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Abstract—In wireless ad hoc networks, the ability to analyt- changes in the moving direction and speed of terminals ac-
ically characterize the spatial distribution of terminals plays a cording to a deterministic approach or a random processeln t
key role in understanding fundamental network Q0S measures ¢, mer case, movement path of terminals can be restricted to
such as throughput per source to destination pair, probability of . . .
successful transmission, connectivity, etc. Consequently, iitity predetermme_d paths_. For.ad hog environments, such myobilit
models that are general enough to capture the major character Models are impractical since wireless ad hoc networks are
istics of a realistic movement profile, and yet are simple enough created “on the fly”, and collecting data to generate thegath
to mathematically formulate its long-run behavior, are highly for all situations can be very complicated. Thus, a mobility
desirable. . . model that dictates the movement of hosts due to a random

In this paper, we propose a generalized random mobility model . . . .
capable of capturing several mobility scenarios and give a math- process, that israndom mOb'_“ty model, is more appropriate
ematical framework for its exact analysis over one-dimensional for the performance evaluation of these networks. Surveys f
mobility terrains. The model provides the flexibility to capture both models are presented in [1], [2].
hotspots where mobiles accumulate with higher probability and In general, random mobility models formulate the move-

spend more time. The selection process of hotspots is randomyent pattern of mobile hosts by consecutive random length
and correlations between the consecutive hotspot decisions are.

successfully modeled. Furthermore, the times spent at the des-'nter\_/zJlIS called movement epochs. During each epoch, @Ob'_l
tinations can be dependent on the location of destination point, terminal moves at a constant speed, and at a constant divecti
the speed of movement can be a function of distance that is beingfor a random amount of time. The speed and direction choice
traveled, and the acceleration characteristics of vehicles can be for each epoch may or may not be correlated with their
incorporated into the model. Our solution framework formulates a1es in the previous epochs, and mobility charactesisifc
the model as a semi-Markov process using a special discretization . . .
technique. We provide long-run location and speed distributions othe_r_termlnals. For |nstance,_ according to the random walk
by closed-form expressions for one-dimensional regions (e.g., amobility model [2], each terminal movement is uncorrelated
highway). with other's movement, and the speed and direction choices
Index Terms— Mobility Modeling, Long-Run Analysis, semi- for leach epoch are also upcorrela_tgd with their _ previous
Markov Processes, Ad Hoc Networks choices. The random waypoint mobility model [3] includes
pauses at the end of movement epochs in the random walk
model to make it more applicable to different scenarios.
More formally, according to the random waypoint mobility
IRELESS ad hoc networks are comprised of wirelessodel, a mobile node determines a destination point that is
mobile nodes that can dynamically form a network idistributeduniformly within the physical terrain and moves in
a self-organizing manner without the need for a pre-exgstirthe direction of that destination at a constant speed. Tged
fixed infrastructure. Nodes in an ad hoc network can moig selected uniformly fromuyin, vmax] Wherewvy,, > 0, and
according to many different mobility profiles. Thereforep-m it is independent from the destination and starting points of
bility models that dictate the movement behavior of a mobiléie movement epoch, and also the distance that is going to be
terminal play a key role in the simulation or analytical khsetraveled. After reaching the destination, mobile pausesafo
analysis of the impact of dynamically changing topology orandom amount of time, which has tkame distribution for all
the performance of these networks. In this paper, we consigkestination points, and the same movement process is egpeat
a generalized random mobility model that is flexible enowgh by selecting a new destination and speed padependently
capture different mobility scenarios, and provide its lsng from the same pair of the previous movement epoch.
location and speed distributions by closed form expression A shortcoming of the random mobility models is that the
for one-dimensional mobility terrains. movement profiles that are generated with respect to them may
In what follows, we categorize the existing mobility modelsiot be consistent with the major characteristics of a réalis
for wireless ad hoc networks, and briefly summarize thedcenario. For instance, as it also mentioned in [1], theoand
assumptions. Traditionally, a mobility model governs thwalk and the random waypoint mobility models may generate
unrealistic movement patterns such as “sudden stops” and
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to be traveled may end up in unrealistic mobility profiles vene from a distribution that is dependent on the location of
mobiles travel long distances with low speeds. the destination point.

A common limitation of the random mobility models de- The fact that we make the mobility modeling with respect
scribed above is that one cannot model a scenario Whighthese generalized approaches has a number of advantages.
incorporates predefined pathways that mobiles must follmlv aFjrst, since destinations are selected from a generalitalistr
specific destinations on those paths where mobiles acctenul@on, a movement scenario in which terminals select some
with higher probability. The models presented in [9], [16} f specific locations, for exampldiotspots, as destination with
cuses on this problem by taking a more deterministic approagigher probability, can be easily captured. Furthermooe)es
that can capture obstacles and predefined pathways betwggbility scenarios may require a Markovian dependency be-
them on the physical terrain. tween the destination points of consecutive movement epoch

In the analytical studies for the performance analysis @y instance, the probability of selecting a hotspot asimst
wireless ad hoc networks, closed form expressions for thgn can be different for different starting points. Thissea

run behavior of the network spatial behavior. For instative, 5 gjstribution function for destinations that is conditdiy

analyses that are presented in [11], [12], [13] to estimiage tdependent on the starting points.
capacity per source to destination pair of these networés ar gecond, the generic approach for determining speed pro-
significantly dependent on the spatial distribution of nt®bi iqes a unique opportunity to select speed according to the
nodes. Additionally, for some scenarios in which terminal§isiance that is going to be traveled, and also a method
can be highly mobile on a wide region, the spatial distritniti t5 model variable speed during movement epochs. Clearly,
of offered traffic may not be ignored in determining thgf the speed of the terminal can vary during moving, then
capacity of asynchronous MAC layer protocols. Observe thglir model can even be used to capture differmeeleration
the analysis of this case requires an accurate knowledgecRkracteristics of vehicles. Finally, by employing a patiise
the spatial distribution of nodes. Also, the analytical Worgjstribution for each epoch that is a function of destimatio
presented in [14] considers the station locations for theQVA;qordinate, we reached to the flexibility of pausing differe
layer throughput analysis but the terminals are assumediii@es at at different locations.
be uniformly distributed in the region. Clearly, the unifor  For some sophisticated mobility models, performing its
distribqtion assumption may not be valid for different mipi long-run analysis first over one-dimensional regions wél b
scenarios. Moreover, this knowledge can be also used j8efyl in gaining some insight into the methodology that
evaluating the connectivity properties of ad hoc networkgas to be followed for the analysis of higher dimensions.
which have been extensively studied in [15], [16]. In adufiti Thys in this paper, we concentrate our analysis to one-
to these, the distribution of link distance between mobil§mensional regions, and develop an analytical framewtak t
terminals, which is an important charac;teristic of wirslesl _provide closed form expressions for the long-run locatiod a
hoc networks [17], [18], can be obtained from the spatigheed distributions. We also believe that the analyticsiilte
distribution of terminals. _ presented can provide a methodology to analytically foateul
Hence in this paper we propose a generalized randqfp fundamental properties of wireless ad hoc networks for

mobility model that is general enough to capture the majgt,mper sophisticated mobility scenarios (e.g., capaciy-
characteristics of a realistic movement profile, and yetns s nectivity).

ple enough to mathematically formulate its long-run bebavi
with analytical expressions. The mobility pattern of a tevah A. Related work
that moves according to this generalized model is composedThere have been a number of works attempting to obtain
consecutive movement epochs in a closed region, and itsisatial node distribution for the ad hoc environments where
independent with the movement behavior of other terminatgrminals move according to random walk or random waypoint
During each movement epoch, mobile terminal firstly moveaobility models. The simulation studies that are presented
on the finite line segment joining the starting and destimati in [19] and [20] for the random waypoint mobility model
points of the epoch at a random speed and then it pausestwed that the long-run spatial distribution of mobiles is
the destination for a random amount of time. The generaliiydependent from their initial placement in the simulation
of our model is actually originating from the approach that warea, and also observed that resulting distribution is more
took to determine the destination point, movement speedl, aiccumulated at the center of the region. In [21], the movémen
pause time at the destination, and can be explained as ®lloyattern of the same mobility model is characterized as a
e The distribution of the destination points are assumed stochastic process, and analytical expressions for thg-lon
be general and can be conditionally dependent on then location distribution are derived. In [22], authors not
starting point of the movement epoch. only concentrate on the analytical expressions for lomg-ru
e The random speed for each epoch is drawn from a genesphtial distribution of random waypoint model, but also ba t
distribution function that can be conditionally dependerimiting distribution of speed and procedures for the aateir
on the starting and destination locations of the movemesimulation of this mobility model as well. The simulation
epoch, and the current location of mobile terminal i§tudy presented in [7] also concentrated in the same model,
necessary. and examined average node speed at the steady-state. They
e The pause time at each destination is selected randombyinted out that the closer,,;, to zero, the more time it takes
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for the simulation of the mobility model to reach stabilty. ° .~ ¢

