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Abstract—Most of the important characteristics of wireless In what follows, we give a brief description of the gen-
ad hoc networks such as link distance distribution, connectivity, eralized random mobility characterization approach tisat i
network capacity, etc., is a consequence of the long-run propees  ana1y7ed in this article. LeR? denote the two-dimensional

of the mobility profiles of communicating terminals. Therefore, | d . hich bile t inal te. A bil
the analysis of the mobility models proposed for these networks closed region on which mobile terminals operate. A mobile

becomes crucial. The contribution of this paper is to provide located at the poin¥, = (X,,, X,,) € R, selects a random
an analytical framework that is generalized enough to perform point X, = (X4,, X4,) € R as destination according to the
the analysis of realistic random movement models over two- conditional probability density function (pdffix, | x, (zalzs),

dimensional regions. The synthetic scenarios that can be captufe and moves to pointX, on the straight line segment joining

include hotspots where mobiles accumulate with higher proba- . .
bility and spend more time, and displacement dependent speed the two points, and at a spedd that is drawn randomly

distributions. From the utilization of the framework to random  from the interval{v,in, Vmaz], Wherev,,;, > 0, according to
waypoint mobility model, we derive an approximation to spatial the conditional pdffy|x, x,. After reaching the destination,
distribution of terminals over rectangular regions. We validate mobile pauses for a random amount of time, denoted fy
the accuracy of this approximation via simulation, and by = 5¢ . \which is distributed with respect to the conditional pdf
comparing the marginals with proven results for one-dimensional . . .
regions point out that it is insensitive to the proportion between prle' and whole cycle is repeateq by selgctlng a new desti-
dimensions of the terrain. In addition, we establish an example Nation. Hence, the pattern of a mobile terminal is composed o
that demonstrates the applicability of the results derived to consecutive movement epochs between the randomly selected
a scer_1ario where mobile Ferminals are r_est_ricte_d to move on points X, and X4, and it is uncorrelated with the movement
predefined paths, and provided long-run distributions by closed hapayiors of other terminals. Throughout this paper, we use
form expressions. . .
N _ _ the triplet < fx, x., fv|x.,x., fr,)x, > to characterize the
Index Terms— Mobility Modeling, Long-Run Analysis, Ad Hoc  movement pattern of a mobile that moves with respect to this
Networks, Two-Dimensional Regions. model.
Among the parameters of the triplet fx, x., fvx. x.
. INTRODUCTION fr,1x, >, the conditional pdffx, x,, which identifies the
WIRELESS ad hoc networks communicating termidistribution of X, given X, at the embedded points in time
I nals move with respect to many different mobilitywhere a new movement epoch starts. Incorporation of this ker
patterns each one having unique attributes. Thereforeilitgob nel into this mobility characterization methodology pibes
modeling and its analysis becomes very important for thbe ability to define hotspots on the two dimensional mapilit
performance evaluation of these kinds of networks. In thisrrain where mobiles accumulate with higher probability,
paper, we focus on the long-run location and speed distoibbut and correlations between consecutive hotspot decisions ca
analysis of a generalized random mobility modeling appgnoabe successfully modeled. Furthermore, sinc¢as randomly
over two-dimensional mobility terrains. drawn from fy x_ x,, we have the flexibility of constructing
The modeling methodology we are concentrating on & correlation between the distribution ©f and the locations
originally defined in [1] as a generalized model that is fléxib of the starting pointX; and destinationX,. For instance, a
enough to capture the major characteristics of severabtieal scenario that identifie¥” proportional to the distance that is
movement profiles. In that paper, long-run location and amging to be traveled, that i$X; — X4/, can be easily defined.
speed distributions are given in closed form expressions fio addition, the usage ofr, x, makes it possible to capture
one-dimensional regions. Here, we extend the analysisde twdifferent pause distributions at different destinatioxailable
dimensional terrains. A variety of examples are also givdar the mobility model.
to show how the proposed model and its long-run analysisFor wireless ad hoc networks, there have been proposed a
framework works for a broad range of mobility modelingrhumber of different mobility models. Comprehensive susvey
approaches. of these models can be found in [2], [3]. Among them, the



random waypoint model [4] is one of the most widely used R
one for analytic and simulation-based performance arsmtyfsi
ad hoc networks. In this model, a mobile selects a destimatio I 7{’ )8t 80 80
point in the mobility terrain with equal probability, and mres 1 1

. . . . 4,0 411 4,2 43 4,4 4,5 4,6
to that point with a speed that is drawn uniformly from a ined | j
given range. After reaching the destination, mobile patmes w0 | x| Ao | a8 | aa | as| as
random time, which has a distribution that is independearnfr e | ! gl
the current location, and whole cycle is repeated by selgcti 20 fw2/ | 22 | da | 24 2,5 70
a new destination. In [5], [6], [7], analytical frameworkeea ine2 | 21(1/2) 72 *°
presented for the long-run analysis of this mobility model. 1 |1 |12 | a3 | e |Prs|  1e
The analysis that we propose in this paper is also applicable et
to random waypoint model, and to demonstrate the correstnes s o R . 0

and superiority of our work, we present a comparison of the

results derived V_Vlth the 9”65 presented in literature. . Fig. 1. Discretization of the square regidhinto squares.
The rest of this paper is outlined as follows. In Section I,

we describe analytical framework we developed for long-run

analysis. Section Il provides the long-run distributidios a Additionally, instead of observing the state of a terminal
limited version of the exact mobility formulation constted continuously, we observe it at embedded times denoted by
according to the methodology explained in the second sectiq; for 1 < N, such thatTj, = 0 Ty > Tp, Yk € ZF
Section |V extends the results derived in section three aW?\ich point to the time of occurrence of one of the following
provides the distributions for the generalized model ps&gb o\ ents:

In Section V, we focus on example scenarios, and the finlz%l_ The terminal which is i d lect I
section presents a summary of the paper. 1. The terminal which is in pause mode, selects a new cell as

destination that is different from the current cell occapie
and changes its state to moving state in the current cell

Il. METHODOLOGY AND DESCRIPTION OFANALYTICAL it is located,

FRAMEWORK E5: The terminal which is traveling in the direction of the
In this section, we describe the analytical framework we target cell, moves out from the current cell and enters the
establish for the long-run analysis of the generalized fitgbi neighboring cell that lies on the shortest path between the
model proposed. current and destination cells,

Now since the movement behavior of mobiles are assumgg: The terminal reaches to the destination cell and enters the
to be uncorrelated with each other, we can concentrate on a pause mode at that location.

single terminal for long-run analysis. Hence, for the termi a: this point, notice that the discretization of the two-

nal whose movement pattern is characterized by the trip|§ensional regiorR into n cells of the same shape, such that
< fxalx. fvix, xa fry)x, >, let the vectorX(t) denote eyery point inR belongs to one cell, can performed through
the state descriptor whose components identify the CUTAL yse of triangles, parallelograms (including squares an
location, destination, and the speed of that mobile at e ¢tangles), or hexagons. We note that, the idea of dividing
our solution methodology, we discretisize the two-dimenal o region on which mobile terminals operate to regular
m.oblllty_terraln R and approximate the random varllatiké polygons of the same shape has been generally used by some
with a discrete random variable so that the stochastic BECgygies concentrating on the performance analysis of laellu
{X(#),t > 0} can be defined on a multidimensional discretgeryorks. For instance, the studies presented in [8] and [9]
state space. The assumptions that we have made to genefate e radio coverage of a base station to be a hexagon or
this discrete state space are as follows: a square, and present a performance analysis study that is
Ay: The closed regionR is discretisized inton disjoint, done with respect to a mobility model which formulates the
non-overlapping cells of the same shape denoted;by movement behavior of the terminals between those cells on a
i=0...n—1, such thatk C |J/"; ¢; wheren > 1. A" macroscopic scale. However, in our analysis, we disceetisi
mobile terminal is assumed to occupy one of ths the regionR on a microscopic scale to approximate the exact
at any moment in time, and movement epochs occlgcation that can be occupied by a terminal at any point in
between two randomly picked starting and destinatiaime. On the other hand, in the performance modeling of
cells. cellular networks, the exact location of a terminal inside t
A: The random variableV’, that is, the speed during acoverage area of a base station is not the main issue, and the
movement epoch, is approximated by the discrete rafain problem is to identify the base station that it is ateath

dom variableV* defined on the state spac® - = to.

{21,22,..., 2} Wherez. = rAv, r = 1,...,m, for  |n our analysis, to apply assumption;, we focus on
some discretization parametéxv > 0, and an integer the discretization methods that partition the regiininto

m 2 1 such thatAv < vmin andvme, = mAv. squares or hexagons. The reasoning behind concentrating on

Based on these assumptions, observe that a mobile can bewio different discretization approaches f@rconcurrently will
pausing or moving modes at the cell it is currently located.become more clear as we proceed further in the long-run



those directions (see cell, 5 in Fig. 1, and celk, 4 in Fig.

2). On the other hand, in principle, if there are no obstactes
the regionR that can restrict the movement directions, then
mobile should be able to move at any direction. Therefore, by
discretizing the region, we are also forceddiscretisize the
movement direction. Obviously, if R is discretisized by regular
polygons of the same shape, as we are doing, thesm be at
most equal to six. Furthermore, if the discretization ofgior

R with a general shape (e.g. rectangle) with regular polygons
is done for the purpose approximating the exact location of
a terminal, as in our case, then using hexagons is a better
choice because the number of available movement directions
are higher, and a more realistic approximation can be done to
the exact mobility pattern.

At this point, it should be noted that, the enforcement of
discretizing movement directions will not arise for the one
dimensional case because there are only two directions for a
mobile to move on a one-dimensional region and discretinati
method does not enforce any kind of restriction on these
directions. Clearly the fundamental difference betweea th
discretization parameter$, and n and m is thatn and m
can be increased, bdt as we have mentioned above, can be
at most equal to six. This difference introduces a new issue
g@t has to be clarified before continuing. In what follows w

Fig. 2. Discretization of the hexagonal regidhinto hexagons.

analysis. In Fig. 1 and Fig. 2, we applied these discretimati
approaches to square and hexagonal regions. It should e R ) :
explain this issue and our solution approach for it.

