2)

2,2 , will move to I2,1 with probability (1−p)
2 . In

addition, the epochs that originate fromI2,1 should be also
taken into account. Hence, recalling that the distance traveled

over an intersection is assumed to be equal tob
2 , we get

KI2,1
= 2

(

p b2

C b2
b
2 + 2 (1−p) b2

2 C b2
b
2 + 2 b2

C b2
b
2

)

+ 4 b2

C b2
b
2 = b

6

Base on this reasoning, we can state the following:

KRs
=















b
6 , Rs = Ii,j , andIi,j is not on the border
b
24 , Rs = Ii,j , andIi,j is on the border
a
12 , Rs = Hk

i,j or Rs = V k
i,j

,

(84)
In addition, since movement epochs occur between intersec-
tions that can be joined by a single street,D̄(d) = (a + b),
which can be double checked by summing upKRs

given
above for all differentRs.

VI. SUMMARY

This paper concentrates on the analysis of a generalized
random mobility modeling approach for wireless ad hoc net-
works over two-dimensional mobility terrains. The analytical
framework we introduced is based on a special discretization
technique, and provided the long-run location and speed char-
acteristics in full generality for a limited version of the model
proposed where mobiles are only allowed to move towards one
of the finite number of available directions. We conjectured
the long-run distributions of the exact mobility formulation,
where mobiles can move at any direction, from the analysis
of this limited case. We also examined the correctness of our
conjectures for a number of scenarios including random way-
point mobility model and a variant of it where the distribution
of speed selected for a movement epoch is dependent on the
distance that is going to be traveled.

From application of the results to random waypoint mobility
model we derived an approximation to the long-run location
distribution over rectangular mobility regions. We validated the
accuracy of the approximation by simulation, and after com-
paring the marginals with proven results for one-dimensional
regions pointed out that accuracy is insensitive to proportion
between the dimensions of the rectangular region. In addition,
we showed the applicability of the mobility framework and
its corresponding analysis to a mobility terrain where mobiles
are restricted to move on predefined paths, and obtained the
long-run location distributions in closed form expressions. Our
analysis and example scenarios indicate that rich mobility
models can be efficiently brought into the analytical studies
concentrating performance characteristics of wireless adhoc
networks.

APPENDIX I

Formulation of k(x) for Example 1
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k(x)=































































k1(x)+k4(x)+k6(x)+k8(x), 0<x1<
a1
2 , 0<x2<

a2x1
a1

k1(x)+k4(x)+k6(x)+k8(x), a1
2 <x1<a1,

0<x2<a2(1− x1
a1

)

k2(x)+k4(x)+k5(x)+k8(x), 0<x1<
a1
2 ,

a2x1
a1

<x2<a2(1− x1
a1

)

k1(x)+k3(x)+k6(x)+k7(x), a1
2 <x1<a1,

a2(1− x1
a1

)<x2<
a2x1

a1

k2(x)+k3(x)+k5(x)+k7(x), 0<x1<
a1
2 ,

a2(1− x1
a1

)<x2<a2

k2(x)+k3(x)+k5(x)+k7(x), a1
2 <x1<a1,

a2x1
a1

<x2<a2

,

(85)
whereki(x), i = 1, . . . , 8 are formulated by the equations in
(86,87,. . . ,93) that are located at the bottom of the page.

APPENDIX II

Proof of Lemma 1
Proof: If the integral equation (9) has a unique solution,

thenϕi > 0 for all i = 0, . . . , n− 1. Hence, the states of the
form (ci, 0) will be visited eventually, and in order to satisfy
irreducibility, it is enough to verify the reachability to the states
of the form(ci, cj , zr, 1) from the state(ci, 0). Clearly this can
be satisfied only ifνr|i,j > 0 for all possible choices ofr, i,
and j.

Thus, if the conditions we listed above for irreducibility
holds, then all states are periodic with the same period, or
else all states are aperiodic. For some finite parameters ofn
andm, wheren > 1 andm > 1, if generate all of the states in
the state spaceS, and concentrate on the state(c0, c1, zr, 1),
then we can easily show that it is possible to return back
to (c0, c1, zr, 1) in four or seven transitions after leaving it.

Since the greatest common divisor of them is 1, the state
(c0, c1, zr, 1) becomes aperiodic, and proof completes.