[8], this work is extended by analytical studies and authors « « =+ =+ + + + aic ars e s e+ s
provided steady-state average speed distribution forrakverig. 1. Discretization ofz = [0, a] according to cells of size\z = £.
random mobility models in which the speed for a movemepence, the mobility formulation that is performed accogrio
epoch is chosen independently from the destination of th@t generalized random mobility model can be characterized
epoch. For these mobility models, as a byproduct of thay the triplet < fxax.s fvix..xqe fr,x, >. Since we
analytical formulation, authors also proposed a simufatigre concentrating on the long-run properties of the maghbilit
methodology that decreases the variations in the averagigdel, the initial distribution of the terminals can be énwduiy.
nodal speed. In [23], authors provide an analytical framfewo Before we proceed further, we note thét and X, actually
for the steady-state speed and residual distance analf/sisepresent the destination points of any two consecutiveemov
random waypoint mobility model, and similar to [8], theyment epochs, and the conditional piif, v, that identifies the
also proposed methodology for the efficient simulation @fistribution of X, given X, at the embedded points in time
this mobility model. In [24], a statistical analysis is dot® here a new epoch starts, is referred stachastic density
identify the conditions in which the spatial node distribat kernel by Feller [25]. We will identify the restrictions on the
of random waypoint mobility model, and a variant of twochoice of fx,|x. required for the long-run characterization as
dimensional random walk motion can be approximated witje proceed further in the analysis.
uniform distribution. Now as we have noted in Section |, each terminal’s move-
While each of the analytical and simulation studies memnent is assumed to be independent from others. Thus, it is
tioned above provide a comprehensive approach for the lorgrough to model a single terminal's behavior for the long-
run characteristics of the random walk and random waypoififn analysis. For this purpose, I&(¢) denote the state of
mobility models and their variants, none attempts to malge mobile terminal at timeé. According to the specifications
major extensions on these models so that they describe a ngygne mobility model we proposed, the stochastic process
realistic pattern. As it is also mentioned in [10], mobilityrx 1) ¢ > 0} must be defined on a state space that has
models that includes predetermined pathways and obsta@eparate dimensions for current location, destinatiord an
are more realistic than the random mobility models. Howevejpeed, and more importantly, the ranges of these dimensions
capturing these realistic issues requires to add detadéer-d myst be continuous. However, in the analytical framework we
ministic parameters to the mobility model and as the det@rmiconstruct, we use a discretization method and describe the
istic dimension of the mobility model expands, the pos&ibil mobjlity behavior of nodes with a stochastic process that is
of deriving long-run properties of the model in terms of €ds defined on a multidimensionelscrete state space. In addition,
from expressions decreases. The most significant diffesenghstead of observing the state of a terminal continuously, w
between the mobility model proposed in this paper and othgfll observe it at embedded timek,, for k € N, such that
random or deterministic models are the degrees of generaljt, — 0, Thi1 > Tk, Vk € Z+. Also, these embedded times
in mobility modeling and simplicity for the long-run analys are dependent on the evolution of the system that dictates th
The next section provides the mobility formulation accordnoyement behavior of the mobile node. The following list
ing to our mobility model, basic definitions, and our appfagormally defines the assumptions that the analytical fraarkw
for long-run analysis. In the third section, the analytiesults s pyilt on:
are presented with example scenarios. Section IV concludes The regionR is discretisized inton cells of the same
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the paper. length, that are denoted by, = [(i-1)Az,iAz), i =
[1. MOBILITY FORMULATION 0...n—1, as shown in Fig. 1, wherAz = = for n > 1.
In this section, we provide the formal description of the A mobile terminal is assumed to occupy one of this
generalized random mobility model introduced in Sectioorl f &t @ny moment in time, and movement epochs start from
one-dimensional mobility terrains, and construct an aiy a cell and ends up at a different destination cell.

framework for its long-run analysis. L&t = [0, a] represent Ay: The .rando.m variablé/, which den.otes the _speed of a
the bounded region on which mobile terminals operate, Mobile duringa movement epoch, is approximated by the
and denoteX, € R and X,; € R as the random variables discrete random variabl®* taking values in the state
corresponding to the starting and destination points of a SPac€Sv- = {z1,22,...,2m}, Wherez, = rAv, r =
movement epoch, respectively. Furthermore, let the random L« for some discretization parametéw > 0, and
variable V' defined on the state spad€min, Umax), Where m > 1 such thatAv < vy andvpax < mAwv.

vmin > 0, denote the speed of a terminal while moving fromis: Observation timé_Tk point to the time of occurrence of
X, to X,. In addition, denote the random variakilg with one of the following events: o
state spacé), oo) as the pause time spent at destination point Ey: In pause mode, the terminal selects a new d_est|nat|on
X,. With respect to these notations, and the mobility model that is different from the current cell occupied, and

we proposed in this paper, we define the following parameters jumps into moving state at the current cell,
FE5: While traveling in the direction of the target cell,

the terminal moves out from the current cell and

enters the neighbor cell that lies on the shortest path
joining the current and destination cells with the least
number of cells.

Ixalx,: the conditional probability density function
(pdf) of X, given X,

fvix. x,. the conditional pdf oft” given X, and Xy,

I, x4 the conditional pdf off}, given X.



TABLE |

E5: The terminal reaches to the destination cell and
TRANSITION PROBABILITIES OF THE PROCES$Sy, k € N}

enters the pause mode at that location.

Notice that the higher the degree of discretization for thEvent Transition Probability | Conditior¥

closed regionR is selected, the better approximation capkE: (¢i,0) — (ci,¢5,2r, 1) %urw i
be done to the exact location of the terminals. Also, as th&s: | (ci,cj,2r,1) — (cit1,¢5,2r,1) 1 j>i+1
discretization parametekv — 0 (i.e., m — o0), the discrete (ci ¢jrzr, 1) = (Cim1,¢j, 2, 1) 1 j<i-1
E3 (ci,cj,zr, 1) — (c4,0) 1 [i—jl=1

approximating random variablé* becomes indistinguishable
from the original random variabl&. Therefore, agn, m} —
oo, we converge to model with continuous state space. For thcesses, the transitions of the procds) from states to
rest of this paper, we will use the terdiscretisized mobility states’ at the time instant), can be governed by thiiscrete-
formulation to refer to the version of the generalized randomime Markov chain (DTMC){S,,k € N} with finite-state
mobility modeling approach that is constructed accordimg tpaceS and transition probability matri¥’ = [p, ], where
the assumptionsl;, A4, and As. pss = Pr{Sii1 =5"| Sy = s}, suchthal , s pss = 1for
Now, letS;, k € N, denote the state of the mobile terminaall s € S. The procesgS;,k € N} is also calledembedded
at time7Ty. Given the assumptiond;, A, and As, the finite- DTMC of SMP.
state space o8 will be defined as follows: Consequently, if the DTMC{S;,k € N} satisfies the
ergodicity conditions, and if the mean state holding times are

*4,7=0,....n—1,r=1...m

§ = Al ez [45=0,on =104, finite, then the SMP{X(¢),t > 0} can be characterized at
r=1....,mq=1} the long-run. Clearly, if long-run proportion of times spen
U {(c,q)|i=0,...,n—1,qg=0} (1) at the states of the discrete state sp&care known, then