noted that, in principle, any closed region can be disdretis . .
b P y g e glow recall that according to our mobility model proposed,

by squares or hexagons. Here we decided to discretisize, a. : ! .
square with squares, and a hexagon with hexagons becaq}éréng a movement epoch, mobile travels on the straight line
' pining the points X and X,. In the discretisized version

we wanted the discretization technique to be consisterit wi ; -

the shape of the region. of this mobility model, movement epochs occur between
In Fig. 1 and Fig. 2, we also depicted the scheme we decid domly selected cells. Obviously if the mobile termiral i

on to identify the cells on the discretisized region. Ba$jca allowed to move at any direction in the regidh then the

the centers of the cells are grouped by lines that are phtalleﬁ:grézst\t/\/g:;hthbeer;w?‘ré itthic; sjnim;oe pHO?vt/Sevl:rJLf]s: tr: d?;rcatlegtht
each other, and the indeof cell ¢; is denoted by = (¢;, ¢}) ' que. '

where (; represents the line that the centergfis located, formulation, the shortest path is defined in terms of the rermb

and/; is its location on that line. For the rest of this paper, wt f éggpdsoggtgffgr;ills'toMsorS;gzo(::TZ’) f(())rr ?Odr':;r:“::;
will use the notations:; andc,, ./ interchangeably. Hence, 9 q T 9

k2 I P i ~(d) ) ] = i
f there aren, lines, and iy, denotes the number of cells ory 2+ 040 Ca o RO I O e
line ¢, then set of the cells on the discretisized region can E)e P

defined as follows: epoch that had started @t‘ a_nd e_nded up at destingtion C@Il
then the members gi?¥ (i, j) will not be necessarily unique.
L Ml The algorithm that we use in this paper to geneyate(i, j)
R= U {c,0)s- -+ Ceq-1)} (1) s as follows. Ifc; is towards the direction,, for some: €
=0 {0,...,d—1} from ¢;, then mobile follows that direction until
It should be noted that, as the side lengths of the disct&tiza it reaches destination;. On the other hand, mobile proceeds
hexagons decreases, the total area covered by the unioe oftththe next cell either in the directiof or v, 1moqq With
cells in R becomes close to the area Bf equal probabilities for somé € {0,...,d — 1} that generates
Clearly, the path traveled during a movement epoch dthte least possible shortest path if selected, and contiimues
scribed by the discretisized version of the mobility chégac that direction until it reaches to a cell that can be joined;to
ization we constructed, is composed of consecutive straidly following one of thed available directions. For example, in
line segments between the centers of the cellsi = Fig. 2, consider the scenario where= c, 1) andc; = ¢(7.4).
0,...,n—1. In other words, a mobile terminal moves to on®bserve that for this scenario, this algorithm either geiesr
of the neighboring cells from the current cell occupied whilthe path{c. 1), c(,2), ¢(4,3); C(4,4)> €(5,4), C(6,4)> C(7,4) } OF the
traveling towards the destination cell. Hencediflenotes the path {c(4 1), ¢(5,1), ¢(6,1), €(7,1)» €(7,2)» C(7,3)> C(7,4) }- A Similar
number of available movement directions for the discretidi example can be also found in Fig. 1. It should be also noted
mobility formulation, thend would be equal to the numberthat, according to our notation, the first and the last member
of the sides of the regular polygons used in the discretimatiof the list 5(9) (i, j) arec; and ¢;, respectively.
process. Thusd = 4 for square discretization, anfi= 6 for Having clarified these issues, we now proceed to the formal
hexagonal discretization, and let,» = 0,...,d — 1 denote definition of the discretisized mobility formulation. Dee®;,,



k € N, as the state of the mobile terminal at tifig. Hence, and speed of the mobile terminals, respectively, and in the
based on assumptions;, A5, and the event#’;, F», E3 that limit we converge to a restricted version the continuous ehod
identify observation time%;, for k € N, the finite-state space where the available movement directions are limited bydhe

of S; will be defined as follows: different directionsyy, .. .,v4—1 given by
S=SmqUS (2) 2ms if d=4,
M 7 Yo = { 2705 (+1/2) s d=6 (6)
where d ’ -
for.=0,...,d— 1. Visualization of these directions are also

Sm=Aleneszra) [1,7 =0, on = Li £ j, provided in Fig. 1 and 2. Clearly because of the methodology
r=1...,mq=1} () we decided to generatg? (i, j), at the limitn — oo, the
Sp={(ci,q)|i=0,...,n—1,¢ =0} (4) path followed during a movement epoch betweénand X,
€ R will generally be composed of two directed finite line
segments towards the directions, and ~,, where {1; =
1,22 = (14 1)modd} or {21 = (2 + 1)mod d, 15 = 1} for some
1 € {0,...,d—1}. This can be also observed from the example
(5) movement scenarios depicted in Fig. 1 and 2. Obviously if
X, is towards any of directions,, « = 0,...,d — 1, from
Consequently, the stochastic procg3§(t),t > 0} can be X, then the path will be composed of a single straight line.
formally defined on the finite-state spaSeaccording to the For the rest of this report we will use the terrontinuous-
following expression: d mobility formulation to refer to this limited version of the
. exact continuous mobility formulation. Finally, we noteath
X(t) =8y, i Ti <t <Ti sinced can be at most equal to six, a formal transition from
Notice that whenX(¢) occupies a state € Sxq, since the this limited case to the original continuous formulatiomieat
states has a separate dimension for the destination cell, the done. Therefore, in the following sections we will use
next state to be visited can be determined from the compsenedistributions of the continuoug-mobility formulation to gain
of it. In other words, the future evolution of the stochastisome insight into the distributions that can be conjecttioed
process{Sx, k € N} becomes dependent only on the currenhe original case.
state of the mobile terminal, not on its history at previous
observation points. Furthermore, for alkE S, the distribution I11. ANALYTICAL RESULTS FORTHE DISCRETISIZED AND
of sojourn time in states would be independent from the CONTINUOUS-d MOBILITY FORMULATION
previous states occupied and can be determined only fro
the components of state
Therefore, the stochastic proceéS;,Ty;k € N} with
finite-state space satisfies the conditions for beirlgarkov

S;ﬁggajasprtacef;nf&g&g\? prrozceig‘()s(g%;)t aisc?c}iaf:c? vf/)i(tah Now, to able to identify the transition probabilities of the
P DTMC {S;, k € N}, we first denoter;; as the probability of

{Sk,Tx; k € N} [10]. Moreover, since the distributions for ; .
S ; selecting cellc; as target from celt;. Then, according to the
destination, speed, and pause time parameters are assumed.. . : .

ility characterization parameték, x,, 7;; will be given

wherec; is the current cell occupied, is the destination cell,
z. is the discretisized speed, agdis the indicator function
that is defined as follows:

__J 1, mobile is moving towards the target cell
1= 0, mobile is pausing at the destination cell

Mn this section, we first concentrate on generating the long-
run location and speed distributions for the discretisizase,
and after that we will use those results to derive long-run
distributions of the continuoug-mobility formulation.

to betime-homogeneous in the mobility model proposed, the mo

distribution of state holding time in state given that the next

state to be visited is’, would be independent of. Hence, Tili =/ fxqgx.(xal Xs € ¢;) drg, (7
the transitions of the procesX(t) at the embedded time Paces

instantsT}, can be governed by thiéscrete-time Markov chain  Similarly, denotewv,; ; as the conditional probability mass
(DTMC) {Sk, k € N} with finite-state spacé and transition function of V* for a movement epoch that had started at cell

probability matrix P = [ps«], wherep,, = Pr{Si.; = ¢ with destinationc;. Then, by using the parametgy x_ x,
s'| Sk = s}, such that)_,.spss = 1 for all s € S. The we have

process{Sy, k € N} is also referred asmbedded DTMC of rAv

SMP. Vrlij = /( A fV\XS,Xd(Ule €ci, Xq € C]‘)dv (8)

Thus, in order to characterize the SMK(t),t > 0} at the
long-run, the DTMC{S;, k¥ € N} must satisfy the ergodicity for r = 1,...,m. In addition, letn;(c;) denote the cells in the
conditions and the mean state holding times must be finiteeighborhood of celt; that can be reached in one jump from
If these conditions are satisfied, then the long-run pragort it, and let[’, i, j] denote the index of the cel} in the ordered
of time spent in a state € S can be obtained, and afterlist that defines the path(®) (i, j). Note that,[,4, 5] = 1, and
aggregating the states that has the sameent cell andspeed  [4, i, 5] = |5 (4, j)|| where||(¥)(i,j)| denotes the number
components, the long-run distributions sought can be @érivof the cells on the patp(® (i, j). Hence, if we are interested
for this discretisized version of the mobility formulation in the probability of the celt; to be the next cell to be visited

Notice that, as the discretization parameters- co and after cell¢;, that is, Pr{[i’, i, j| = 2}, thenPr{[¢’, 4, j] = 2}

m — oo, we obtain better approximations to the locatiois either equal tol, or 1/2, or 0 (i.e. ¢ is not on the path



TABLE |

TRANSITION PROBABILITIES OF THE PROCESSSy, k € N1 approach that does not require to define the transition proba

bility matrix of this DTMC in full generality, we reach to the

Event Transition Probability | Conditior® following:
B (€,0) = (circjrzm 1) | 12wy | 047 Lemma 2: For the DTMC{S;, k € N} defined on the state
B G e = @D I & & (e | spaceS in (2), whered is either equal four or six, let!”
fr{[i’vi*ﬂ:ﬂ = | and w(d)j denote the steady-state probabllltles of being in
172 o @ mn(e),| the states of the forns = (c;,0), i = 0,. — 1, and
Pr{[i’,i,j]=2} = s = (¢, ¢,2r,1), 4,7 =0,...,n—1, i # j,r = 1,...,m,
1/2 ; g -
I CReRER S R T NG :ﬁzpe;tévilr)‘/i. Iljetlhe ci:\?;r:jlgons of Lemma 1 are satisfiednthe
*4,7,j=0,...,n—1, r=1...m y quely g y
d
m? = o (1—m)/N, (11)
(d  _ o L
p¥(4,5)). For instance, in Fig. 2, when; = c(4 1), ¢; = Tig = Z Pir Tjir Vmlir,j /N
¢4y, andey = ¢y 9), thenPr{[i’,4, j] = 2} = 1/2. On the cir€p( (i.9)
other hand, ifc; = c(4,1), ¢; = ca4), andcy = c(4,2), then 1
g ’ ’ g ’ + 5 '/T‘Z‘/Vmi/'N 12
Pre{[i'i.j] = 2) = 1. 2D v T i/ 42
Based on these definitions, the transition probabilities co e P ()
responding to the events;, E», and E3, can be grouped aswhere
in Table 1. (d (d) (d)
Next, we examine the irreducibility and aperiodicity of the Ty = Mg Magm) (13)
DTMC {Sg, k € N} with respect to the transition probabilities Vmling = [V1jirgs- s Vmjir g, (14)

defined in Table I. Letp; denote the probability of starting agnq

movement epoch fromacel], i = 0,...,n—1 at the steady- 4

state. Obviously, in order to satisfy the irreducibility, must pi,f( = {ciles € R, Pr{c; € pV(i',j)} = 1}, (15)
be greater thar fo_r all i=0,...,n—L Other\_/vise, some Ed) (i,§) = {cif\ci/ € R, Pr{c; € V(. j)} = 1/2} (16)
cells on the two-dimensional discretisized region will @ev
be visited (i.e., selected as destination) and the chaiorbes and N = 57" L #(@) 4 5™ H (d)H
reducible. Hence, a steady-state distribution must exist f _ f
X,. The conditional pdffx, x, (zalzs), which identifies the Proof: Refer to Appendix II. PN u
distribution of X, given X, at the embedded points in time 't should be noted that, the Seﬁﬁ (4,5) in (15) and
where a new epoch starts, is referred sixchastic density p§ 2)(1 j) in (16) represent the subset of cellsinfrom where
kernel by Feller [11]. Under some “mild” regularity conditionsa movement epoch originated with destination eelipasses
defined in [11] onfx, x, (z4|xs) the steady-state distributionthrough the celk; with probabilities 1 and 1/2, respectlvely
of X, with pdf fx_(z4) can be uniquely determined from the Now, let?, denote the sojourn time of the SMEX(t), ¢

solution of the following integral equation 0} in states € S. Then, ifs = (¢;, ¢, 2, 1) (i€, moblle is
moving towards the destination with discrete spegl and
fx. (zq) :/ Fxax. @alzs) fx, (z5)dzs, 9) if Ac(?) denotes the traveled distance in a cell while passing
’ z.€ : D trough it, then
Ac(d)
and p; will then be equal to ts = ~ a7

) Notice that, if the discretization is done with squares desi
length As, then, Ac®) = As, and if it is done with respect
to the hexagons of side lengthh, then Ac®) = \/3Ah. On

Observe that, if" = [7;;], and if the integral equation (9) hasthe other hand, i = (c;,0), then we deflne the following.
a unique solution, therpy; can be also obtained by solving

T = ¢, |¢|; =1 wherep = [po, ..., Pn_1]. ts = E[Tp,] = E[T,|Xs € ¢
reérsmvlew of the discussions above, we state the following _ / Pr{T, > t,|X, € ¢;} dt, (18)
0

Lemma 1: If the p.d.f. fx, (x4) can be uniquely determinedring|ly, in order to characterize the SMEX(t), ¢ > 0} at the
from the solution of the integral equatlon (9), andyjif; ; > 0, long-run, the following must be satisfied [10]:
i,j =0,...,n—1andr = 1,...,m, then the embedded

Yi = / sz (xd) dl‘d (10
TaEC;

DTMC {Sk,k € N} defined on state spac® in (2), with Zﬂsfs <00 (19)

transition probabilities given as in Table I, is irredueitdnd s€S

aperiodic. Hence, by applying the theory of semi-Markov processes
Proof: Refer to Appendix II. B we obtained the long-run proportion of time that the SMP

Next, we provide the steady-state distribution of the DTM@X(¢),¢ > 0} is in a states € S. After aggregating the states
{Sk,k € N}. Using Lemma 1, and a direct substitutiorin S that has the sammurrent location andspeed components,



including the ones with zero speed (ise= (¢;,0)), we reach e c3
to the following result.