Proof of Lemma 2
Proof: The proof is by direct substitution. First, ac-

cording to the transitions given in Table I, notice that only
the states of the form(ci, cj , zr, 1), wherecj ∈ nh(ci) (also
ci ∈ nh(cj)), makes a transition to the states(cj , 0). Hence,
observe for a givencj ∈ R̃ that

∑

ci∈R̃,
ci∈nh(cj)

π
(d)
i,j em =

∑

ci∈R̃,
ci∈nh(cj)

(

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′

+
1

2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′
)

/N (94)

Now, for all ci∗ ∈ nh(cj), each member of the setp(d)
t,2 (i∗, j)

will be also a member of one more set denoted byp
(d)
t,2 (i∗∗, j)

for a different ci∗∗ ∈ nh(cj). Also, for every ci∗ , ci∗∗ ∈
nh(cj), p

(d)
t,1 (i∗, j) ∩ p

(d)
t,1 (i∗∗, j) = {}. Hence, we get the

following for the above equality:
∑

ci∈R̃,
ci∈nh(cj)

π
(d)
i,j em =

∑

ci′∈R̃

ϕi′τj|i′/N − ϕjτj|j/N

= (ϕj − ϕjτj|j)/N

= π
(d)
j (95)

Now, it remains to concentrate on the transitions to the states
of the form (ci, cj , zr, 1). According to Table I, the states of
the form (ci, 0), and the states(ci′ , cj , zr, 1), where ci′ ∈
p
(d)
t,1 (i, j)∩nh(ci), make a transition to the state(ci, cj , zr, 1)

k1(x) =
(a1 − x1)x2

[

2 a2 x1 + a1 (x1 − x2) + x1 x2 log(x1(a2−x2)
(a1−x1)x2

)
]

2 a2
1 a

2
2 x1

(86)

k2(x) =
x1 (a2 − x2)

[

2 a1 x2 + a2 (x2 − x1) + x1 x2 log( (a1−x1)x2

x1(a2−x2)
)
]

2 a2
1 a

2
2 x2

(87)

k3(x) =
(a1 − x1) (a2 − x2)

[

a2 (x1 − a1) + x2 (a2 + 2a1) + (a1 − x1)x2 log( x1 x2

(a1−x1)(a2−x2)
)
]

2 a2
1 a

2
2 x2

(88)

k4(x) =
x1 x2

[

(a1 + 2 a2) (a1 − x1) − a1 x2 + (a1 − x1)x2 log( (a1−x1)(a2−x2)
x1 x2

)
]

2 a2
1 a

2
2 (a1 − x1)

(89)

k5(x) =
x1 (a2 − x2)

[

a1 (a1 − x1 + x2) + a2 (a1 − 2x1) + (a1 − x1) (a2 − x2) log( (a1−x1)x2

x1(a2−x2)
)
]

2 a2
1 a

2
2 (a1 − x1)

(90)

k6(x) =
(a1 − x1)x2

[

a2 (a1 + a2 + x1) − (2 a1 + a2)x2 + (a1 − x1) (a2 − x2) log(x1(a2−x2)
(a1−x1)x2

)
]

2 a2
1 a

2
2 (a2 − x2)

(91)

k7(x) =
(a1 − x1) (a2 − x2)

[

2 a2 x1 + a1 (x1 + x2 − a2) + x1 (a2 − x2) log( x1 x2

(a1−x1)(a2−x2)
)
]

2 a2
1 a

2
2 x1

(92)

k8(x) =
x1 x2

[

a2 (2 a1 + a2 − x1) − (2 a1 + a2)x2 + x1 (a2 − x2) log( (a1−x1)(a2−x2)
x1 x2

)
]

2 a2
1 a

2
2 (a2 − x2)

(93)
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with a nonzero probability, given their discrete speed matches.
Furthermore, the states of the form(ci′ , cj , zr, 1), whereci′ ∈
p
(d)
t,2 (i, j)∩ nh(ci), jump to state(ci, cj , zr, 1) with probability

1/2. Similar to other case, the component for speed must also
match.

It can be easily observed that, the setp
(d)
t,1 (i, j) ∩ nh(ci)

is either empty or have only one element. Similarly, the set
p
(d)
t,2 (i, j) ∩ nh(ci), is either empty or have two elements.