. . . o by aggregating the states that has the same current cell
wherec; is the current cell occupied, is the destination cell, component, that is¢;, the long-run location distribution for

zr i the discretisized speed, apds the indicator of being in the discretisized region can be easily obtained. After, this

:jheestﬁ(;('jiin()f moving towards the target cell, or pausing at t%?/ observing the limiting behavior of that discrete resudt a

. n h ntin resul n rived.
Hence, the stochastic procegK(t), ¢ > 0} that represents ?h:sc:mae gmrc;cor?c;neb(;oarsoug;:d tej ltj)étg?n Igﬁ (-jr?m ideed
the state of the mobile terminal at tinmecan be redefined on bp 9 P

the finite-state spacs by the following expression: distribution but in_ that case, the states with the same ;peed
' component, that isz,., must be aggregated. In the following
X(t) =Sk, if Tp <t<Tp41 section, we will at first generate the irreducible stocltasti
matrix P explicitly. Then, we will apply this approach to

V\{here the timesl, Ty, ... are the successive times of tr&,m'derive long-run location and speed distributions of cardims
sitions of X(¢), and Sy, S1, S, ... represent the successiVe, s

states occupied b¥X(¢).
Observe that by constructing a state space that has a separat!l. ANALYTICAL RESULTS FORDISCRETISIZED AND
dimension for the destination cell of moving terminals, the CONTINUOUS MOBILITY FORMULATIONS

future evolution of the stochastic proce$;,k € N}  |n this section, we apply our solution framework with the
becomes dependent only on the current state of the moRilgmate aim of finding closed form expressions for the long-
terminal, not on its history at previous observation pointgyn |ocation and speed distributions ov@r= [0, al.

Furthermore, assume that current state occupie® @y is s. Now to describe the transition probabilities of the embedde
Once the state’ € S has been selected with some probabilitpTmc {Sk, k € N}, we first define:

as the next state to be visited, the distribution of sojoimet

in states can be determined from the components of state T = Pr{Xae€¢lX; €}

Consequently, the following relationship will be valid fa (G+1) Az

k € N, and all possible setss, s’} C S. = /jm drg fx,x,(za Xs € ci), (2)
Pr{Sj11 =" Thy1 — T <t|Sk =5,Tk,...,S0,To} for i,j = 0,...,n — 1. Next, sinceV is allowed to be
=Pr{Skt1 =5, Tks1 — Tx < t|Sk = s} dependent onX; and X,;, we define the probability mass

function of V* given X, € ¢; and X, € ¢;, that is, for a
state spaceS satisfies the conditions for beindarkov Re- movement epoch that had started-aand destined te;, by

newal Process, and the proces§X(t),t > 0} canbe calledas v, ;; = Pr{V* =z|X, € ¢;, Xy € ¢;}
the semi-Markov process (SMP) associated withSy, Ty; k € /T»Av
(

Therefore, the stochastic proces%,, Ty; k € N} with finite-

N} [26]. Moreover, since the general distributions for des-
tination, speed, and pause time parameters are assumed to
be time-homogeneous in the model proposed, for each paifor r =1,...,m.

(s,s') € S x S, the distribution of state holding time in state Based on the event®;, E,, and E3 that cause state
s before moving to state’, given that the next state to bechanges, and;; and v,; ; and given above, the possible
visited is s’, would be independent df. Hence, based on thetransitions and the corresponding transition probabditf the
results provided in [26] and [27] for the theory of semi-Mavk embedded DTMC can be grouped as in Table I.

: Jvix, x, (0| Xs € ¢i, Xq € ¢j) dv,(3)
r—1)Av



Cod =+ ‘ 0,...,n —1, wherei # j, and column vectorg!)), e of

’ ’ respective sizesi(i+1) x 1 andm(n—1i) x 1, are respectively

e defined by

BW —
J

1 *@ a o) integer h. Moreover, thel x m row vectorBj@, for i,j —
wf,»‘:u“uzo To|3 . .
1

Tili ® _ o

1_ Vm\i,ja €\

o2,01,21,1

T
. aov 6m—l] )
Tili

e = lem_1,0,...,0]" @)
wherev,,|; ; = [ul‘w... Vmli,j]» @ndey, is thel x h vector
of ones. The remaining blocks of the matrlcég) , and
A(l are zero matrices of sizes that can be easily derlved from
the dimensions of the other blocks.

%:” .3 T Tomy, Y3
oy
‘/ ./ Before we can proceed with the long-run analysis of the
Comnd 1 Camandd SMP {X(t),t > 0}, we must first find the steady-state

Fig. 2. State transition diagram for the procés,, k € N1, wheren = 4  distribution of the embedded DTM{S;, k£ € N} with the
andm = 2. transition probability matrix? given in (5). Clearly, this
It should be noted from Table | that whe, occurs, the distribution exists if and only if a steady-state distribat
mobile that is located at; jumps to moving mode i,n the exists for X, %, and {Sy,k € N} satisfies the ergodicity

current cell occupied. We enforced these transitions fer tﬁondmons Hence, we focus on these issues now.

. . - . : : Under the “mild” regularity conditions defined by Feller
purpose of uniquely identifying moving and pausing terrtsna
In Fig. 2 we depicted the state transition diagram of the gssc ]EZS])? nf {fﬁ‘xa(fxdlms) ’ theri.e;]qsts abstead'y st;ate dd;stnpuuc:jn
{Sk,k € N} for a simple case where n=4 and m=2. or X, with pdf fx, (z4), which can be uniquely determine

Next, we formulate the transition probability matriR from the solution of thae following integral equation
of the process{Sy,k € N} in full generality. Clearly the fx.(x4) :/ Fxaix. (@alzs) fx, (xs)das (8)
structure of the matrixP? depends on the order imposed on 0
the states inS. The ordering that we have decided on i©bserve that the integral equation given above is used &irobt

S = {S0,S1,...,S,_1}, where eachS; hasm(n — 1) +1 the steady-state behavior of the discrete-timeontinuous-
states according to the following order: state Markov proces§ X }. From a different perspective,
let T = [r;,], and lety;, i = 0,...,n — 1 denote the
Si = {(cir co, 21,1, (€5, €0, 2ms 1), - probability of starting a movement epoch from cellat the
(¢ircim1,21,1), -0 (€45 €im1,y 2my 1), (€3, 0), steady-state. Based on these notations, this integratiequa
(¢cisCit1,21, 1),y (CisCitty Zmy 1)y ety is just the analog version of ¢T' = ¢ with |¢|, = 1,
(ciyen—1,21,1),...,(Ciycn—1,2m, 1) }. (4) wherey = [pg,...,pn_1]. Clearly if the distribution ofX,

is assumed to be independent frai, then the solution

of the integral equation (8) would be simple. However, for
other cases, deriving'x_(z4) can be a very tedious task.
We will return back this point later in Subsection IlI-B that

Based on this ordering, the transition probability matfix
has the following discrete-time level-dependent quadhbi
and-death process (QBD) form [28]:

A§0) Aéo) concentrates on the mobility scenarios where choic& pis
A0 4 4o dependent onX;.
2 ! 0 Hence, if the pdffx. (z4) can be uniquely determined from
P = (5)  the solution of (8), thery; will be given by
Aén—Q) A(ln—2) Aén—Q) (i41) A
Ay AP pi= [ dvafx o) ©
i Az
where the matriceslgb), AY’), andAé”, i=0,...,n—1,are Next, we examine the ergodicity 48, k € N}.
(m(n—1)+1) x (m(n — 1)+ 1), and defined as Lemma 1. If the pdf fx.(z4) can be uniquely determined
\e“’ ‘ Tt from the integral equation (8), and if,;; > 0, i,j =
A0 _ | 101 | A0 _ 0,...,n—1andr = 1,...,m, then the embedded DTMC
0 $ o2 = " {Sk, k € N} defined on state spac®@= {Sy,S1,...,Sn-1},
- € with transition probability matrixP defined as in (5), will be
irreducible and aperiodic.
Proof: Please refer to [29]. [ ]
Agi) = |89 ... BO, B, ... BY, (6) Thus, when the conditions ofrgodicity for the DTMC