Lemma 3: For the mobile terminal, whose mobility pattern r ‘—T
is characterized according to the discretisized versiothef

< fxqx.> fvix. xq fr,1x, > mobility formulation, Ietpl(.d),

1=0,...,n—1, d=4,6, denote the long-run proportion of L -—l
time that terminal stays in cedl;, which can be a square or
hexagon. Similarly, denoté” as the long-run proportion of ©
time that mobile possesses spegd= rjv, r = 0,...,m. If 0 g a

the conditions given by Lemma 1 are satisfied, and equation
(19) holds to be true. then Fig. 3. Discretisized version of a simple mobility scenamo=£ 4, d = 4).

c

pi (1= 7y BTy + 3 k(Y | B
p(d) _ r=1_ (20) long as the integral equation in (9) is uniquely solvable and

N equation (19) is satisfied. Now to be able to apply Lemma 3,
we need to generate the discretisized version of this ntpbili

and formulation. Hence, assume = 4, d = 4, and sinceV is
n—1 g : : : P
(d) ; deterministic,n = 1. In Fig. 3 we provided a visualization of
(1= 1) E[T,.] /Ny, ifr=0 : o o ;
;0 #i (1= 7ips) BT ] /N, " the discretisized mobility model generated according &sé¢h
oD =9 (21) assumptions.
> kfi)/Nr(;f)n , else Now for this discretisized mobility formulation, if we are
=0 interested in the long-run proportion of time mobile stays i
where cell ¢y (i.e.,p((fl)), then according to Lemma 3 we simply have
(@) _ e A 1 — 7o10) E[T},] + ESY
kY = Z (> e 5 Vi Ae o — vo ( 0\0)(4£ po] 0.1 (26)
c;€ER—{ci} ¢y Epﬁfil)(i,j) N471
1
+ % Z Soi”rj\i’ — 1/7‘|’il7j AC(d)), (22) Where
Zr
(d) (5 a
it €Pe,2 (1) k?(()i? = %(QOOTMO + 392712 + oT2p0 + 391721 + PoT3)0),
and . 27)
@ _ N o A (d) which is equal to the average time spent over the egll
Noim = Z: i (1= i) B[] + Dy, (23) while moving between randomly picked cells. In other words,
=0 k') is equal to %2 multiplied with the probability of a
where 1 movement epoch between two randomly picked cells to pass
DD — Z Z k(@) (24) trough the celky, including the ones starting or ending at cell
e co. Notice that in this simple formulation,;, ; = 1 for all

. 7,7 =0,...,3. However, if the distribution o’ is dependent

To simplify the formulation ofD\” in (24) for some special on X, and X, in the original continuous mobility formulation,
cases, we now state the following claim. thenm > 1, and we have to multiply each additive term of
Claim 1: If the distribution of V* is assumed to be inde-;(* = 1,... m with the probability of selecting speed
pendent from the location of the starting anAd destinatidls cezr’: rév, (i.e., Vi ) and - for the the movement epoch that
of the movement epochs, the expression fif in (24) is 7 o

) . passes trough cet), as it is shown by the formulation (kfdr)
equivalent to the following: ;

in (22). Observe that, for all choices ®f, the term)_"" , k;z(ff)
D) — E[L] Z Z @i Tili dis'D (i, 5) AcD,  (25) corresponds to the expected time spent over cglivhile
vV moving between two randomly picked cells that are drawn
from the distributionsp;, in (10) andr;;- in (7), respectively.
wheredis@ (i, j) = |p‘¥ (i, )| — 1, that is, the number of  Next we proceed to the long-run analysis of the continuous-
the discrete jumps made on the path (i, j). d mobility formulation. At first, recall that in this case sac
Proof: Refer to Appendix II. B movement directions are restricted to 4 or 6 different direc
Before continuing on with the long-run analysis of théions, the path followed during a movement epoch between
continuousd mobility formulation, in order to clarify the the pointsX, € R and X; € R will be composed two or
interpretation of terrﬂcﬁ? given in (22), we now concentrateone line segments each directed towards one of the available
on a simple example7scenario. Now, consider a continuodigections~, in (6), = = 0,...,d — 1. Thus, in order to
mobility formulation (i.e., mobiles can move anywhere ay arkeep the formulation of this case separate from the exact
direction) over the regionR = [0,a] x [0,a] where V is case, where movement epochs occur on a single directed line
deterministic and equat, and the other mobility character-segment that can have any direction, let the random vasgable
ization parametersfy,x, and fr, x,, can be arbitrary as X (t) = (X D), x{(t)) and V@ (t), whered is either 4

CiER CjER



or 6, denote the location and the speed of a mobile terminal

at time ¢, respectively. Note thak (¥ (¢) € R, and since the Cly (T :y ci3

mobile can be in moving or pausing modes at any point in %ﬂ + ﬁ%ﬂ

time, V(4 (t) is either equal td), or in the ranggvmin, Vmaz|- o e’ |ed e
Now let X(@ = (X{* x{?) and V(@ denote the random % + +

variables having the long-run distribution of (49 (¢) and o | |o |a

V(@ (t), respectively. Recall that in the discretisized version S O O D S DY

of the mobility formulation, we assumed the random variable <8 l ¢ cs

X@(t) and V(@(t) to take only discrete values, and in 0 . a

Lemma 3, provided the long-run proportion of times that a
mobile stays in celle; (i.e. p(_d) in (20)) and possesses':ig' 4. Increasing the discretization scale of Fign3=¢ 16, d = 4).
speedz, (i.e., z/;,(nd) in (21)). Therefore, in order to derive
the distributions ofX (¥ and V(4 we need to focus on the
I|m|t|ng beha_mo_r of the discrete distributions glven_by_rh_ma formulation of Py« (i, ) and.J s, (i, ).
3 as discretization parametetsandm approaches infinity. 2 2)N .

) . . . Thus, we now focus on the formalization of the observations

As an illustration of the methodology that is going to be

. ) ) o . “We mentioned above. In order to keep our formulation as
applied during this transition, lets concentrate on thepgm _. . L

. . . U s ., simple as possible, we concentrate on deriving the long-run
mobility formulation whose discretisized version is depit

in Fig. 3. Recall that, in that simple modél — v (i.e., de- distributions of the continuou$<i.e., d = 4) and continuous-

terministic) and the other mobility characterization paeters 6 (€., d = G) mobility formulations over square and hexag-

: ; . ),a, Onal mobility terrains of side length, respectively. Denote
can be arbitrary. Now for the discretisized case, A () these terrains with the generic notatiéi®) (a), whered is

?heen(r)éeict:;lzng_-ru; Qprop(())rtlgon I—?f tlme.fr;o_blle |sdloc_aZed "Qubstituted by 4 if it is a square, else by 6 (i.e., hexagon).
9 (5) =10, 3] x [0, 3]. Hence, ifd = 4 andn = 4, Also, to describe long-run location distribution consighg

we have with d and the shape of mobility terrain (i.eR(?(a)), we
focus on defining the probability mass function (pmf)xsf4)
over a square subregion R (a), and a hexagonal subregion
in R (a). Let R (z,b) denote these subregions, which is

the double summation given in (30) which requires a proper

4)/q 4
PY () = n”

Wherepg‘l) is defined by (26). Notice that in this formulation
the discretization parametet is skipped because sindé = a square ifd — 4, and a hexagon il — 6, with center
vm=1. o _ .z € RW(q) and side lengtth such thatR(® (z,b) C R (a).
Next, tf(14e) |mportant guestion is what WI|| be the I|m|t|ngIn Fig. 5 and Fig. 6, we provided illustrations &% (a) and
form of £, (5) in (28) asn — cc. Hence, if we assume = p(a)(; 4) ¢ — 4,6. Notice that, R® (z,b) represents the

16, then discretisized region given in Fig. 3 will be transfedn subregion surrounded by the vertiqes £b, 2:2), (z1+2, 7o+
9 1 29

to form given in Fig. 4. By applying Lemma 3 we have #)’ wherez = (z1,2»). We also denote by(® (a, b) the

S (- )BT+ 2 kY set of all nonintersectingﬁd)(z, b) C R(dj(a).
)/ a c€R(2) ciER(S) In addition to the these notations, IBtY (p, z, x4, z, b, a)
P’ () = N® » (29) denote the length of the total distance traveled over theesub
16,1 gion R@(z,b) for a movement epoch that occurs between
where R(2) = {co, ¢1, ¢4, ¢5}, that is, the set of discrete cellsthe pointsz, and z4, and passes througR(®)(z,b) with
located on the regiom(%). probability p, which can be equal td, i, or 0 for the
2 continuousd mobility formulation. In Fig. 5 and Fig. 6 we

) , depictedL(Y (p, x4, 24, x, b, a) for example movement epochs.
> .ci(s) ki corresponds to the average time spent ov@fnally we define

R(3) while moving between randomly picked two cells.
Notice that both of those cells or one of them can be als&'¥ (p, x4, z,b)
belong toR(5). Hence we reach to the following: — {z4]zs € RD(a), LD (p, z,, 24,7, b,a) # 0} (31)

Now based on the interpretation bfi) in (22), the term

> kY = S i Py (i) 1 Jeay (i, j) A Based on the notations given in the preceding three para-
cER(2) c;eReyER v graphs, we are now ready to state the main theorem of this
(30) section.
where P(%)(z",j) denotes the probability passing over the Theorem 1. For the mobile terminal, whose mobility pat-
region R(5) while moving frome;: to ¢;, and Jis)(i’,j) tern is characterized by the continuaiisaobility formulation
represents the number of discrete jumps dvé$) while mov- over the mobility terrainR(? (a), d = 4,6, let Fxy (z,a,b)
ing. Notice that the tern( (', j) Ac) represents the total denote pmf ofX () over the subregio(® (z,b) € R (a).
distance traveled oveR (%), which is required to calculate theAlso, let f;, denote the pdf of/ (9.
average time spent. If the pdf fx_(xq) can be uniquely determined from the in-
Therefore, in order to obtain the limiting form dﬁ“(%) tegral equation (9), anB[T,| X, = z;] < oo, Vs € R4 (a),
asn — oo, we need to derive the limiting expression oind fy|x, x, > 0, Y¥ € [Umin,Vme), aNd Vs, 24 €



LW, x4, 24, 7, b, a)
i
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Fig. 5. lllustrations ofR(Y) (a), R™® (x,b), and LY (p, x5, 24, z, b, a).