Without loss of generality, letci1 denote the only member
of p(d)

t,1 (i, j) ∩ nh(ci), and letci2 andci3 denote the only two

members ofp(d)
t,2 (i, j) ∩ nh(ci). Now, observe the following:

⋃

i∗∈{i1,i2,i3}
p
(d)
t,1 (i∗, j) = p

(d)
t,1 (i, j) − {ci} (96)

⋃

i∗∈{i1,i2,i3}
p
(d)
t,2 (i∗, j) = p

(d)
t,2 (i, j) (97)

In view of these discussions, observe the following:

π
(d)
i

τj|i
1 − τi|i

νm|i,j +
∑

ci′∈p
(d)
t,1 (i,j)∩nh(ci)

π
(d)
i′,j

+(1/2)
∑

ci′∈p
(d)
t,2 (i,j)∩nh(ci)

π
(d)
i′,j

= ϕiτj|iνm|i,j/N +
∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′νm|i′,j/N

−ϕiτj|iνm|i,j/N +
1

2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′νm|i′,j/N

= π
(d)
i,j (98)

which concludes the proof.

Proof of Claim 1
Proof: First, observe the following simplification for

D̂
(d)
n :

D̂(d)
n = E[

1

V ∗ ]
∑

ci∈R̃

(

∑

cj∈R̃−{ci}

(

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′

+
1

2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′
)

)

∆c(d), (99)

Now in order to prove our claim, given the cellsci∗ , cj∗ ∈
R̃, we have to identify how many times the expression
ϕi∗τj∗|i∗ appears in the expanded version of the triple sum-

mation given above. For this purpose, letpath(d)
1 (i∗, j∗)

and path(d)
2 (i∗, j∗) denote the cells that are located on the

path p̃(d)(i∗, j∗) with probabilities 1 and 1/2, respectively.
Furthermore, letn1 and n2 denote the cardinalities of those
sets. Obviously,n2 is even, andn1 + n2/2 = dis(i∗, j∗).

With respect to these notations, observe that if we ex-
pand the triple summation given above, there will be terms
where the index of the outermost summation is a member
of either the setpath(d)

1 (i∗, j∗), or the setpath(d)
2 (i∗, j∗),

and the index of the middle summation iscj∗ . Moreover,
if ci′ ∈ path

(d)
1 (i∗, j∗), then ci∗ ∈ p

(d)
t,1 (i′, j∗). Therefore,

since there aren1 different cells in thepath(d)
1 (i∗, j∗), the

expressionϕi∗τj∗|i∗ will appear n1 times in the expanded

summation. Similarly, for allci′′ ∈ p
(d)
t,2 (i∗, j∗), the expression

(1/2)ϕi∗τj∗|i∗ will appear in the expanded summation. As a
result,ϕi∗τj∗|i∗ appears in the summation forn1+n2/2 times,
which is equal todis(i∗, j∗), and proof completes.

Proof of Theorem 1
Proof: To proveFX(d)(x, a, b) in (32) we first define

the discretisized version of it according to the parametersn,
m, and take the limit of the resulting expression asn andm
approach infinity. Hence, letci, which can be a square or a
hexagon on the discretisized region, also denote the region
bounded by it. Also, for a givenR(d)(x, b), let R̃(d)(x, b)
denote the cells iñR where eachci belonging to it satisfies
the conditionci ⊂ R(d)(x, b). Additionally, for the rest of this
proof we will use the notations̃R(d)(a) andR̃ (i.e., the set of
cells covering the discretisized region) interchangeably.

Now for a givenR(d)(a), andR(d)(x, b) ⊆ R(d)(a), using
the formulation ofp(d)

i in (20) (i.e., long-run proportion of
time that terminal stays in cellci), we define

F
(n,m)

X(d) (x, a, b)

=

∑

ci∈R̃(d)(x,b)

ϕi(1 − τi|i)E[Tpi
] +

m
∑

r=1

∑

ci∈R̃(d)(x,b)

k
(d)
i,r

N
(d)
n,m

, (100)

Now, letK(d)
n (x, zr, b, a) =

∑

ci∈R̃(d)(x,b)

k
(d)
i,r . Hence, according to

the definition ofk(d)
i,r in (22) we get

K(d)
n (x, zr, b, a) =

∑

ci∈R̃(d)(x,b)

∑

cj∈R̃−{ci}

(

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j

+
1

2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j

)

∆c(d),(101)

Next, for a givenci ∈ R̃(d)(x, b), cj ∈ R̃ − {ci}, and ci′ ∈
p
(d)
t,1 (i, j), it can be easily shown that, ifℓ(p, i′, j), wherep =

1, denotes the number of discrete jumps done over the region
R(d)(x, b) while moving fromci′ to cj , thenci′ will also be
a member of otherℓ(1, i′, j) − 1 many p(d)

t,1 (i, j) generated
for all different ci ∈ R̃(d)(x, b) and located on the path
from ci′ to cj . Hence, the expressionϕi′τj|i′

1
zr
νr|i′,j∆c

(d)

will appear ℓ(1, i′, j) times in the expansion of the triple
summation above. Obviously, the same statement can be also
constructed by first considering aci′ ∈ p

(d)
t,2 (i, j), and making

the rest of the statements according toℓ(1/2, i′, j). As a result,
K

(d)
n (x, zr, b, a) would be equivalent to the following.