{Sk, k € N} are satisfied, the steady-state distribution of it,

1Since X4 is the X of the next mobility epochXs and X, can be used
h left block ﬂ(i) . trix of si . interchangeably at the long-run.
where upper e 0CK 0 IS @ zero matrix or sizen: x 2The stochastic procegsXs} changes its state at embedded time instants

m 1, and I, denote the:w x h identity matrix for some positive that represent the starting time of a new movement epoch.



which we denote byr, for states € S;, i =0...n — 1, can is satisfied only if the minimum speed a mobile can at-
be uniquely determined by solving the matrix equation tain is nonzero, and mean pause time spent at destinations
7P =, with |, = 1 (10) are finite. Hence, if the mobility charact_erization pgraamet
fvix,.x, andfr, x, are selected appropriately to satisfy these
whererw = [mg,my,...,m,_1], andm; is a (row) vector of conditions, then the conditions given in [26] for the long-
sizem(n —1)+1 whose elements are;, Vs € S;, according run characterization of SMPs are satisfied, afd which
to the order given by (4)r; can be also called the solutioncorresponds to long-run proportion of time that the process

vector for leveli, i =0,...,n — 1, as in [30]. is in states, is simply

Next, we examine the solution of the linear system given by -
(10). To the best of our knowledge, if there are no additional P, = ﬁ, Vs €S (16)
assumptions made on the properties of the ma#ithe most gcs "

efficient direct computational procedure to find the stestdye
distribution of finite-state level-dependent QBDs is preasd
in [28]. By using that procedure, one can obtaimumerically

Finally, after aggregating the states that belong to theesam
level (i.e.,S;, © = 0,...,n — 1) of the level-dependent QBD

for some moderate values afandm. However, as we made process{Sy. k: € N}, we obtained the following result for
the long-run location distribution of the discretisizedeen

clear before, we are aimed at finding the limiting behaV|oOﬂmenSIOnaI regions.

of the long-run distributions for the discretisized case as Lemma 3. For the mobile terminal, whose mobility pattern

n,m} — oo. Clearly this can only be done after deriving the
I{ocaugn and speedyd|str|but|onsy|n closed from expreim is formulated according to the discretisized version of the
IX. ,fV‘X X4 fT,1x, > mobility characterization, lep;,

Therefore, we focused on an alternative direct approach
=0,.. — 1, denote the long-run proportion of time that
derived the following result. termmal sta s in celt;. If the conditions given in Lemma 1
Lemma 2: If the conditions given in Lemma 1 for the Y g

ergodicity of the DTMC {S;,k € N} are satisfied, then holds, and if the equation (15) is satisfied, then

the solution vectorr; for level 4, i = 0,...,n — 1, of the o (Pi (1 =7) E[Ty,] + ki Az (17)
level-dependent QBD process given in (5), with the matrices b= .
A9 4D and A% defined as in (6), is given by Z o (1= 1) E[Ty,] + D A
71'7;:[71’1'707...,TI'i’l',...,Wi_’n_ﬂ/N (11) where t—1n—1
where n—1 . ko= 3D el Z PR
Z_ 0 Tjle Ve, I J<i 7=0 t=i
™ = @7 (1 — Tili ) if ] =1 ) (12) —+ Z Z(pp Tj|e Z I/.‘g,j, (18)
Z@ZT]MVmMJ; If.7>Z J=iH1 =0 n—1
- and Dn=S"k (19)
Wherel/,,nlid' = [V1|i,ja ey V’rn|i,j] andN Z ‘Tﬂ”l 2=0
Proof: Please refer to [29]. [ ]
To characterize the SMRX(t),t > 0} at the long-run, Proof: Please refer to [29]. n

it remains to formulate the expected state holding times. Fo Next, we turn our attention to the limiting behavior of
this purpose, let, be the expected holding time in states the discrete result derived in Lemma 3, and summarize our
S. Recall that in Section Il, we decomposed the state spd@damental result for the long-run location distribution

S into two groups that represent moving (i..= 1), and Theorem 1: For the mobile terminal, whose mobility pat-
pausing (i.e.q = 0) terminals. Therefore, sinc& = [0,a] tern is characterized by fx, x.. fv|x. x. fr,1x, > let

is discretisized by cells of sizAz, the expected time that is fx (), z € [0, a], denote the pdf of its location distribution at
going to be spent at a cell by moving terminals is simply the long-run. If the pdffx, (z4) can be uniquely determined

Az from the integral equation (8), an®'[T,|X, = =z, <
gs = (13) o0, Vxs € [O,a], and fV|XS,Xd > O; Vv € [Umin»vmax]u
Zr andV z,, 4 € [0,a], then
where s = (¢, ¢j,20,1), 4,7 = 0,...,n — 1, andr = B
1,...,m, such that # j. To formulate the mean time that is fx(z) = Ix, (@) E[T| X, = 2] + kx(2) (20)
spent in a state of the form= (¢;,0), i =0,...,n— 1, we E[T)0< X, <a]+ D
also define the following notation: where
ts = E[Ty] = E[T|X; €l kx(x) =/drcd/dxs gx(x57xd)+/dwd/dxs gx (xs,q) (21)
= / Pr{T, > t,|X, € c;} dt, (14) 0z o0
0

) ) _ where
Notice that the following equation

Z Tsts < 00 (15)

seS and

gX(xSV%'d) = fXS (xs)fXd|Xs ($d|xs)E[%‘stwwxd:xd]a (22)



Umax 1 .
B[L (X =20, Xa=z4] = / dv - fvix. x.(v|zs,z4), (23) spentin those states we get

VUmin

n—1 R .
and ( ;)%(I—Ti‘i)E[Tpi})/N, if r=0
D= / dx kx (z) (24) n—1 i—1n—1 )
Jo Py = ( > Am( DD e T S Urleg
i=0 j=0 (=4
Proof: Please refer to [29]. [ | T s g Vi Tie = VTW))/N, else
It should be noted that if the distribution &fis independent J=it+16=0 i

(29)
where N = Y""" Vo, (1 — 7,,) E[T},,] + D,, Az. Taking the
limit of this discrete result a§Az, Av} — 0, we reached to
the following theorem.

1. /" @ Theorem 2: For the mobile terminal, whose mobility pat-
kx(x) = E[V]/O dmd/z drs fx.(vs)fx,1x. (Tals) tern is characterized by. fx, x., fv|x. x., fr,|x, > if the

1. [ x conditions that are given in Theorem 1 for the parameters
+ E[v]/f dﬂﬁd/o drs fx,(€s) fxax.(®alzs)25)  fx, x., E[T,|Xs = z], and fy|x, x, are satisfied, then

from X, and X, then the pdffy, can be employed instead of
fvix., x, for mobility characterization, andx (21), andD
(24) simplifies to

S e B[T,|0<X.<ald(0) i ~
D= ElGIP (26) | Fmosxzasn =0
ff/(v): J§da kg (x,0) ’ (30)
where _Jo T RVATT) if ve [Umin7vmax]

D= /O“ dag /O”d dus(zqg — xs) fx, (Ts) [ x. (Tals) and )
E[V] = ] -

+ /O " dea / d, (s — 2a) fx. (23) fxs . (2al2s) 27)

where
Notice thatD is actually the average distance between the two ey * ¢ ) -
points X, and X, drawn at random according to the pdfs_, ky(@,0) = /O dmd/w desgy (s, 2a,9) - (32)
andfx, x,, respectively. In addition, iX is also independent a z ~
from X, thenfx, can be used instead ¢k, x,, andkx (21) + /w dmd/o dzsgy (Ts, Ta, 0)
further simplifies to

where

1 x a 1
kx(l‘) =2 E[V]A dxd/ dl‘s fXd(xs)fXd(md) (28) gf/(xsvxda@):be (xs)fXd\Xs (xd|xs)5fV\Xs,Xd(ﬁ|xs>md)
’ (33)
Having defined the long-run location distribution, we now  proof: Please refer to [29]. n
concentrate on the_ long-run speed distribution. Clearly in |t should be noted that, if the distributions &f, and ), are
order to achieve this, we need to aggregate the steady-s{gtfpendent fromx,, and if distribution ofV is also inde-
probabilities of the states i that has the same speethendent ofx, and X, then the mobility characterization can

component, and take the limit of the resulting expressigfy gone by the triplet fx,, fv, fr, >, and the formulation
as {Az,Av} — 0. Thus, for the mobile terminal whose ¥ i

o . . > fi7(v) and E[V] for this simplified mobility formulation
movement behavior is characterized according to the iplgi match to the results that are derived in [8] for a class of
< fxax. fvix..x. fr,x, >, let the continuous random