R (a), then
FX((L) (1‘, a, b)

VUmaz

B[T,|X.€RW (a,0)] Pr{X.€RD (2,b)} + [ K (a,v,b,a) dv

_ _ Umin , (32)
E[Tp| X €RD (a)]+ D@

and
E[T,| Xs€RY (a)]6(5) 5=0
E[Tp| X €RD (a)]+DH 7 7
fiw (D)= S KD (2,5,b,a) (33)
R(d) (z,b)es() (a,b) ~ ]
E[TpleeR(d)(a)]+D(d> , U € [Umzna ’Umam]
where

K(d) ('r? U? b? a)

= /dwd<

24€R(D) (a)

das kY (Lz,,xa,2,0,b,0)
z:€5(D (1,24,2,b)
1
—‘r§ dos kD (1/2,2,,24,2,v,b,a) ), (34)
z,€5(D)(1/2,24,2,b)
kD (p,x

=Fx. (@) Fx g1 x, (@alra) L v x, x, (W]2s2a) LD (p2a,24,2,b,0), (35)

5:Td,T,0,b,a)

and

D(d) = / dv K (z,v,b,a) (36)

R(D) (z,b) SW (a,b) ¥ Tmin

Proof: Refer to Appendix II. ]
We may note that the temf”““’%(@(mba) v,

M,M z,b,a)

RO(z,b) a

Ta

7/< N\

\L(GJ(L Ty g, T, b, @)

Fig. 6. lllustrations ofR(®) (a), R(®) (x,b), and L) (p, x5, 24, z, b, a).

presentation of the results given by Theorem 1 as simple as
possible.

Now, in view of the result given by Claim 1 fo@,(fl) (25),
if V (i.e., the speed for a movement epoch) is assumed to be
independent from the distributions &f, and X4, then we get

the following for D(4) in (36).

R 1.

D@ = E[V]D(d) (37)
where
D = [ de, [ dzafx.(z:)fx,x. @des) s — 2

zs€R(D (a) zqeR(D (a)

(38)
where |z, — a:d|( ) represent the total distance traveled be-
tween the points, = (zs,,s,) andxzq = (z4,, q,) for the
continuousd mobility formulation. Clearly ifd = 4, then

s — za| Y = |2a, — s, | + |2ay — 23] (39)

which is also know as thManhattan distance [12]. Also,
notice that|z, — :vd| > |zs — \  Vos,zq € R
Finally, based on the deflnltlon @@ in (38), theE[V (9]

will be given by the following even if the distribution df is
dependent on the distributions &f, and X§.

D@
E[T,|X, € R@D(a)] + D@

E[V@] = (40)

IV. PROPERTIES OF THECONTINUOUS MOBILITY
FORMULATION

In this section, we concentrate on the long-run properties o

where the continuous mobility formulation. In order to be as géner

KD (z,v,b,a) is given in (34), corresponds to the expecteds possible, the mobility terraiR is assumed to be rectangular

time spent over the regioR(¥)(z,b) while moving between defined by R = [0,a,] x

[0,a2]. Denote X (t) and V(t),

the pointsX; and X, that are respectively drawn from therespectively, as the location and speed of a mobile ternainal
distributions fx, and fx, x.. Also, in order to formulate timet. Because we are interested in the long-run distributions,

LD (p,x,,x4,2,b,a) and the regionS® (p, 24, z,b) explic-

ity we need to partitionR(d>(a) with respect toR® (z,b).

let X andV respectively denote the random variables having
the long-run distribution ofX () and V(¢). Notice that the

Clearly this will increase the complexity of the results prestate spaces af and X (¥, andV and V(%) are the same but
sented by Theorem 1. However since we are aimed at ussigce the continuoug-mobility formulation puts restriction
the distributions of the continuous-case to reach someon the movement directions, their distributions will be ays

conclusions about the exact case, we decided to keep tligerent from each other.



L(ws, w4, x, A1, As) let Fx(x, Az, Az,) denote pmf of X over the subregion

\ vy R(z, Azxy, Azs) in (41). Also, letf; denote the pdf of/.

. ﬁ If the pdf fx. (z4) can be uniquely determined from the
,,,,, ,% integral equation (9), an®[T,| X, = z,] < o0, Yz, € R,
and fy|x,,x, >0, Vv € [Umin; Umaz), aNAY 2, 24 € R, then

Fx(z, Axy, Axs)
s o / BTy X.€R(x, Axy, Axo)]| Pr{X,c R(z, Axy, Axy)}

ap

ALQ
=
2
T
|
|
|
\\
|

05 71 o E[T,|X, € R+ D
~_ Umazx
Az f K(z,v, Az, Axs) dv
VUmin
. i K + -
|:| : The regionS(z4, z, Axy, Axs) E[Tp|XS c R] +D
Fig. 7. lllustrations ofS(zq4, z, Az1, Az2) and L(zs, x4, ¢, Az1, Axa) (43)
for the continuous mobility formulation.
and
E[Ty| Xs€R]§(9) 5=0
Now as mentioned before, sindean be either equal to four 5= P\ X, eRl+D
or six, the results provided by Theorem 1 can not be extendefd/ ) e e Aw%;gﬁff;gml’ﬁmz) } ’
formally to cover the exact case that allows mobile to move BT, |X,CR|+D , U € [Umin, Umaa]
at any direction. However, we feel that since the formutatio (44)

of Fxw (z,a,b) in (32) and fyw (9) in (33) are completely where
dependent the formulation of the regidi®) (p, x4, x,b) in
(31) that is composed of the points where a movement starts
with destinationz, and passes through the regi®® (z, b) / dxg / drs k(xs, x4, 2,0, Ax1, Axs), (45)
(see Fig. 5 and Fig. 6) with probability, the formulation
of the distributions for the continuous case should be also
dependent on identifying the starting points where a MOVEME; (1. 24, 2, v, Az1, Ay)
epoch with a prespecified destination passes through a g|ven
subregion.

Therefore, analogous to the definition Bf? (x,b) inside and

Allfl, Al’g)

Tg€R z,€S8(xq,x,Az1,Az2)

s@) Fxg1xa (@alw) E v ix, x, (0]5s,5a) L(ws wa,7,821,A2) (46)

R4 (a) (see Fig. 5 and Fig. 6), we define the following Vmas
rectangular subregion for the continuous case: D= Z / dv K (z,0,A21,A25)  (47)
A A R(z,Az1,Az2)ES(Azy,Azs) Vmin
R(x,Al‘l,AJJQ) = [Il — ;l x1 + zl]
X [ — Aé'vz’x2 + %] (41) Now recall that for the continuous-mobility formulation,

if V is assumed to be independent frakh, and X, then
wherex = (z1, z2), and Az; and Az, are selected such thatpH(d) — E[%][)(d), where D4 is given by (38). Thus, we
R(z, Axy, Ary) C R. Also denoteS(Axy, Ax;) as the set conjecture the following result:

of all nonintersectingR(z, Az, Azp) C R. Conjecture 2: If the distribution of V' is assumed to be

Now since the direction of movement is not restricted, ijddependent fromX, and X, then theD in (47) will be
movement epoch that starts from a paint with destination given by

x4 passes through the regidt(z, Az, Axs) with probability D=E|
one or zero. Therefore, it is enough denote the distance trav
eled overR(z, Az, Axo) by L(zs, x4, x, Ax1, Azs). Hence, where
the correspondent o84 (p, 24, z,b) in (31) is simply
D [ do [dvafea

S(xq,x, Axq, Axs)

= {@slzs € B, L(zs, 2, 2, Ay, A) # 0} (42) where |z, — x4 denotes the euclidean distance betwegn
In Fig. 7, we illustratedS(z4,x, Ax1, Azy) and the line andzxy.
segmentL(zg, x4, 7, Az1, Azo) for a destination pointz, In addition, from the formulation ofZ[V (%] in (40), we
outside the regioR(x, Az, Axs). reach to the following conclusion.
In view of these discussions, we conjecture the following Conjecture 3: The expected value 6f with the pdf defined
result, which is a plausible one but since the continudusby (44) is

1. _
1D (48)

s) fxqx, (Talzs) |zs —zal  (49)
TsER rg€ER

mobility formulation is not defined forl > 6, it cannot be S D
E[V] = - (50)
proven formally. E[T,|Xs € R+ D
Conjecture 1: For the mobile terminal, whose mobility .
pattern is characterized by the triplet fx, x., fv|x. x. Having definedE[V] for the most generic case, we note

, fr,1x, >, over the mobility terrainR = [0,a,] x [0,az], that the analytical work presented in [7] also deriygsand
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E[V] for a class of mobility models where the speed of a “

movement epoch is selected independently from the distance
that is going to be traveled for that epoch. In order to be able
to compare our results with the ones given in that paper, we
must consider the scenarios that the triptetfx,, fv, fr, > 2[3
is enough for mobility characterization, that is, disttibas of ’
X4 andT, are independent fronX, andV' is independently T
selected fromX; and X ;. Hence, after simplifyingf;, in (44),
and E[V] in (50), we get

T4

. :Si(xg, z, Axy, Axy)

: 3 L1 :Sy(wq, z, Azq, As)

E[T,]é6(v) ] :Sg(xd,I,ASChAIQ)
ST LTI v=0
Fo (o) E[Ty]+E[+]D’ (51) 0 5 - ;
\U) = 5 Y 1
v Lfv()D Az

T = VE|Vmin,Umax
B+ BL1D €l ]

whered(v) is defined as the direc delta function, and Fig. 8. Partitioning the regios(zq, =, Az1, Awz)

N D

ARV .

However, if some exceptional choices ©f = (zs,,zs,)
and 24 = (x4,,%4,) are not taken into consideration, for

example, suppose that,z; ¢ R(x,Azxy, Axs), |Tg, — 21|
> A';l, and|z4, — x2| > A';?, then L(zs, xq, x, Axy, Axs)

A. Approximation to the pdf of long-run location distribution ~ will be expressible in terms of an easily integrable funetio
Let fy denote the pdf ofX, that is, the random variable for Some mobility characterization choices. N _
having the long-run distribution ak (t). It then follows from ~_ TO be more precise, on the rectangular moAb;I:ty terrain
the result given by Conjecture 1, and the definition given iff = [0,a1]A>I< [0,a5] assumezs, > x + St and
[13] for the pdf of bivariate random variables that Ta, > Ty + =3%. Furthermore, letp(z;) denote the line

segment joining the points,; and (z; + =2,z — £22),
Fx(l‘, A[L‘l, A.TQ)

which are consistent with the ones given in [7].

2 2

fx(z) = lim (53) and assumé&r(0) > 0. In Fig. 8, we provided a visual-
At Az Axs ization of these assumptions. Notice that this special case

_ ) _ L _also implies|zg, — xs,| > |z4, — ®s,|. In addition, con-
At this point, the important queonn is, given the tr_lplegider the partitioning of the subregiofi(z,, , A1, Axs)
< fxulx, fvix, xa0 fr,|x, >, whether it is possible t0 find iy three subregions as shown in Figure 8, and denote
a closed form expression .for the term(:x,v’Aq:ll, Azs) in Lo(zs, 2,2, Az1, Azs), r = 1,2,3, as the distance traveled
(45) so that the above limit can be taken explicitly. over R(z, Az, Azs) whenz, € S, (zq, x, Azy, Axs). Next,

To answer this question, we first concentrate on a Sim%}rmulatingL (25,74, 7, Ax1, Azs) explicitly we get
. . . . . . T S }) )
scenario whereX; is uniformly distributed overR for a given ’ ’

X,, andV is characterized byf;.. Obviously for this case,  L,(xs,zq,z, Az1, Azy)

K(z,v, Az, Azy) simplifies to lea—a.| = Aw’; , =2
Ldy —Tsy

= M M 56

K(x,v,A:cl,A:z:g) |$d*Is|($2+cr%_zsg _ I1+crA_21_9051 )7 r=13 ( )
fv(v) Ldg —Tsg Ty —Tsy
= W/ dxg /dxs L(xs, x4, x, Axq, Axs) (54) wheree; = 1 andes — —1.
za€R z,€8(xq,w,A21,Ax2) Before we proceed further, it should be noted that, for
: A

Therefore, to be able to derive a closed form expressidif forAr?uIatlon that assumesy, > =; + =3+ and z4, >

for K (z,v, Ax1, Axs), the integrand.(z,, x4, zi, Axy, Azo) L2 + =52 if we had concentrated on the case that only
must be expressible in terms of a function that can BBIOWS |za, — s, > |24, — x|, and had partitioned
analytically integrated over the given integration region (%4, %, Az, Az) in the same way as we did in Fig. 8, then

