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Abstract— In wireless ad hoc networks, the ability to analyt-
ically characterize the spatial distribution of terminals plays a
key role in understanding fundamental network QoS measures
such as throughput per source to destination pair, probability of
successful transmission, connectivity, etc. Consequently, mobility
models that are general enough to capture the major character-
istics of a realistic movement profile, and yet are simple enough
to mathematically formulate its long-run behavior, are highly
desirable.

In this paper, we propose a generalized random mobility model
capable of capturing several mobility scenarios and give a math-
ematical framework for its exact analysis over one-dimensional
mobility terrains. The model provides the flexibility to capture
hotspots where mobiles accumulate with higher probability and
spend more time. The selection process of hotspots is random
and correlations between the consecutive hotspot decisions are
successfully modeled. Furthermore, the times spent at the des-
tinations can be dependent on the location of destination point,
the speed of movement can be a function of distance that is being
traveled, and the acceleration characteristics of vehicles can be
incorporated into the model. Our solution framework formulates
the model as a semi-Markov process using a special discretization
technique. We provide long-run location and speed distributions
by closed-form expressions for one-dimensional regions (e.g., a
highway).

Index Terms— Mobility Modeling, Long-Run Analysis, semi-
Markov Processes, Ad Hoc Networks

I. I NTRODUCTION

W IRELESS ad hoc networks are comprised of wireless
mobile nodes that can dynamically form a network in

a self-organizing manner without the need for a pre-existing
fixed infrastructure. Nodes in an ad hoc network can move
according to many different mobility profiles. Therefore, mo-
bility models that dictate the movement behavior of a mobile
terminal play a key role in the simulation or analytical based
analysis of the impact of dynamically changing topology on
the performance of these networks. In this paper, we consider
a generalized random mobility model that is flexible enough to
capture different mobility scenarios, and provide its long-run
location and speed distributions by closed form expressions
for one-dimensional mobility terrains.

In what follows, we categorize the existing mobility models
for wireless ad hoc networks, and briefly summarize their
assumptions. Traditionally, a mobility model governs the
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changes in the moving direction and speed of terminals ac-
cording to a deterministic approach or a random process. In the
former case, movement path of terminals can be restricted to
predetermined paths. For ad hoc environments, such mobility
models are impractical since wireless ad hoc networks are
created “on the fly”, and collecting data to generate the paths
for all situations can be very complicated. Thus, a mobility
model that dictates the movement of hosts due to a random
process, that is,random mobility model, is more appropriate
for the performance evaluation of these networks. Surveys for
both models are presented in [1], [2].

In general, random mobility models formulate the move-
ment pattern of mobile hosts by consecutive random length
intervals called movement epochs. During each epoch, mobile
terminal moves at a constant speed, and at a constant direction
for a random amount of time. The speed and direction choice
for each epoch may or may not be correlated with their
values in the previous epochs, and mobility characteristics of
other terminals. For instance, according to the random walk
mobility model [2], each terminal movement is uncorrelated
with other’s movement, and the speed and direction choices
for each epoch are also uncorrelated with their previous
choices. The random waypoint mobility model [3] includes
pauses at the end of movement epochs in the random walk
model to make it more applicable to different scenarios.
More formally, according to the random waypoint mobility
model, a mobile node determines a destination point that is
distributeduniformly within the physical terrain and moves in
the direction of that destination at a constant speed. This speed
is selected uniformly from[vmin, vmax] wherevmin > 0, and
it is independent from the destination and starting points of
the movement epoch, and also the distance that is going to be
traveled. After reaching the destination, mobile pauses for a
random amount of time, which has thesame distribution for all
destination points, and the same movement process is repeated
by selecting a new destination and speed pairindependently
from the same pair of the previous movement epoch.

A shortcoming of the random mobility models is that the
movement profiles that are generated with respect to them may
not be consistent with the major characteristics of a realistic
scenario. For instance, as it also mentioned in [1], the random
walk and the random waypoint mobility models may generate
unrealistic movement patterns such as “sudden stops” and
“sharp turns”. In [4], [5], [6], authors propose models that
can capture correlation between the speed and the direction
choices of consecutive movement epochs and therefore these
models may generate a pattern which is smoother with less
sharp turns. Furthermore, as it is also criticized in [7], [8],
selecting speed independently from the distance that is going
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to be traveled may end up in unrealistic mobility profiles where
mobiles travel long distances with low speeds.

A common limitation of the random mobility models de-
scribed above is that one cannot model a scenario which
incorporates predefined pathways that mobiles must follow and
specific destinations on those paths where mobiles accumulate
with higher probability. The models presented in [9], [10] fo-
cuses on this problem by taking a more deterministic approach
that can capture obstacles and predefined pathways between
them on the physical terrain.

In the analytical studies for the performance analysis of
wireless ad hoc networks, closed form expressions for the
spatial node distribution are very desirable to understandlong-
run behavior of the network spatial behavior. For instance,the
analyses that are presented in [11], [12], [13] to estimate the
capacity per source to destination pair of these networks are
significantly dependent on the spatial distribution of mobile
nodes. Additionally, for some scenarios in which terminals
can be highly mobile on a wide region, the spatial distribution
of offered traffic may not be ignored in determining the
capacity of asynchronous MAC layer protocols. Observe that
the analysis of this case requires an accurate knowledge of
the spatial distribution of nodes. Also, the analytical work
presented in [14] considers the station locations for the MAC
layer throughput analysis but the terminals are assumed to
be uniformly distributed in the region. Clearly, the uniform
distribution assumption may not be valid for different mobility
scenarios. Moreover, this knowledge can be also used in
evaluating the connectivity properties of ad hoc networks,
which have been extensively studied in [15], [16]. In addition
to these, the distribution of link distance between mobile
terminals, which is an important characteristic of wireless ad
hoc networks [17], [18], can be obtained from the spatial
distribution of terminals.