: s : mobility models where speed is selected independently from
variableV'(t) defined on the state spa¢e} U {v|vmin < v < the distance that is going to be traveled.
Umax} denote the speed of a mobile terminal at timeNote  Ein)ly, from the results presented by Theorems 1 and 2, it is

that, since the mobile can be in pausing mode at some poin{B, that the dependency &f; on X, makes the fundamental
time, V(1) can also attain the zero value. Next, 1erepresent igerence. Therefore, in the following two subsections w
the random variable having the long-run distributionft), il at first concentrate on some example scenarios that uses
and denote its pdf_ by . Finally, referr|_ng~back tp assumptloand (ie. distribution of X, is independent fromx,) for

A, denote the discrete random variatife defined on the mopility characterization. Then, we will proceed to more

state spacey. = {0} USv+ = {20,21, 2, .-, 2m}, Where compjicated scenarios by employing the stochastic density
Zr = rA_v, r=0,1,...,m, as the discrete approximation tokernelfxd‘x for mobility formulation.
the continuous random variablé. °
Now, let v, denote the long-run proportion of time that
mobile possesses spegd r = 0, 1, ..., m. After aggregating
the components of the vectons ;, i, = 0,...,n—1, defined Example 1. The random waypoint model [3] represents
by (12) according to the states éthat have the same speedhe simplest nontrivial case of our generalized modeling
component, and using the mean times that are going to dgproach, and can be characterized according to the triplet

aA. Variants of mobility characterizations done by fx,



< fx4» fv, fr,1x, >, where the parameters are defined by ~ Hence, we reached to the following results for this improved
case:

Loifo<a;<a LEIT,)) + kx ()
Paed) = {8 anomies " (34) = aPhl @) 2
d 0, ?therw|5.fe fX( ) E[Tp] + D ’ ( )
—— M vy <v <0
fV (lu) _ { Vmax —Umin 9 min ._ — max (35) E ‘7 _ a,/3 43
0, otherwise \4 7E[Tp] ;) (43)
and h(t,), ift,>0 where
froxatylza) = { ) e (30

2 xT a Umax 1
ky(z) = — /dx /dxs dv—fvix.x,(v]zs, za) (44)
where h(t,) is the pdf of the random variablé&,, which is x) a® Jo " vmin vt !

independent from the location of the destination. Denotirey where fy|x. x, is defined by (40).

average time spent at the destinationstiy; ] (i.e., E[T,] = Clearly, because of the complicatednesgiofy. x., kx (=)
Jo_ tph(ty)dt,), observing - can only be evaluated numerically for a givere [0, a], and
E[i] — (o) (37) @lsoD. However, for the extreme case— 0, we have
V (vmax - vmin) ’

and using Theorems 1 and 2, we obtained the following for Fvixoxa s, ) = 0(v = plws, xa)) (45)

the pdf of the long-run location distribution and the expélct From a different point of view, for the limiting case where

value of speed at the long-run: o — 0, V will be linearly dependent tpX, — X 4| with respect
éE[Tp] n QI(Z{Z_:&)E[%] to the following transformation:
fX (SIJ) - a 1 ) (38) (Umax - Umin)
E[TP] + §E[V] V = Umin + — ‘XS - Xd| (46)
> a/3 . _—
ElV] = BT, + 2E[1] (39)  Thus, thekx (z) given by (44) simplifies to
We note that if the speed choice for each movement epoch kx(z) = 2(10((max (@=2)+20min) /0) (2 (Vimax —Vmin) —Vmaxa)
is deterministic with a parametes, then E[%] must be + In((2(vmax —Vmin) +Vmina)/a) (2 (Vmin —Vmax )~ aVmin)

substituted with%. In addition, the analytical work presented
in [21], considers two different limited variations of thae .
dimensional result we derived for location distributiods. and D will be given by

first, they concentrate on the case whérfl},] = 0. Next, ) 2 ax — Vmin — 2UminUmax In(222x))

they extend their analysis, and provide the location diistion D= 3 Umin (48)
for the scenario where pause time is nonzero, and speed is (Umax = Vmin)

deterministic (i.e., constant speed). For these two cases, Now, after substituting the) given above by (48) to the
make the appropriate changes in the formationfefgiven equation for E[V] (43), a comparison of thaf[V] with

in (38) (i.e., E[T,,] = 0 for first case, andE[y;] = | for the the one defined by (39) in Example 1 reveals that since
other case), then the results will match the pdfs presemteds) (48) is less than(q/3) R lmex/Vuin) (o [) in Example

[21]. _ _ y 1) for all vmae > vmm > 0, the E[VV] obtained for the
Example 2: In the random waypoint mobility model we nitorm)y distributedV” is always smaller than its counterpart

analyzed by EX?mp'e J!,/_is assumed to be in(_jependent fronpor the V' that is defined by (46). This is consistent with the
|Xs — Xql, that is, the distance traveled during a movemeft, .. o expectations because Whéh = v + ((vmax —
gpoch. However, in most of the realistic; scenaridgends to vin) /@) |25 — 24, the possibility of moving long distances
Increase agX; — Xq| does. Thus, for th_'s example, we mak_‘?/vith low speeds becomes zero. On the other hand, for the
an improvement on the random waypoint model by proposingiqina| random waypoint mobility model, sincg is not
a f"'Xs_aXd that provides the opportunity to determ|_r’£é directly proportional taD, lower speeds might be selected for
p.roporuonal_yo the random variabl® = |X, — Xa| with longer distances and as a result, expected value of therlong-
high probability. . speed decreases. It should be also noted thak/[&s] — 0
Now, considered a truncated normal distribution [31] ¥or . =~ = E[V] converges taum, for both choices
according to the pdf given by of V, which is also expected because it corresponds to the

4 @Vmin In(Vmin)+aVmax ln(vmax)) / (a(’timax*vminf) 5 (47)

a(v

fvix.,x,(W|zs, za) scenario where mobile travels with fixed speegd, at all
Z(U*}L(mswd)) times without pausing at any Qestination. _ .
= ( ) o ( ) (40) The other extreme case of interest for this example is
VUmax —H(Ts,T Umin —H(Ts,T . . .ps . . .
o (®( Elefd]) — @(tmin—tftedl)) 0o, Which simplifies to the scenario whefié is uniformly
for vy < v < Umax Wheres > 0, and distributed in[vmin, vmax]. Therefore, we conjecture that, if

fvix. x, is defined according to (40), the lower bound for
zs —x4|  (41) E[V]is given by (39) in Example 1, and the upper bound for
it is given by (43) with theD defined as in (48). Obviously,
the difference between these bounds decreasE$as$ — oo,

Or Umin — Umax-

Umax — Umin
M(l‘s,l'd) = Umin + y |

Z and® are the probability density and cumulative distributio
functions for the normal distribution [31].