Now from the definition of L(xs, x4, x, Az1, Azs), and the Lr(ms@dvxaAfU_l»A@), r = 1,3, would be also defined
also from Fig. 7, observe that by (56). However, ifr = 2, then

L(zs, x4, x, Azq, Azxs) = (g(a:s,xd,x,A:cl,Azg))l/z (55) Ly (x5, 2a, T, A1, ATo) =|za—a, zd,ffisg’ (57)

for a functiong(z,, 4, z, Az1, Az,) that is piecewisely con- Which is expected intuitively. . .
tinuous onS(zq,z, Azy, Az,) for given z, € R. Clearly, Now returnlng back to case that is construgteq according
the analytical integration of(x,, 74,7, Az, Az,) in (55) !0 the assumptionzy, — x| > |z, — zs,], it is clear
over the given 4-dimensional integration region (see (54))atLa(zs;xa,x,Ax1, Axy) > Ly(s, 2a, @, Awy, Axa), v =

is complicated. Hence, we conclude that obtaining a closéd’ (also observe it from Fig. 8). Hence, concentrating on
form expression foi< (x, v, Azy, Axs) even for the simplest La(xs, a,z, Azq, Axz) observe the following:

of all possible mobility characterization parameters iarfye [ g —es)?
impossible. L2(x57$daw7Ax17Ax2) = A.’L‘l 1+(wdi*7x:)2’ (58)
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Obviously as the difference betwepny, —x, | and|z4, — s, | h/A‘Q

. —x..)? T
increases, the ter% converges to zero. Hence, we !
51

can state the foIIowinlg:

Td

Lo(zs,xq,x, Ax1, Axs) =~ Az (59) /
Finally, sinceLy (x5, x4, z, Ax1, Azs) is always more dom- 3{3 R B //
inant thanl,.(zs, x4, z, Az1, Azs), r = 1,3, we conclude the /
following approximation.
A-Tl |$d —Ts |>|13d —Ts | 1 B B e o o S
L(xs,xq, 7, Axq, Az %{ Pe T 2 T2 60
( s ! 2) Az, |z, 2oy |<|Tay—Tsy | (60) |:| : The regionS(z4, z, Axy, Axs)

V. EXAMPLE SCENARIOS Fig. 9.Partitioning ofS(z4, z, Az1, Azg) into s, subregions for a giver,.

Example 1. The random waypoint model proposed in [4],

which is commonly used to model node movement by the .
performance analysis studies for wireless ad hoc ne'[worée integrandL(z, 2, ¢, Az, Azs) (see (63)) evaluated for

can be considered as the simplest nontrivial case for tﬁé'xedxd deviates less for all of the, that belongs to those

mobility characterizations that can be analyzed accordling subregions. In_ Fig. 9, we illustrated this part|t|on|_ng “mj. i
the triplet < fx,x.. fv|x. x,. fr,|x, >. For this model ology for a givenz,. Next, to evaluate the 4-dimensional
d s? 534%d) P d " )

the distributions ofX, and V are assumed to be uniformintegrals for each of these subregions, we first transformed
in the regionsR and [vmin, tumas], respectively. Moreover, them _to an integral over a hypercube [14]. Then, egch of_the
the distribution of7,, is considered to be the same at aﬁesultlng integrals are evaluated by repeated one-d|megb|
destinations. Therefore, for the rectangular mobilityrair !ntegr(‘;‘ltmns ac‘?or?!'”g to the G_a_uss qumu_la [15]. Clean_mys
R = [0,a1] x [0, as], we simply have is not “economical”, however, it is required in order to pide

o e an evidence for our conjecture. The program implementiigg th

= i g e0,a1] x [0, a2] methodology is designed in a generic form in order to also
Ix.(wq) = 102 , (61) : " N .
° 0, otherwise capture different mobility characterization parametensq it
Hence, form Conjectures 1 and 2 we reach the following et available from authors. . . . _
result for the pmf ofX over R(z, Az, Azs) in (41): To find Fx (z, Az1, Axs) from simulation, a simple simula-

BTy A A tion model is developed consisting of a single node moving ac
SEp S o® 4 Bl$)Kx (z, Azy, Azs)  cording to the random waypoint mobility profile. In this mbde

Fx(z,Axy, Axg)= 9142 _ . : .
E[T,] + E[%]D during each simulation run, the node travels figrnumber of
(62) movement epochs. For each movement epoch, the time spent at
where eachR(z, Ax1, Axg) € S(Axq, Axs), while passing through

% N it or pausing at it, is exactly calculated, and added to tha to
x (2, Ay, Azy) time spent at the subregioR(z, Az, Azy) for the whole

:/da:d /da:s 1 Lz, xq, m, Axy, Az,)(63) Simulation run. At the end of the rurbx (z, Az, Azs) is

LR o cS(ond A(a%az)Q derived by normalizing the total time spentiatz, Az, Axs)
Td Ts Td,T,AT1,AT2

to the total run time of the experiment, independent replica-
where E[1] = RCLi) and D is given by (49). In tions of this experiment is run, and the finék (z, Az, Axs)
. v (Vmaz—Vmin) . . is obtained by averaging the results of these runs. Also, at
addition, f;; and E[V] can be derived respectively from the S o - .
. 4 the beginning of each replication, the initial location,dan
equations in (51), and (52).

In order to establish confidence in the correctness (s)[?eed and pause time distributions of the node is determined
the Fy(z,Ax1, Azs) we provided above by (62) for theaccording to the methodology explained in [6] for the effitie
rando}r(n \;vay[;éint Qmodel we will now focus on the tasl?nd reliable simulation of random waypoint mobility model.

; ; ; Now to be able to represent a comparison of the results ob-
of evaluating Fx (z, Azy,Axs) in (62) numerically for all . . : .
R(z, Ax1, Azs) € S(Az1, Azy), and validating them using tained form (62), and from the simulation model we described

; igm(1) 2 (1) (2) 1(2)

the results derived from the simulation of the random warypoiag?v_e' consider thg)reg'th b ] x [by . ’l_’2 | € R where
mobility model. b;’,i = 1,2, andb;”,j = 1,2, are multipliers ofAz; and

Hence, observe first that to generafé (z, Ax1, Azs) A2, respectively. Notice that i’y (b)), b(*)) denotes the
from (62) for a givenR(z, Az1, Az,), we need to evaluate Probability of the mobile terminal to be located over theioeg

Ly OF1, Aa), WE NBEU 19 © »D D15 5@ 51 at the lona-run. thedPs (50 52
Kx(z, Az1, Azs) numerically in (63), which is defined by [b1 "0y '] x[b1, by '] at the long-run, thetPy (b, b'%)) can
a 4-dimensional integral. Obviously, the accuracy of a Itestpe easily derived by accumulating all of th& (x, Az, Axs)
. : : . (1) 5(1) (2) 1(2)

that can be derived from a numerical integration methodauch thatR(z, Azy, Azz) C [by 7, by '] x [b7,by7']. Hence,
ogy is dependent on themoothness of the integrand over let P\ (6™, 52)) and P (51, ) respectively denote
the integration region [14]. Therefore, to increase theuaccthe correspondent aPy (b)), b(?)) obtained from (62) (i.e.,
racy of our numerical experiments, we partition the regioGonjecture 1) and from the simulation model. Based on
S(zq,z, Azq, Azxs) into s, subregions, where, > 1, so that these notations, we define the following metric to asses the
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Percentage of Erros") (b, 5 x 100 Percentage of Erroi ¢ (b1, b®) x 100

as a2

1.237/0.425/0.352| 0.4 | 0.355| 0.323| 0.345| 1.231 5.163 0.519| 1.373| 2.088| 2.088| 1.373| 0.519| 5.163
a a
T T

0.563| 0.212| 0.223| 0.194| 0.216| 0.259| 0.241| 0.494] 2.077|0.324/ 0.553| 1.058| 1.058| 0.553 0.324| 2.077
as as
T T

0.491| 0.254| 0.133 0.143| 0.167| 0.246| 0.256| 0.41 0.883| 0.073| 0.196 0.158 0.158 0.196| 0.073| 0.883
a a
T T

0.688|0.183|0.127|0.171/0.25 | 0.2 |0.2150.501] 0.883| 0.073| 0.196 0.158| 0.158 0.196 0.073| 0.883
as as
T T

0.632| 0.226/ 0.226| 0.221/ 0.259| 0.205| 0.159| 0.709 2.077|0.324/ 0.553| 1.058| 1.058| 0.553 0.324| 2.077
a a
T T

1.04 | 0.316| 0.385| 0.346| 0.353| 0.291| 0.468| 1.291 5.163 0.519| 1.373| 2.088| 2.088| 1.373| 0.519| 5.163
0 0

(@ (b)

Fig. 10. EC9 (™M, 5(2)) in (64) andE™ (b)), 5(2)) in (70) for Example 141 = 1200, as = 900, 5" = ia1/8, i =0,...,7,b5" = b{") +-a1/8,
B =jas/6, j=0,...,5 b5 = b + as/6, vnin = 1 MIS, vmin = 20 M/, T, = U[0, 30] sec).

correctness of our conjecture for this mobility model. The simulation studies presented in [16], [17] points outt th
s) ©) the long-run location distribution of the random waypoint
EEO 0 b)) = 1P (01, 62)) — P (01, 63| mobility model is more accumulated at the center of the
X 9 - 9

mobility terrain. More importantly, it is symmetric withspect
(64) to center. Therefore, obtaining[X;] and E[X;] as in (66)
Finally, for our experiments, we considered[®1200jm is expected. However, the result féforr(Xy, X5) = 0 is
% [0,900]m mobility terrain, and set the parameters of mobilitpiot observed before. Obviously, it does not conclude that th
as follows: vy, = 1M/s, vy, = 20m/s, and7), is uniform distributions of X; and X, are independent.
over the rangg0, 30]sec. Then, we chosAz; = Az, = 5m, It should also be noted that analytical work presented in
and setn, = 107, nr = 100 for the simulation experlment [5] for the spatial node distribution generated by this niybi
and evaIuatedE ( (1) b(2)) for various choices ob model concentrates on the case whéte= [0,a] x [0, al,
and b i = 1,2. The results are presented in Fig. 10.(ay is deterministic with parametes, and £[T,] = 0, and
Simulation results are acquired with ®% confidence in- formulates the long-run cumulative distribution functiover
terval lower than0.001. Since the percentage of error, (i.e. region with an area of?. If we substituteE[1/V] with 1,
EC (6™, b))% 100) is at most1.29% we conclude that the and E[T,] = 0, and assumé\a; = Az, = 4§, anda; = as,
appllcat|on of the Conjecture 1 to random waypoint mobilithe F'x (z, Az, Azs) we defined by (62) becomes consistent
model is correct. with the formulation of the cumulative distribution funati
Thus, usingFy (z, Az1, Az,) in (62) we can obtain the pmf given in [5].
of X = (X1, X5) over the subregio®(x, Azy, Azs) numer- We now focus on applying the approximation we defined
ically. With this knowledge at hand, we will now concentrat®y (60) for L(xs, x4, x, Ax1, Axs) to derive an approximation
on finding E[X,], E[X2], andCorr(X;, X5). Hence, we set to fx(x) in (53) (i.e., the pdf ofX). First, notice from
Az = % and Az, = 2 for some discretization parameterghe formulation of Kx (z, Azy, Ax,) in (63) that when this
ni,ns € Z+, and define the discrete bivariate random variabRpproximation is used, the integration of the integrandr ove
X* = (X7, X3) with the finite state space the regionS(zq, x, Axy, Azs), will be equal toAz, or Azy
times the area of the regiofi(z4, z, Az, Azy). Hence, by
S*={2p 34n | Cm-DAn } o [Ar 340y | CGra-DAsa} (65)  partitioning the boundaries of the 4-dimensional inteigrat
) ] that formulatesK x (x, Az, Azo) according to the condition
to denote the subregioR(z*, Azq, Azs) in (41), wherex* € |24, —2s,| > |za, —xs,| and its counterpart appropriately, we

S7, that the mobile is located at the long-run. Clearlypas—  gptained a closed form expression for (63). Finally, evifiga
oo andny — oo, X* converges to the continuous bivariatg,a [imit FX(Z;AX Ar2) a5 Az, — 0 and Aze — 0, we

random variableX.