K(d)
n (x, zr, b, a)

=
∑

cj∈R̃(d)(a)

(

∑

ci′∈S
(d)
n (1,j,x,b)

ϕi′τj|i′
1

zr
νr|i′,jℓ(1, i

′, j)∆c(d)

+
1

2

∑

ci′∈S
(d)
n (1/2,j,x,b)

ϕi′τj|i′
1

zr
νr|i′,jℓ(1/2, i

′, j)∆c(d)
)

(102)

whereS(d)
n (p, j, x, b) denotes the subset of cells iñR(d)(a)

where∀ ci′ ∈ S
(d)
n (p, j, x, b) the movement epoch betweenci′
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and cj passes through the regionR(d)(x, b) with probability
p.

At this point, we note thatK(d)
n (x, zr, b, a) is actually the

discretisized version ofK(d)(x, v, b, a). Therefore, in order
to make a formal transition from (102) to (34) observe the
following substitutions for sufficiently high values ofn and
m:

ϕi′ = fXs
(x∗i′)∆A, (103)

τj|i′ = fXd|Xs
(x∗j |XS ∈ ci′)∆A, (104)

νr|i′,j = fV |Xs,Xd
(v∗r |Xs ∈ ci′ ,Xd ∈ cj)∆v (105)

where∆A denote the area covered by cellci, and the numbers
x∗i′ , x

∗
j , and v∗r are chosen arbitrarily within the subregions

covered by the cellsci′ , cj , and[r∆v, (r+1)∆v], respectively,
for i′, j = 0, . . . , n− 1, andr = 1, . . . ,m.

After inserting the substitutions in (103), (104), and (105)
back to the expression in (102), observe first that the term
ℓ(p, i′, j)∆c(d) converges toL(d)(p, xs, xd, x, b, a) (i.e., the
total distance traveled overR(d)(x, b) while moving fromxs to
xd, and passing throughR(d)(x, b) with probabilityp) asn→
∞. Clearly, if ci′ andcj are outsideR(d)(x, b) then they will
be equal for all choices ofn. Based on this observation, we can
also state that the region bounded by the cells inS

(d)
n (p, j, x, b)

converges toS(d)(p, xd, x, b) in (31) asn→ ∞. Consequently,
the taking the limitK(d)

n (x, zr, b, a) asn→ ∞ (∆A→ 0) is
equivalent to transforming double summation operations over
the regionsR̃(d)(a) andS(d)

n (p, j, x, b), into double integration
operations overR(d)(a) and S(d)(p, xd, x, b), respectively.
After this transformation, when the limit of the resulting
expression is taken asm → ∞, theK(d)(x, v, b, a) given by
(34) can be easily obtained. Finally, by substitutingϕi andτi|i
with fXs

(x∗i )∆A andfXd|Xs
(x∗i |XS ∈ ci)∆A, respectively,

it can be immediately observed that

lim
n→∞

∑

ci∈R̃(d)(x,b)

ϕi(1 − τi|i)E[Tpi
]

= E[Tp|Xs ∈ R(d)(x, b)] Pr{Xs ∈ R(d)(x, b)}(106)

Hence, the limit ofF (n,m)

X(d) (x, a, b) asn → ∞ andm → ∞
will be equivalent to theFX(d)(x, a, b) given by (32).

In order to provefṼ (d)(ṽ) (33), we need to take the
limit of ψ(d)

r (21) asn and m approaches infinity. Clearly
this can be done by summing the termsK(d)

n (x, zr, b, a)
(102) for all R(d)(x, b) ∈ S(d)(a, b). Since we have already
shown thatK(d)

n (x, zr, b, a) converges toK(d)(x, v, b, a) as
n → ∞ andm → ∞, it immediately follows thatfṼ (d)(ṽ)
can be formulated by summing theK(d)(x, v, b, a) for all
R(d)(x, b) ∈ S(d)(a, b) and also normalizing it the end, which
completes the proof.
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