B. Variants of mobility characterizations done by fx,|x. Next, we focus on a more generic form for this scenario.

Example 3: As a basic example of a scheme where distrfizOnsider a partitioning of the regiok = [0,d] into M
bution of X, is dependent orX,, consider a scenario whereSUPregionsi; = [a;, aiy1), i = 1,..., M such that;, > a;
the closed regiomk = [0, a] is partitioned into two subregionsWith a1 = 0, aar+1 = @, and let the stochastic density kernel
Ry = [0,c) and Ry = [c,a) such that0 < ¢ < a. In this Pe defined by

setting, when the starting poink, € R;, the destination A,

point X, for that epoch will be distributed uniformly over Trioa T s € i, andazg € R,
either R, or R, with respective probabilities: and (1 — a)  fxulx.(Zalzs)= Ghj=1,...,.M (55)
where0 < a < 1. Similarly, if X, € Ry , then X, will be 0, otherwise

distributed uniformly over eitheR; or R, with probabilities o _ .
ﬁ and (1 _ 6), respective|y whered) < B < 1. Hence, the WhereAi’j denote the probablhty of Selecﬂngd Un|f0rm|y

stochastic density kernglxd‘xs will be formulated by in SubregionRj giVen thatXb is located in SubregiOﬂRi.
L Similar to the discussions for the solution of the integral
=% if 2, €[0,¢) andzq € [0,¢) equation given by (51), since the functigfiy,|x, (za4|zs) is
2 if 2, €[0,¢) andzy € [c,a) independent fromz, in all of the different subregions for
Fxolx. (als)= % if 2, € [c,a) andag € [0,¢)  (49) Zs, [x,(zq) will be equal to a constant value in all of the
) [¢,a)

P subregionsR;, i = 1,...,M, as in (52). Therefore, if the

Tja if 25 € [c,a) andzq € [c,a DTMC {Xy,,k € N} with the M x M transition probability

0, otherwise matrix A = [A; ;] is irreducible and aperiodic, then the
stationary pdf of the destination points is given by

where0 < o« < 1 and0 < g < 1.

Now, let X4, denote theX, (i.e. destination point) of the A fxge R, i=1,..., M
kth movement epoch. Then, based on the definitioffixof x . fx.(za) = { 8:’+1_a" otherwise (56)
given above (49), we can construct the DTM&,, ,k €
N} with states that represent the subregidtis R,, and a where my = [7a,,...,7ma,,] IS the solution of the linear
transition probability matrix4 given by systemm g A =4, |7al, = 1.
R [1-a a As an application of this scenario, we focused on the one-
A= Ry [ 3 1-3 ] (50) dimensional version of the random direction model desdribe

in [32]. In this model, nodes are restricted to move between
Obviously, the DTMC{X,,k € N} governs the decisionsthe destinations that are located at theneighborhood of
of X, at consecutive movement epochs, and in order to solygundaries. After reaching the destination, mobile pafises
fx.(zq) uniquely from integral equation (8), it must satisfyy specified amount of time, and travels to a new destination,
the conditions of ergodicity at first. Therefoke,or 3 can not which is also located at the neighborhood of boundaries.
be equal td) or 1, which is already required in the formulationSim"ar to the random Waypoint mob|||ty model, for each

of fx,x.- movement epochy is selected independently fropX, — X 4|.
Hence, by applying the integral equation defined in (8), we Now;, in order to capture this model with thfe, x, defined
can derive thefx, (zq4) for this example as follows: by (55) on a one-dimensional topology, we have toldet 3,
1o (€ o (2,)dx, and divide R into subregionsiz, = [0,¢), Ry = [¢,a — ¢),
5 ra . and R; = [a — ¢, a). Since, the stochastic matrit must be
+2 [ fx.(xs)dxs, if z4€10,¢) . . - U
Fx.(zq) = e e (51) irreducible and aperiodic, we define it by
s o fo fx. (zs)dzs
+};§ fca Ix. (xs)dzs, if x4 € [c,a) e ];; (%) 8 1 % € -
which implies R3 1—¢ ¢ 0
fx.(xq) = { kr, !f zq € [0,¢) (52) where0 < e < 1. Obviously, sinces cannot be equal t0,
ko, if wq € [e,a) mobile terminals may select destination points locate@®at
for some constants; andk, € R. However, ase — 0, the possibility of this case diminishes,

Now, let 74 denote the steady state distribution of thand we reach to desired scenario.
DTMC {X,, .,k € N} with transition probabilityA. Observe  Hence, after obtaining théx_(z4) from (56) for a nonzero

thatmy = [(a%ﬁ, (aaTmL and sincg X, , k € N} determines ¢, applying Theorem 1, and finally, by taking the limit of the
the subregionXy is located, we get result ase — 0, we derived the following for the long-run
c 3 a o location distribution of this mobility model:
(xq)dry = ——1, (rq)dry = — (53 )
Joxatea= iy [ etoitna = iy 69 PUICILEUNIEE  if g € ,2)
which concludes E[l/I;/] i
L1 if 24 € [0,¢) Fx(@)= BT, 4D’ Toelea—2)  (s8)
—{ (@) e a="1% 4 B[T,)/(2¢) + E[1/V](a—2)/e
fx.(xa) { 5 (aic)’ if 24 € [c,a) (54) p D ,ifz€la—e¢,a)
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Fig. 3. Highway scenario for Example 4.

where D = E[1/V](a — ¢), and E[T,] is the expected pause
time spent at the destinations. Notice that;(z) converges
to 1 as E[T,] — 0 ande — 0. 1 .
Before proceeding to a more sophisticated scenario, we |, i
would like to emphasize an important issue about the usage 2,,’i r ’i
of the stochastic density kerngl,|x, (z4|zs) for mobility ! iy
characterization. Now observe that, x_ provides a mecha- | H ,\
nism to accumulate the consecutive choices of destinatmns I e R iiE =
subregions insidek. The transitions between the subregions ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
can be also controlled by the transition probability matix S s e e e
we defined above. Howevefy, x, can not be employed in rig 4 comparison offx and fx, asa — 1/2 for Example 4. ¢ =
controlling the direction of the mobile terminal at cons®e  1000m, b = 50 M, vyin = 1 M/S, vmax = 20mM/s, C € {5, 10, 15}sec)
movement epochs. For example, on the reg®n= [0, al, ) o - N
our formulation can not be used to capture a case where>@Sed on this definition o, |x,, the transition probability
mobile selects the destinations towards the pajntith higher Matrix A corresponding the DTMG X, k € N} is

X

probability for each movement epoch. In order to have a proba Exy 0 1-a o % —a «
bilistic mechanism to control the direction, we must extémel H, % 0 % 0 0
mobility model with an underlying modulating Markov chain A= Euxo a t-a 0 i-a «a (60)
that controls direction by making transitions at the emleeddd H, 0 0 i 0 i
times at which a new movement epoch starts. This is doable for Eaxs a Yo a oo 0

2

Observe thatA satisfies the conditions of ergodicity if and
only if @ # 1/2, which is also required by the definition of

the discretisized version of the mobility formulation. Hever,
it will never end up with tractable closed form expressiadks |
the ones we presented by Lemmas 2 and 3. !
i . e e XX,

[OE)](a;?]%\?vﬁ' ir? cl):?gs-ld; rWtE;ar : &::cl)t:)ci)gntgerr%firfgles fgog(p ecte Hence, by applying the result given by equation (56) for the
to move between destinations located in the subregiong 7 X¢lXs of the form (55), we get
1 =1,2,3, without pausing at the subregiotit, and H. %7 if g€ Ex;, i=1,3

From a practical point of view, this partitioning can be 1 .
considered as a highway scenario whete and H; represent fx.(@a) = 4(1-a?)b’ if 24 € By (61)
exit areas and highway segments, respectively. The exisare m, if g€ H;, j=1,2
can be also considered as hotspots where mobile accumul@teth . t the terminals t t ontv exi
with higher probability. Hence, for the purpose of usin%ur ermore, since we want the terminais to pause at onty exi

. N~ reas, we decided on the following function for the expected

our < fx,x., fvix.xq fr,x, > mobility characterization i t the destinati
approach to capture a highway scenario that is composed'ogluse Imes at the destinations
movement epochs between exit areas or hotspots, suppdse tha E[T,|X,] = { C, fX,eFEx;,i=1,2,3 (62)
if X, € Ex;, then X; will be uniformly distributed either pl=rs 0, otherwise

over E??’_ for j # 4, or over Hj;, j = 1,2, with respec'tlve where(C is a constant> 0. In addition, we assume tha&f is
probabilities v and 1/2 — o where 0 < o < 1/2. Notice  jfined by (46)

that, asa — _1/2’ the possibility of a movement epoch 10 gaqeq g the mobility characterization parameters we de-
star.t from a highway segment, or _tq pause at somewhere Qibed, we generatetly and D defined in Theorem 1 by
a;}hlg!';way segment k?ecomes .rllle%llglble.% Furlthe(;rnors, azswwg dividing the ranges of the double integration operation
that if X, € H;, then Xy will be uniformly distribute confidently to the subregions defined above. After this, we
over eitherEz; or Ez;,, with equal probabilities. Thus, the derived the limiting expressions of them as— 1/2, and

stochastic density kemgfly,|x, will be given by finally we obtained the pdfy for that limiting case (i.e., the