Evaluating the distribution ofX* from Fx(x, Az, Axs)
in (62) we obtainedE[X;], E[X;], and Corr(X{, X3 3
numerically for several[dilf;eren[t Sllrameter chéicés f%ge th Jx(@) = fx(@) ©7)
random waypoint mobility model. For all of the scenarios
we considered, we set; and ny sufficiently large enough
to closely approximatey = (X, X,) with X* = (X, X3), . ET,) 75 + Bl lk(z
and observed the following: Fx(z) = E[T,] + E[ 1D

P (1), )

reached the followmg approximation fgiy :

Where

)/N

(68)

% a * a * *
ElX{] = 517 E[X5] = 527 Corr(X7,X5) =0 (66) wherek(z) is defined by the equation in (85) in Appendix I,
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Fig. 11. Comparison off’x, in (72) andF)((Cl) in (73) for Example 2 ¢; = 1000 m, Az; = Aza = 5M, Umin, = 1 MIS, vmez = 20 mM/s,
T, = UJ0, 30] sec).

and N is the normalization term given by them. We observed for various choicesHJT;,] andV that the
. B relative error between the results obtained from approtiona
N = (/ k(x)dz)/D (69) and simulation is at most% for both of the approximation
velt methods defined in [5] and in (67).
It should be noted that since the tetxs, x4, ¥, Ax1, Axs) Example 2: According to the results that are proved in

is either substituted byAz, or Ax,, the functionk(x) in (85) ' [1] for the one-dimensional version of the random waypoint
must be normalized in the regioR so thatfx () will be @ mopility model, the probability distribution function ak;

probability density function. o (i.e., the first component ok = (X, X)) over the mobility
In order to asses the validity of the approximation Wgsrrain R = [0, a4] is

presented above by (67), we define , )
B E(T] + e Bl

c A p
BEA (1) 42)) 1P )(b(l)’lg(j))) 2 )(b(1)7b(2>)|’ Fx,(21) = BT ﬂ}&“[il (72)
P b, p2) PPl
(70) In principle, if the application of Conjecture 1 to random
WhereP)((A)(b(l), b)) is the integration offx () in (68) over waypoint model holds to be true, then the marginal distiisut
the region[p{", bV] x [b(2, {1 of X, derived from the joint probability distribution function

In Fig. 10.(b) we provided the'C (5 b)) for the Fx (v, A1, Aza), whichis defined by (62) in Example 1 (i.e.,
same mobility parameter choices we considered in Fi?. JL0. (e probability thatX' = (X1, X») € R(z;, Axy, Axy) at the
From the values OEE(C’A)(b(l), b)) for different [b§1)7 bél B long-run), and the probability cﬂstrlbutlon functidriy, given _
[b?),bg)] C R, we reached to the conclusion that the appro)gi_bove by (72) sho_uld match with each other. Thus, to provide
imation we stated by (67) for the long-run spatial distribnt 2" additional confidence to thex (a, Az, Az) in (62) we
of the random waypoint model over the given rectangul&Pniectured for the random waypoint mobility model, we now
mobility terrain is quite accurate. concentrate on examining the correciness of this sgatement

In addition, if one is interested in variant of random way- O this purpose, we first sétz; = - and Az, = 72 for
point mobility model where mobiles may pause at different 80Men1,n2 € Z. Hence, the marginal distribution function
different X4, that is, fr. | x, needs to be employed in mobility f X1 can be derived fronfx (z, Azy, Ax,) (62) as follows:
pharacterlzatlon in sFead gt,, then the approximation given F)((C (z1) = Pr{X; € [0,21] % [0, as]}, T1=iAz1,i=1,...n1,
in (68) can be redefined as follows: !

1 1 Y e
Fale) = BT, X, = 2]575, + E[Vl]’“@/N 71) =3 Y Fx(wi, Axy, Axy) (73)
E[T,|Xs € R + E[;]D i1=1iz=1

Finally, we note that in [5] authors also present a vemyhere z = (z1,z2), that is, the center of the unit area
accurate approximation for the pdf &f for the special case of R(z, Az, Azg) in (41).
the original random waypoint model whefe= [0, 1] x [0, 1], In Fig. 11, we considered several proportions between
and speed choice for all movement epochs is constant. Im ordad a2 for the given mobility parameters, and provided a
to compare that approximation with the one given in this papeomparison ofF'x, in (72) andF)(g) in (73) after evaluating
numerically for this special case (i.e? = [0,1] x [0,1] and Fx(z, Az, Axg) in (62)V R(x;, Az, Axs) € S(Axy, Axs)
speed is constant), we evaluated cumulative long-runitmtat numerically according to the methodology we explained dur-
distributions for several subregions oveaccording to both of ing the discussions for Example 1. As it can be observed from

]
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Fig. 11, the two distribution functions perfectly matcheishw
each other. Thus, we accomplished our goal in providing a

second evidence for the application of Conjecture 1. o8
In addition, it is clear that an approximation to the margina
distribution of X; can be derived from the approximation o8

defined by (68) for the joint probability density function of
X = (X1, X5). Therefore, we now define this approximation

by S
e - o
Fy, (z1) :/ du/ dvfx(u,v) (74) 0z} 65, Coni.
0 0 g --- =5, Simul.
0.1 -+ 0=10, Conj. [{
~ . . - - 0=10, Simul.
where fx is given by (68). S T T VR S TR

Now from the comparisons ofx, in (72) and F)({j) in
(74) that are depicted graphically in Fig. 12 for the givepig. 13. Comparison of"; derived from Conjecture 1 and Simulation for
mobility parameters, notice that the approximating resale Example 3 1 = 1200 m, az = 900 m, Az1 = Az = 5M, Umin = 1 MIs,
very accurate for several proportions between and a,. Vmas = 20 M/s, T, = U0, 30] sec).

This observation is very important because it points out tha
the quality of approximation done bli)((A) is insensitive to ; ; ;
x,v, Axy, Azxs) in (45) will be given b
the frequency of the movement epoché that happen over t[ﬁél’y’ o1, Arz) In (45) 9 y
region R = [0, a1] x [0, az2] on the vertical and the horizontal k(zs, x4, z, v, Ax1, Azsy)
directions. 1
. . . L = L(xg Az, A 77

Example 3: In Section IV we conjectured that if the dis- ~ v(a; az)QfVle’Xd(vm’md) (@, @, @, A1, Az2) (77)

tribution of V' (i.e., the speed for a movement epoch)

) o Hhich implies that finding a closed form expression for
independent fromX, and Xy, then the pdf ofV (€., fy) f¢(z 4 Az, Axy) is very complicated even if the approxi-

and its expected \{alue (i.e5[V]) are given py equations (51) mation defined by (60) foL.(zs, x4, z, Az, Axs) is applied.
and (52), respectively. As we have mentioned before, thoserperefore, to obtain the distribution of we use the
equations are consistent with the ones given in [7] for asClag,merical integration methodology we explained before in
of mobility models wheré” selected independently from thegyample 1. Also, to test the accuracy of the numerical result
distance that is going to be traveled (i.e¥; — Xal). obtained, we modified the simulation model we presented in

waypoint mobility model which incorporates the ability tofinglly obtained the probability distribution function df,
determinel” according to| X — X[, and concentrate on the(i_e_' Fy(v) = fv dufy(u)) both from the f; given in
correctness on the distribution &f we provided in Conjecture Conjecture 1 and the simulation model. In Fig. 13 we provided
1 for the most generic mobility characterization. a comparison of these two results for different values é6r
Now for the original random waypoint model, keeping théne given mobility parameters. Simulation results are aegu
distributions of X, and 7}, the same as before, consider &ith a95% confidence interval lower thah003. Observe that,

truncated normal distribution [18] for according to the pdf the two distributions perfectly matches with each otherafibr

given by cases.
Having provided this confidence for the distribution of
fvix. x,(vlzs, z4) defined by Conjecture 1, we now focus on the effect of the
Z(”_“(i““)) choice ofo on the value ofF[V], which is also formulated

= o (@) (il (75) by (50). In Table Il we provideds[V] for different choices
o o of o and E[T},]. The other parameters are the same with the
fOr vy < v < vmas Whereo > 0, and experiments performed for the rgsu_lts depicted in Fig. I3tF
observe that for a giveR'[T,,], E[V] increases as decreases.
(Vmaz — Vmin) Also, for a given finite value obr, the difference between
|5 — 4 (7€) the E[V] obtained, and théZ[V] evaluated for ther — oo
B _ ~ case increases a5[T},] increases. Both of these results are
7 and® are the probability density and cumulative dlstrlbut|0@xpected because as decreases, the possibility of moving

,U/((Esa (Ed) = Umin T

functions for the normal distribution [18]. long distances with artificially low speeds diminishes, asd
Before proceeding further, observe from the formulation &f result, the expected value of the long-run speed increases
fvix. x, that asc — 0 the possibility of determining/ Example 4: In the previous examples we assumed the dis-

proportional to|X, — X,| increases. Also, a8 — oo we tribution of X, to be independent fronX,. To demonstrate
converge to the original case, thatisjs uniformly distributed the applicability of the generalized mobility framework we
iN [Vmin, Umaz)- proposed to the scenarios where the choic& gis correlated
Now formulating the f;; according to the equation (44)with the starting pointX,, we will now concentrate on a
provided in Conjecture 1, observe first that the integrand wériant of the Manhattan model introduced in [19] for the
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Fig. 12. Comparison off'x, in (72) andF)({’?) in (74) for Example 2 ¢1 = 1000 m, Azy = Aze = 5M, vmin = 1 M/S, Umaz = 20 M/s,
T, = UJ0, 30] sec).

TABLE Il . . . o
_ Now notice that in this model, the movement directions are

E[V] FoRExamPLE 3 limited by four, that is,d = 4, and they are given by,, » =

. ﬂEn[])/S] v(m/s)i20 ) 0,...,d—1in (6). Hence, if the mobility profile formulated by
BT Ged) [ o —oc | o=10 |0 =5] o =1 Manhattan model can be characterized according to thetripl
6.342 6.517 | 6.867 | 8.106 < fxqx.> fvix. x. fr,1x, >, then the results presented in
15 >.408 5.985 | 6.279 | 7.299 Theorem 1 for the continuous-mobility formulation can
30 4713 5535 | 5.785 | 6.638

be directly applied for long-run analysis. Clearly since we
assume the mobiles to move independently from each other,
we cannot capture the speed formulation proposed by the
Manhattan model. Hence, we can only concentrate on a variant
of the original model where speed choices of terminals are
I I independent from each other. We believe that even if this
simplification is required, the other characteristic of thedel

is very important for the usability of our model because it
corresponds to a scenario where mobiles are restricted ve mo

I I on predefined paths.

For this purpose, and to be consistent with the notation used
in Theorem 1, we assume that the two-dimensional mobility
terrain R can be divided into equal size square subregions
R®(z,b) of side lengthh with centerz, as shown in Fig. 15.

Fig. 14. Mobility terrain for the Manhattan mobility model. Also, each street is composed of maRy" (x,b) forming a
rectangle with side lengthis and a, wherea is a multiple of
b. In addition, intersections, which are represented by glsin
simulation based performance analysis of wireless ad h&¢* (z,b), either connect streets with each other, or streets to
networks. border of the mobility terrain.

In Manhattan model, mobile terminals are restricted to Now to define the parametefrx, x, (i.e., the pdf of X,
move towards horizontal and vertical directions on a mtpili given X,), assume that mobility epochs either start from a
terrain that is composed of paths, which can be also calbint over an intersection or a street. If epoch starts from
as “streets”, forming a grid structure, as shown in Fig. 14 point belonging to an intersection, then with probability
When a mobile enters to an intersection of streets it goas where o < 1, it moves to a destination point that is
straight with probabilityp, which is set toi in the model distributed uniformly over one of the closest intersecsicand
description. If it changes its direction, it selects eittedr with probability 1 — « it selects a destination point uniformly
the opposing directions with equal probabilities. Sinces thover either of the connecting streets. On the other hand, if
model is originally developed for simulation based studiemovement epoch starts from a point over a street, then with
the speed of mobile terminals is characterized accordirgy tgrobability 3, whereg < 1, it moves to a destination over one
sophisticated mechanism that imposes a correlation batwed the connecting intersections, which is selected withagqu
the speed choices at the consecutive time slots of the tiéscrgrobabilities, and with probabilityi — 5 the destination is
event simulation, and it can be dependent with the speselected at the same street. Again, in both cases, the aistin
characteristics of other mobile terminals on the same tstreepoint at the target subregion is uniformly distributed. In
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3 — Iis I direction with higher probability.
L L Thus, fx, x, must be defined separately for all, belong-
o 0 ing to intersections and streets. Concentrating on theiapec
RO(a,b) Va3 Va3 cas_eXS € Il(ol) the stochastic density kerngk | x, will be
! defined as follows:
2 Io,z‘ ! 31: I :Hig: Lol 223: ‘13,2} b . x.e1%, xqe1l°)
W_/%ﬁ —
AR pC, xer® xaem,
" Via| o Via| L U-pe x.e1), xqert)
1 0 AL (0) (0) Tqlrs) = ) (1— , (78
Tl,l Iy Tz,l I} ]3,1‘ fXd\Xs( alws) a g)a(}) 04)_/ X,e1%), X,evi, (78)
| | | | | |
] IO’<12> & D) u o ke B = @) s [ ST Xoelf), Xeelil
I 1 ‘ _ _
Lor 4l ,,1,11,1¢ o1 ,,QJM U=plza) o o) cva
Vo] Vo] _ . o
Clearly if the intersection is located near the border, then
— — mobile is supposed to reflect back, and the kernel must be
0 ‘ I‘LO 1‘270 ‘ defined in a different way. For example Xf; € I(()?l) then we
0 1 2 3 have
Fig. 15. Partitioning of the mobility terrain shown in Fig..14 b el Xaelld 79
9. . artitioning o e moDolll errain snown in Fig.. =
9 g y g fXd\Xs(xdlxs) 1(:75&’ Xsefé?l), XdEHéyl ; ( )
" i i 1
addition, we assume that when a movement epochs ends(st&rgally; concentrating oX; € H ;, we have
at(from) an intersection it travels a total distancegofnside B s em xaer®
that intersection. In other words, movement epochs occur 262 €010 2450,
between the centers of the intersections. Fxax. (Talzs) = Sr,  XeeH),, Xsell® | (80)
Clearly with this setting, mobiles may stop at streets. 1-8

. : X.€Hj,, Xa€H],
However, asae — 1, we converge to the scenario in which

mobiles moves between intersections, which is also reduirgor the rest of the cases, the kerrfal, x. can be defined
by the original mobility model. We can not set= 1 because in a straightforward manner according to the conditions we
in that case locations over streets will never be selected @ssidered in (78), (79), and (80).
destination and the steady—state distribution Xqr will never As we have mentioned before, we cannot exact]y capture
exists. Also notice that by choosinfy, x, (i.e., the pdf of the mobility formulation proposed by the original model. We
pause time at the destination) appropriately, we can fdree thave to assume that the speed characteristics of mobiles are
mobiles to not to stop at the intersections. independent from each other. In addition, as it is mentioned
Now according to the Manhattan model when the mobii@ Example 3, if the distribution oft is assumed to be
enters to the intersection, it either goes straight or tulns dependent to the locations &F, and X, then finding a closed
order to model this, we need to have a mechanism that contrptsm solution for the long-run location distribution is miga
the direction of mobile terminals at consecutive movemephpossible. Hence, we assume that the distributiori/ofs
epochs, which is not incorporated by the generalized nigbilinot correlated with the distributions df, and X 4. This is an
model we proposed. In our mobility framework, the destimati reasonable assumption because since we are interesteel in th
point of the current movement epoch is dependent to tegenario where a movement epochs starts from a point on a
destination of the previous one, which becomes the startipflersection and without stopping at the streets ends upat o
point of the current, but not to its direction. However, if weyf the closest intersection (i.e., as— 1), the distribution of
separate the terminals entering an intersection accorttingspeed can be immediately selected proportional to the Hengt
the direction that they are coming trough, then we will havef a street, or according to the speed limit on streets.
the opportunity to bring direction control into the mohjilit  Having defined the parameters of the mobility characteriza-
formulation. tion, the next step is to derive the steady state distributib
More formally, consider the notations depicted in Fig. 15 fox,, that is to derivef_ (z4) from the integral equation in (9).
the identification of streets and intersections. When a reobitor this purpose, leS,, denote the subregion (that is, street
enters to an intersection, it takes a phase corresponditi@to or intersection) that the(, (i.e., destination point) of théth
direction that it is coming trough. In Fig. 15 we provided anovement epoch belongs to. Hence, the DTG, , k € N}
visualization of these phases for the intersectiéns, /1,1,  with states corresponding to the subregiaf{s, £, andV}",
I»1, and I5,. Hence, X, € I.") corresponds to the caseshown in Fig.15, and the transition probability matrixthat
where the mobile terminal enters 19, trough the direction is constructed according to the formulation MJ\XS can be
Yoo SinceIi(f’J? keeps the memory of previous direction, we cansed to govern the decisions &f; at the embedded points
immediately model a scenario where mobile keeps the sametime when a new epoch starts. For instance, according to
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(78) Pr{Sa4, ., = IQ(?f\Sdk = I{?l)} = pa and Pr{S,, ., = over an intersection is assumed to be equa} tove get
1184, = L9} = (1 = p) /2.

Thus, since we assume the destinations points to be uni; =2 (pb2 bgU=pby o b2 g) L4b
formly distributed over an intersection or a street once tha™ ' 2007 2 oz 2
subregion is selected as destination, a steady-statédi&in
for X, exists only if the DTMC{S,,, k € N} satisfies the Base on this reasoning, we can state the following:
conditions of ergodicity. Thereforey and 5 can not be equal

to 1, which is already required in the formulation ¢% x, - b R, =1I,; andI; is not on the border
Now, let7 denote the steady-state distribution of the DTMC Ko — ) b R _1I. . andI., is on the border

{S4,,k € N}. After some algebraic manipulations we found “#s = § 247 7% 700 7

out that %%, R,=H};or R, =V}

Ju
[~}

(84)
In addition, since movement epochs occur between intersec-
tions that can be joined by a single streeX® = (a + b),

where C' = 24(1 + (1 — a)/f). Since the{Sy,k € N} \hich can be double checked by summing &p.. given
determines the subregioXi; is located, it can be easily showngove for all differentr, . )

that the steady-state distribution &f, has the following pdf:

1 2(l—a)/B
71'[‘(1,? = 7TH]cJ_ = 7Tv_kj = 20-a)/8 C)/
i3 47 47

1 2
f coz wa€l!) 61)
X \Ta) = 1— 1
(va) 2(7052/5, wa€HE;, wa€Vy, VI. SUMMARY

Next, for the casex — 1 (i.e., mobiles only stop at the This paper concentrates on the analysis of a generalized
intersection), letf?, denote subregion which represents thFandompm[c))bilit modeling approach for zvireless ag hoc net-
streets or the intersections, and denélg, as the long-run y g app

proportion of time mobile terminals located at the at sulmeg works over two_-dlmensmn_al mobility terrams._The_ anaigtl .
R.. Now. P can be derived as follows framework we introduced is based on a special discretizatio
St L] RS .

Since we have assumed the distributiontofto be inde- technique, and provided the long-run location and speed cha

endent fromX. and X apolving Theorem 1 we get theacteristics in full generality for a limited version of theonel
Following form f(snr D d» applying 9 proposed where mobiles are only allowed to move towards one
R, -

of the finite number of available directions. We conjectured

E[T,|Xs € Rs]Pr{X, € Rs} + E[%]KRS the long-run distributions of the exact mobility formutai
Ps, = EIT,|X. € R + E[2]D@ (82)  where mobiles can move at any direction, from the analysis
P v of this limited case. We also examined the correctness of our
Now focusing on the ternPr{ X, € R}, assume thaR, = conjectures for a number of scenarios including random way-
I51. Since I is composed of[éfi for s = 0,...,d — 1, point mobility model and a variant of it where the distrilmurti
Pr{X, € I,;} = 4b Clb2 = % Clearly, if R, was Of speed selected for a movement epoch is dependent on the

representing an intersection on the border, then it will Béstance that is going to be traveled.
composed of a singléi(f} for some: € {0,...,d—1}. Hence From application of the results to random waypoint mobility
we can state the following: model we derived an approximation to the long-run location
N distribution over rectangular mobility regions. We vatiethe
6 accuracy of the approximation by simulation, and after com-
Pr{X, € R,}= i, Ry =1, ;, andI; ; is on the border paring the marginals with proven results for one-dimeraion
0, regions pointed out that accuracy is insensitive to progort
between the dimensions of the rectangular region. In aafditi
we showed the applicability of the mobility framework and
its corresponding analysis to a mobility terrain where rtesbi
are restricted to move on predefined paths, and obtained the

R, =1, ;, andI, ; is not on the border

otherwise
(83)
It should be thatPr{X, € R;} = 0 when R, represents
streets because as— 1 the probability of selecting locations

n str r iminishes. . o . .
on streets as target d shes long-run location distributions in closed form expressio@ur

i dézti?;iiro;?hgbrﬁ)l\r/‘exgnteép:)ecissl(iﬂa:d(;sss' t\:\cI)eu r;]esegb:s ianalysis and example scenarios indicate that rich mobility
P P 9 9models can be efficiently brought into the analytical stadie

Ry mcludm_g the ones starting and ending /2. Similar to concentrating performance characteristics of wireleshax
what we did above assum®, = I ;. The epochs that Startnetworks

from 1{°) and Z5) will end up atl>; with probability p, and
the ones that originate frory) and 73 will will target I,
with probability 1. Also, the ones that start from"), 1\,
12(?2), and 1522) will move to I ; with probability (1;—”). In
addition, the epochs that originate frof; should be also
taken into account. Hence, recalling that the distancesteav ~ Formulation of k(z) for Example 1

APPENDIX |
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Since the greatest common divisor of them is 1, the state
(co,c1, 2z, 1) becomes aperiodic, and proof completes. B

ki(z)+ks(x)+ke(z)+ks(x), 0<w1<%,0<mz<aifl
ki (@)+ka(2)+he(@)+ks (), “<wi<ar, Proof of Lemma 2
0<wz<az(1-31) Proof: The proof is by direct substitution. First, ac-
ko (x)+ka(2)+ks(x)+ks(z), O<zi<, cording to the transitions given in Table I, notice that only
2271 g Lan(1—E1) the states of the fornic;, ¢;, 2, 1), wherec; € ny(c;) (also
k(x)= o1 1 , "
k1(z)+ks(z)+he(z)+kr (), %<zi<ar, ci € np(cj)), makes a transition to the statgs, 0). Hence,
as(1—Eh)<wp< 2250 observe for a giver; € R that
ko (2)+ks () +ks () k7 (z), O0<mi <
’ 20 (d) _
ax(1-22)<a<az > omaem = > (> eem
ko (2)+ks (2)+hs (2) Thr(2), % <z1<ar, 2% <z <ay ci€R, Ci€R,  cyep(® (i)
(85) cienp(cj) ci€np(cy)
. . . 1
wherek;(z), ¢ = 1,...,8 are formulated by the equations in + = Z o) /N (94)