% if v3 € Ex; andzy € Ex;, case where destinations are only selected at the exit areas)
i#j SinceV is dependent o, the final form of fx is not simple
WD=c it o+ ¢ Eo ande, € H. enough to fully presgnt here. quever, _plotqufor different
Fxax. (@alzs)= (a—30)/27 s ¢ d J (59) cases, and a graphical comparison of it with can be found
) 1—{)2, if x5 € H; andzy € Exj, in Fig. 4.
j=ii+1 From Fig. 4, first observe thagty and fx_ are substantially
0, otherwise different. This is expected because, during moving mobile

terminal passes through highway segments and although they
where0 < a < 1/2 don't pause at highways, the proportion of time spent at
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highways locations increases as they move between ex#.area
Furthermore, as the expected value of pause times at the
exit areas (i.e() increases, the value gfy at the highway
segments decreases because they spend more time on the exit
areas at the long-run. In addition, this example also shbafs t

a performance analysis study that makes assumptions about
the location distribution can not ignore the times spent on
the highways that connect hotspots, or the subregions where
mobile terminals accumulate with higher probability.

<
T

£ XX gV By X)

<

C. Modeling Acceleration

The obvious unrealistic characteristic of the movement e
behavior generated by our generalized approach of mobility o x X, X, X a
modeling is that at the beginning of a movement epoch that T
had star?ed ak, and destin?ad thS, the in:stantaneouslospeec;]!éjIl 5. Mobile reaches target speed
that is, speed at any instant of time, of a mobile terminal
jumps from0 to V' abruptly implying an acceleration that
is oo in magnitude. In addition, when mobile reaches to the
destination, it decreases froh to 0 with a deceleration that
is alsooco in magnitude. However, in realistic situations, the
magnitudes of acceleration and deceleration are finite,aand
mobile terminal cannot immediately increase its instagoas
speed fronD to V' at the pointX, and also immediately drop
it from V to 0 at the pointX,. Clearly other random walk or
random waypoint like mobility models that we have mentioned v
in Section | also possesses this unrealistic characteristi

Now in order to remove this unrealistic movement behavior ‘ S
from our mobility formulation, assume that for each movetnen O X K % a
ep_och, a mOb”e terminal I_ncreases its speed fKﬂ)@ 14 Fig. 6. Mobile slows down before reaching target spéed
uniformly with an acceleration that hasnstant magnitude,
travels at speed/ for a distance, and when it gets closg@eriod. More formally, for the case whet®¥; > X;, let
to destination, it decreases its speed frbhto 0 uniformly X; = XS*%’ andX, = X — MV—ZZ Hence, ifX; < X5,
with an deceleration that is alsmnstant in magnitude. Let then
bace and ¢g.. denote the magnitudes of acceleration and V2¢ace (X=X5),  X€(X,,X]
deceleration, respectively. Before we proceed furtherhi@ t'e(Xs:Xa:Vidace dace, XJ=qV, Xe(X1,Xz] (63)
analysis, we assume that the distance between the point V V2= 28dec (X—X2), XE(X2,Xd]
and the location at which mobile starts slowing down must I®n the other hand, i, > X, (i.e., mobile must slow down
exactly equal to the distance required to decrease speed figefore reaching speed), then
V' to 0 with a deceleration that is equal tg,.. in magnitude {

<
T

(X XV, By X)
‘

(i.e., a symmetric environment). In addition, in the rest off,(X. X4,V.¢uce,bace, X )= V20ace (X7 Xa)y XE(Xa:Xmial (64)
this subsection, since terminals accelerate to and froradspe V2bace (Xa=X), X€(Xomia, Xa]

V, which is drawn randomly fromumin, Umaz], the random where X, ;g = X, + $aec(Xa—Xo)

. . « » PdectPace
variable V' will be also called as “target speed”. Hence, let For the other case whet¥, < X., let X, = X, — V2

J6(Xs, Xa,V, Gace, Pace, X) denote the speed of the mobile ) _ 2¢ace’
terminal at the point X for the movement epoch betwegen and Xz = Xq+ 53— Hence, ifX; > X», then
and X, with target speed’/, constant acceleratiof,.., and Nereoess) XXy, Xo]
constant deceleratiopy... Notice that acceleration becomgs _ et Tl v

. Fo(Xe.Xa,Vidace,baee, X)=V, Xe(X2,X1]  (65)
when the terminal reaches target spé&dHowever, for some T ad (X2, Xe (X Xa]
exceptional cases, the absolute distance betwéeand X, « ’ «
can be so small that the mobile might be forced to decelerdi@wever, if X; < X5 (i.e., exceptional case), then
before reaching to target spe&d In order to illustrate these 2nee (Ko=) XE(XmiarXa]
characteristics, in Fig. 5 and Fig. 6, we focused on a smgléqs(Xs,Xd,V,asacc,qsdec,X){m7 XX Koncs] (66)

movement epoch between the poidfs and X, where X; >

X,, and plotted the instantaneous speed of a terminal versusere X,,,;q = X, — T —

its location (i.e.X). Observe that when destinatioty is too We note that ifg,.. = co and ¢ge. = 00, then X; = X
close toX, mobile terminal cannot reach instantaneous speadd X, = X, for all of the cases we defined above, and
V', which is selected as the speed of the movement intereainsequentlyfs(Xs, X4, V, Pace, Pdec, X) = V at all points
betweenX, and X;, and has to decelerate after an acceleratithetweenX, and X .
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It is now apparent from these formulations that in order

to capture acceleration-deceleration characteristie®bicles, b i
mobility formulation must keep the information about the
starting point (i.e.,X;) of each movement epoch that is des- = 1

tined to the pointX,. Since we employ the stochastic density
kernel fx, x, in mobility characterization, this requirement

©
g

has already been satisfied. < sl ]
Now in order to formulate the long-run location and speed

distributions according to the acceleration and decetsrat oer )

parameters, we first need to extend the results given for the | 0, =05 M g, = Lmi?

discretisized mobility formulation. Returning back to Leva 7 e e e \{

2, observe from the formulation af; ; (12) (i.e., the prob- 02l ek St i 3

ability of being in cellc; and moving towards celt; at the

steady-state) that the steady-state probability of being fr % w0 0 w0 40 50 0 700 0 00 1000

X

a movement epoch that hqd st.artedgalnd destined to; with 7. fx for Example 5. = 1000, vy = 1M/S, tmax = 20M/S,
a target speed of, = rAwv is simply @, 7;, Ve, ;/N. Hence, g[r,) =15 sec)

the acceleration and deceleration characteristics caraig/ e E[TPIOSXSSa}J(ﬁA)’ if 5=0

incorporated into the formulation of; (17) given in Lemma Fo (i) = E[Tp|0<X,<a]+D
3 by substituting thez, appearing inside the formulation of Vv Jo' dz kg (2,9)

k; (18) with the discretisized version of speed that can be E[T,|0<X,<a]+D’
achieved at celk; for a movement epoch that had startedherek; (z, 7) is defined by (33), but the integrand of it, (i.e.,
at ¢, and destined toc;. In other words, thez, that is 9 (x5, 74,) (33)), is reformulated by

appearing inside the formulation &f (18) must be dependent 9o (5, 2a, B, 2)

on the locations of starting and destination cells and alsg’ " > "%’ ~ ~
acceleration-deceleration characteristics of the vehithus, = fx. (@) fxax, (€al2s)3s (s, 2, 0, Gace, Pdec, 7)
using the limiting approach that was applied to derive tiselte where

presented in Theqrem 1,itcan 'be easily proven tha’F, in doder Go(Ts, a, U, Gaces Ddee: T)

capture acceleration-deceleration characteristics thitHong- -~

run location distribution, it is enough to redefikg (21) by

, (70)
if € (0,vmax]

(71)