(86,87,...,93) that are located at the bottom of the page. e et (i)

APPENDIXII Now, for all ¢;- € ny(c;), each member of the spf®) (i*, j)

Proof of Lemma 1 will be also a member of one more set denoteq)ﬁgl(i**,j)
Proof: If the integral equation (9) has a unique solutiorfor a different ¢;~« € ny(c;). Also, for every c;-, ci-= €
theny; > 0 for all i = 0,...,n — 1. Hence, the states of then,, (c;), pi% (i*, ) N p\% (i**,7) = {}. Hence, we get the
form (¢;,0) will be visited eventually, and in order to satisfyfollowing for the above equality:

irreducibility, it is enough to verify the reachability the states

of the form(c¢;, ¢;, 2, 1) from the statéc;, 0). Clearly this can Z ng)em = Z @irTjlir /[N — 755/ N
be satisfied only ifv,; ; > 0 for all possible choices of, i, c€ER, ey €R
andj. ci€np(cy)
Thus, if the conditions we listed above for irreducibility = (¢ —9iT)/N
holds, then all states are periodic with the same period, or = ﬂ](d) (95)

else all states are aperiodic. For some finite parameters of

andm, wheren > 1 andm > 1, if generate all of the states in  Now, it remains to concentrate on the transitions to thestat
the state spacé, and concentrate on the stai®, c;, z.,1), Of the form(c;, ¢;, 2z, 1). According to Table I, the states of
then we can easily show that it is possible to return batke form (c;,0), and the stategc;,c;, 2., 1), wherecy ¢

to (co,c1, 27, 1) in four or seven transitions after leaving it.pgfll)(i,j) Nnp(c;), make a transition to the state;, c;, z, 1)

11(0.2—12) ):|

(a1 — 1) T2 [2 az x1 + a1 (z1 — x2) + 1 2 log( PR

k = 86
(@) 2a? a3z, (86)
x1 (ag — x2) [2 a1 To + as (re — 1) + 1 X2 1og(w)]
ha(e) = i (87)
2a? a3 o
(a1 — x1) (ag — z2) [ag (1 —a1) + z2 (a2 + 2a1) + (a1 — 1) 22 1og(m)}
k3(x) = 242 a2 (88)
a? a? o

1 T2 |:(0,1 + 2(12) (a1 — Il) — a1 Ty + (a1 — Il)l’g IOg(W)}

ky(x) = (89)

2a2 a3 (a1 — x1)

x1 (ag — x2) {al (a1 — 21 + 22) + a2 (a1 — 221) + (a1 — 21) (az — x2) log(%)}

ko) = 2a? a2 (a1 — 1) (%0)

(a1 — 1) @2 {ag (a1 +az +x1) — (2a1 + a2) z2 + (a1 — x1) (a2 — z2) log(%)]

Fo) = 2a? a2 (ay — x2) 1)

(a1 — x1) (a2 — z2) {2 azx1 + a1 (€1 + 22 — az) + 1 (a2 — x2) log(%)}

k = 92
(@) 2a2 a3z, (92)

1 T3 [ag (2a1 +as — 1) — (2a1 + az) x2 + x1 (ag — x2) log(%)}

ks(z) = 2a? a3 (az — xa) 93)
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with a nonzero probability, given their discrete speed imaéc expressiony;-7;.;- will appearn; times in the expanded
Furthermore, the states of the foify., ¢;, z,, 1), whereci €  summation. Similarly, for alt; € %9 (i*, j*), the expression
pﬁfg(z‘,j)ﬂ np(c;), jump to state(c;, c;, 2, 1) with probability  (1/2)¢;-7;+;~ will appear in the expanded summation. As a
1/2. Similar to other case, the component for speed must atesult,y;- 7;-|;- appears in the summation fag +n, /2 times,
match. which is equal tadis(i*, j*), and proof completes. ]

It can be easily observed that, the séfl)(i,j) N np(c)

is either empty or have only one element. Similarly, the set

Proof of Theorem 1

(d),. - o Proof: To prove Fx(x,a,b) in (32) we first define
P2 (i,7) N na(ci), s either empty or have two elementsye giscretisized version of it according to the parameters
Wlthgut loss of generality, let;, denote the only member,, 4. take the limit of the resulting expressionraand m

of py7 (i, 5) N n(c;), and letc;, andc;, denote the only two approach infinity. Hence, let;, which can be a square or a
members oprfQ(z‘,j) N np(c;). Now, observe the following: hexagon on the discretisized region, also denote the region

bounded by it. Also, for a giverR(¥)(z,b), let R (z,b)

U pt(t,dl)(i*’j) = pgfil)(i’j) —{a} (96)  denote the cells ik where eachr; belonging to it satisfies
ediniais} the conditione; ¢ R@(z,b). Additionally, for the rest of this

U #2965 = pi%6.3) (97) proof we will use the notation&(¥)(a) and R (i.e., the set of
e {irinsis} cells covering the discretisized region) interchangeably

Now for a givenR(?(a), and R‘¥) (x,b) € R (a), using
the formulation ofpgd) in (20) (i.e., long-run proportion of
time that terminal stays in cet};), we define

In view of these discussions, observe the following:

(d) _Tjli N (d)
T 1— Tiliumh,j + Z T F(n,m)(x a b)
ci/EpEiil) (¢,7)Nnp(cq) X () e
=, d
a2 Y A el -m)EL]+ > 5 kY
@ ’ ci €R (x,b) r=1c,eR@ (a,b)
i1 €py o (4,5)Nnn (ci) = N(d ) (100)
= QiTj|iVmli,j/N + Z irTjlirVmlir j /N @ ’ 0
ey €D (i,4) Now, let Ky, (z, 2., b,a) = > szr Hence, according to
’ .'1 ci€R@ (z,b)
—QiTj[iVmlij/N + 3 Z%'Tjwvmw,j/]\f the definition oszgf? in (22) we get
(d): .
i €py 5 (4,5) 1
' d
_ 71_(d) (98) K’I(L )(xvzrv b7 a) :Z Z ( Z QPi’Tj\i'; Vrlit g
" i €RD (2,) ;€ R—{ei}eyrepl?) (i) "
which concludes the proof. [ ] 1 1 @
i 5 i Tjlir — Vrlir 5 ) Ac'™ (101
Proof of Claim 1 S T3 %?_le o U 4)Act?,(101)
Proof: First, observe the following simplification for ci €py.2 (4:5)

A (d). - -
D™ Next, for a givenc; € R (z,b), ¢; € R — {¢;}, and ¢y €

D — E[L*} > ( SN eeme pgfll)(i,j), it can be easily shown that, i{p, ', j), wherep =
4 R R () ; 1, denotes the number of discrete jumps done over the region
c;,ER c;ER—{c;i} ¢y €py Y (4,5) d ) g -
1 ’ R (z,b) while moving frome;: to ¢;, thenc; will also be
+5 > gpwj‘i,))Ac(d), (99) a member of other(1,7’,j) — 1 many p,?) (i, j) generated

cor €09 (6,7) for all different ¢; € R@(2,b) and located on the path
' >/ s i ;! y '/L il g (d)
Now in order to prove our claim, given the cells, c;- € from ¢, 10 ¢;. Hence, the expressiop;7; = Vil A

R, we have to identify how many times the expressio\ﬁviII appear ((1,i', j) times in the expansion of the triple
' . : . summation above. Obviously, the same statement can be also
=T+~ appears in the expanded version of the triple sum- (

. L d)/. . .

; . . (d),.. ., constructed by first consideringea € p, 5 (i,7), and making
mation %%ei zit)ove. For this purpose, lgath;”(i",7") he rest of the statements accordindtb/2,4’, j). As a result,
and piztth. (z' ,J ).denote th'e. _ceIIs that are Iocated. on th?(fld)(:r,z,,,b, a) would be equivalent to the following.
path 5(@ (3%, 7*) with probabilities1 and 1/2, respectively.

Furthermore, leth; and n, denote the cardinalities of those K,(Ld) (z,2r,b,a)
sets. Obviouslyns is even, andhy + ny/2 = dis(i*, j*). _ 1 s A (d)
With respect to these notations, observe that if we ex- Z ( dz%'TjWZVTW’jg(l’Z J) Ac

pand the triple summation given above, there will be terms “/€R® (@) cyes(? (1jz.b)
where the index of the outermost summation is a member 1 1 g (d)

g + — i/ Tili? —Uplit f 1 272 s AC 102
of either the setpathgd)(i*,j*), or the Setpathéd)(i*,j*), Z LR 1/ J) 202)
and the index of the middle summation is-. Moreover,
if co € path!?(i*,j%), thenc;- € pgfll)(i'yj*)- Therefore, where S\ (p, j, z,b) denotes the subset of cells R(@ (a)
since there aren; different cells in thepathgd)(i*,j*), the whereV ¢, € Sr(fl) (p, 4, z, b) the movement epoch between

ey €S (1/2,4,2,b)



and ¢; passes through the regidd(® (z,b) with probability
p-

(2]

At this point, we note that () (z, 2, b,a) is actually the
discretisized version of< (¥ (z,v,b,a). Therefore, in order [3]
to make a formal transition from (102) to (34) observe the
following substitutions for sufficiently high values of and

m. [4]
P fx,(z3) AA, (103)

Tjlir fxax, (@5 Xs € cir) AA, (104) 5]
Vplirg = fVle,Xd (vi|Xs €cy, Xy € Cj) Av (105)

(6]

whereA A denote the area covered by cgll and the numbers

z;, x;, andv; are chosen arbitrarily within the subregions .
covered by the cells;, ¢;, and[rAv, (r+1)Av], respectively, [
fori/,7=0,...,.n—1,andr =1,...,m. [8]

After inserting the substitutions in (103), (104), and (105
back to the expression in (102), observe first that the ter
U(p,i',5) Ac'D converges toL(? (p, x4, x4, z,b,a) (i.e., the
total distance traveled ovét®) (x, b) while moving fromz, to
x4, and passing througR® (z, b) with probabilityp) asn — [10]
oc. Clearly, if ¢, andc; are outsideR(? (z, b) then they will [11]
be equal for all choices of. Based on this observation, we can
also state that the region bounded by the ceIlS,(ﬁ% (p,j,x,b) 2]
converges t& @ (p, x4, z,b) in (31) asn — oo. Consequently, [13]
the taking the limitk\" (z, z,,b,a) asn — co (AA — 0) is A
equivalent to transforming double summation operatiores ov
the regionsk(? () ands'? (p, j,z,b), into double integration [15]
operations overR(¥(a) and S (p,z4,z,b), respectively. [16]
After this transformation, when the limit of the resulting
expression is taken as — oo, the K(9)(x,v,b,a) given by
(34) can be easily obtained. Finally, by substitutimgand;;
with fx, (z7) AA and fx, x, (27| Xs € ¢;) AA, respectively,
it can be immediately observed that
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Zsﬂi(l — Ti1i) E[Tp,] el

ci €R() (,b) [19]
= E[T,|X, € R (z,b)| Pr{X, € R (x,b)}(1086)

(17]

lim

n—oo

Hence, the limit ofF)(ﬁ’dT)(x,a,b) asn — oo andm — oo
will be equivalent to thef'y ) (z, a,b) given by (32).

In order to prove fy () (33), we need to take the
limit of zp,(.d) (21) asn and m approaches infinity. Clearly
this can be done by summing the terméd)(x,zr,b, a)
(102) for all R\ (x,b) € S (a,b). Since we have already
shown thatk Y (z,2.,b,a) converges toK 4 (z,v,b,a) as
n — oo andm — oo, it immediately follows thatf; ) (v)
can be formulated by summing th&(@ (z,v,b,q) for all
R (z,b) € 89 (a,b) and also normalizing it the end, which
completes the proof. [ ]
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