1
:  a o a Z/dvfwxs,xd (v]@s, 2a) = L(o=fy (@o 240, 0ace:bace)} (72)
kX(m):/dxd/dxs gx (s, Tq,) +/d$d/d$s gx (s, Tq,) min
0 0 which implies _
©7) E[V] = D .
E[T,J0< X, <da]+ D
9x (s, 2a, )= fx, (s) fx ) x. (TalTs) Bl$ | X =2, Xa=2a,X=2]  where D is simply given by (27), and is again defined by

where (73)

where (68) (24), but its integrand is théx formulated above by (67).
At this point, it should be noted that since the function
E[$|Xe=2e, Xa=24,X =1] J6(Xs, Xa,V, Gace, Paec, X) is determined according to the
:/v"“'”‘ dv F (]2, 24), (69) comparison of the variableX; and X,, which are defined in
o fo(Ts, Tay v, Pace, Pdee, T) VIXa,Xa\TI%s Sd)s terms of X, X4, V, bace, and dgee, it is very complicated

to find closed form expressions fax (67) even for the sim-

At this point, we should note that they defined in (21) is plest nontrivial case (i.e., random waypoint mobility mbde
formulated byE[| X, = x4, X4 = 24) (23), which has the Therefore, in the following example scenarios, which are
same value for allX' between the points(, and X, which presented to demonstrate the effects of different acd&ara
doesn't apply to the finite acceleration-deceleration case deceleration parameters on the long-run location digtidhu

Next, notice that when acceleration-deceleration formuland expected value of speed at the long-run, we evaluated
tion comes into the picture, since mobile accelerates (decand alsoD using numerical integration methods.
erates) to (from) target spedd, V (¢), that is, the speed of Example 5: We now focus on the original random waypoint
the mobile at timef, must be defined on the st} U{v|0 < model (i.e., uniformly selected destination and speedtlon
v < vmax - Therefore, the distribution of (i.e., the random independent pause time distribution). Fig. 7 depicts sgver
variable having the long-run distribution cﬁ’(t)) can only fx that are obtained for different acceleration-decelenatio
be determined by considering all possible target spdéds parameters.
[Umin, Vmax] fOr @ given movement epoch betweéf, and First, observe that ag,.. and ¢4.. increases, the plot of
X4, and checking whether it is possible to have spBedt a fx gets close to the plot of the case whefg.. = co and
point X on the path betweeX, and X,. As a result, using ¢4.. = oo, which is consistent with the intuitive expectations.
the formulation ofw; ; (12), we obtained the following pdf Second, for reasonable valuesiQf.. and¢g.., the probability
for V, which was first defined in Theorem 2 for the infiniteof the terminal to be located at the center of the region istow
acceleration-deceleration case, than the case of infinite acceleration and deceleration.
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16 : : : : : : : : : TABLE I

E[f/] (m/S)FOR EXAMPLE 7 (vmin=1 M/S,vmax=20 M/S)

14F b
bace | Pdec | ETp] E[V] EV] | E[V] | EV]
Ll | m/g?) | (mis?) (sec) cg—o00 || =10 | 0=5 | o=1
05 1 0 5.03 5.31 571 | 6.39
B SR AU SR Wkt ot | 15 3 0 5.82 6.15 6.62 7.41
25 5 0 6.02 6.37 6.84 | 7.65
2 ol | ) ) 0 6.34 6.70 7.17 | 8.00
= 05 1 5 4.68 4.92 5.26 5.84
osl- )l 15 3 5 5.35 5.63 6.02 | 6.67
25 5 5 552 5.81 6.20 | 6.86
F g =05mis g = 1mis? 00 ) 5 5.79 6.09 6.48 7.15

0.4y - wﬂcc=1.5m/sz, zpuec=3m/s2 7
- - g =25mis gy =5 mis? 05 1 15 4.10 4.26 455 [ 497
Ik T P T S By = 0 IS 15 3 15 461 482 509 | 556
25 5 15 474 4.95 523 | 5.69
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ) oo 15 4.93 5.15 542 | 588

0 100 200 300 400 500 600 700 800 900 1000
x defined in Example 2 by (40). Remember that, sinte;, =)

Fig. 8. fx for Example 6. ¢ = 1000 m, V is uniform in [vmin, Vmax],

Vmin = 1M/S, vmax = 20 /s, C = 10 sec) is linearly dependent tor, — x|, the possibility of selecting

V directly proportional td X; — X| increases as decreases.

In Fig. 9, we setc = 5 and plotted fx for different
acceleration-deceleration parameters. Notice that wiieis
proportional to the distance that is going to be traveleel,(i.
|Xs — X4|), the differences between long-run distributions
in the neighborhood of the points/6 and 5a/6 becomes
less sensitive to the acceleration-deceleration charstits

of vehicles. In addition, long-run proportion of times spah
the locations connecting the poingg6 and 5a/6 decreases

: when V' is proportional to|X; — X,4|. These are expected
5 gacc;gzgziﬁj %Qc;;zg because in this scenario, mobility model do not assign adspee
- - g =25 =St V for a movement epoch that is impossible to achieve, for
T T R 4 example, high speed for a short distance, or a speed that
is unrealistically low for long distance. As a result, mekil

16

1.4

12

f)a

0.8

0.6

0.4F -

0.2

w0 we ;e w0 a0 w0 wo s 00 spend less proportion of time on the locations connecting
Fig. 9. fx for Example 6.4 = 1000m, fy|x. x, is given by (40)p = 5, hotspots. We also note that, the experiments that are gegsen
Vmin = LM/S, Umax = 20m/s, C = 10 sec) by Fig. 9, can be also done for less valuesoofHowever,

Example 6: For this example, we assume that the distnsfinCe we are eva'lluating.twg( and D numerically, the cost
bution of X, is independent fromX, and is given by the of the numerical integration proce_dures increases as thé p-
following sinusoidal function fles,Xd converges to the_form given by (45) (i.e., the unit-

3r(1 + sin(3mz4/a)) impulse function at the point(xs, z4)).
fxq(a) = (2 + 31) (74) Example 7: As a final example, we concentrated on the

. . . .. measureE[V], that is, expected speed at the long-run, which
which has maximums at the pointg6 and 54/6, and mini- is formulated by (73) for the finite acceleration-decelierat
mum ata/2. Furthermore, we assume that parameters. In order to also analyze the case that captures

E[T,|Xs = ] = aC fx,(xs) (75 the method of determininy according to the distance that is
whereC' > 0, which impliesE[T,,|0 < X, < a] ~ 1.31C. going to be traveled, we considered the mobility parameiers

Observe that, these mobility characterization parameteis Example 2. Recall that, thg,|x_ x, defined by (40) in Exam-
be used model a scenario where mobiles select the destisatiple 2 converges to the uniform distribution iy, ; vmax] as
around the points,/6 and 5a/6 with higher probability, and ¢ — oco. Hence, we evaluateH[V] for four different values of
pause for a longer amount of time around those locations. o, and for infinite and various finite acceleration-decelerat

In Fig. 8, we assumed’ to be uniformly distributed in parameters. Results are shown in Table II.

[Umin, Vmax), @and plotted fx for different acceleration and As it can be seen in Table Il, the values®fi/] for the finite
deceleration parameters. Clearly the first observatiohwlga acceleration-deceleration parameters are always lesstliba
have made in Example 5 for the effects of the acceleratioceunterparts that are evaluated by assuming acceleratidn a
deceleration on the random waypoint model is also valid faleceleration to be infinite. Obviously, the difference betw
this scenario. However, it is clear that for this scenarie tthem increases as the parametéfs. and ¢4.. decreases.
difference between finite and infinite acceleration-deediien On the other hand, the gap between /] obtained for
cases becomes noticeable as acceleration-deceleratiam-pathe same infinite and finite pairs @f,.. and ¢4.. decreases,
eters decreases, especially at the center of the region. as E(T,] increases, which is expected because the proportion

For comparison purposes, we also concentrated on the cabéime V possesses zero speed also increases. In addition,
wherefy|x. x, is defined by the truncated normal distributiorfor given values 0fpucc, ¢ace, and E[T,], a comparison of
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