Hence in this paper we propose a generalized random
mobility model that is general enough to capture the major
characteristics of a realistic movement profile, and yet is sim-
ple enough to mathematically formulate its long-run behavior
with analytical expressions. The mobility pattern of a terminal
that moves according to this generalized model is composed
consecutive movement epochs in a closed region, and it is
independent with the movement behavior of other terminals.
During each movement epoch, mobile terminal firstly moves
on the finite line segment joining the starting and destination
points of the epoch at a random speed and then it pauses at
the destination for a random amount of time. The generality
of our model is actually originating from the approach that we
took to determine the destination point, movement speed, and
pause time at the destination, and can be explained as follows:
• The distribution of the destination points are assumed to

be general and can be conditionally dependent on the
starting point of the movement epoch.

• The random speed for each epoch is drawn from a general
distribution function that can be conditionally dependent
on the starting and destination locations of the movement
epoch, and the current location of mobile terminal if
necessary.

• The pause time at each destination is selected randomly

from a distribution that is dependent on the location of
the destination point.

The fact that we make the mobility modeling with respect
to these generalized approaches has a number of advantages.
First, since destinations are selected from a general distribu-
tion, a movement scenario in which terminals select some
specific locations, for example,hotspots, as destination with
higher probability, can be easily captured. Furthermore, some
mobility scenarios may require a Markovian dependency be-
tween the destination points of consecutive movement epochs.
For instance, the probability of selecting a hotspot as destina-
tion can be different for different starting points. This case
can be naturally incorporated into our model by employing
a distribution function for destinations that is conditionally
dependent on the starting points.

Second, the generic approach for determining speed pro-
vides a unique opportunity to select speed according to the
distance that is going to be traveled, and also a method
to model variable speed during movement epochs. Clearly,
if the speed of the terminal can vary during moving, then
our model can even be used to capture differentacceleration
characteristics of vehicles. Finally, by employing a pausetime
distribution for each epoch that is a function of destination
coordinate, we reached to the flexibility of pausing different
times at at different locations.

For some sophisticated mobility models, performing its
long-run analysis first over one-dimensional regions will be
useful in gaining some insight into the methodology that
has to be followed for the analysis of higher dimensions.
Thus, in this paper, we concentrate our analysis to one-
dimensional regions, and develop an analytical framework that
provide closed form expressions for the long-run location and
speed distributions. We also believe that the analytical results
presented can provide a methodology to analytically formulate
the fundamental properties of wireless ad hoc networks for
number sophisticated mobility scenarios (e.g., capacity,con-
nectivity).

A. Related work

There have been a number of works attempting to obtain
spatial node distribution for the ad hoc environments where
terminals move according to random walk or random waypoint
mobility models. The simulation studies that are presented
in [19] and [20] for the random waypoint mobility model
showed that the long-run spatial distribution of mobiles is
independent from their initial placement in the simulation
area, and also observed that resulting distribution is more
accumulated at the center of the region. In [21], the movement
pattern of the same mobility model is characterized as a
stochastic process, and analytical expressions for the long-
run location distribution are derived. In [22], authors not
only concentrate on the analytical expressions for long-run
spatial distribution of random waypoint model, but also on the
limiting distribution of speed and procedures for the accurate
simulation of this mobility model as well. The simulation
study presented in [7] also concentrated in the same model,
and examined average node speed at the steady-state. They
pointed out that the closervmin to zero, the more time it takes
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for the simulation of the mobility model to reach stability.In
[8], this work is extended by analytical studies and authors
provided steady-state average speed distribution for several
random mobility models in which the speed for a movement
epoch is chosen independently from the destination of that
epoch. For these mobility models, as a byproduct of their
analytical formulation, authors also proposed a simulation
methodology that decreases the variations in the average
nodal speed. In [23], authors provide an analytical framework
for the steady-state speed and residual distance analysis of
random waypoint mobility model, and similar to [8], they
also proposed methodology for the efficient simulation of
this mobility model. In [24], a statistical analysis is doneto
identify the conditions in which the spatial node distribution
of random waypoint mobility model, and a variant of two-
dimensional random walk motion can be approximated with
uniform distribution.

While each of the analytical and simulation studies men-
tioned above provide a comprehensive approach for the long-
run characteristics of the random walk and random waypoint
mobility models and their variants, none attempts to make
major extensions on these models so that they describe a more
realistic pattern. As it is also mentioned in [10], mobility
models that includes predetermined pathways and obstacles
are more realistic than the random mobility models. However,
capturing these realistic issues requires to add detailed deter-
ministic parameters to the mobility model and as the determin-
istic dimension of the mobility model expands, the possibility
of deriving long-run properties of the model in terms of closed
from expressions decreases. The most significant differences
between the mobility model proposed in this paper and other
random or deterministic models are the degrees of generality
in mobility modeling and simplicity for the long-run analysis.

The next section provides the mobility formulation accord-
ing to our mobility model, basic definitions, and our approach
for long-run analysis. In the third section, the analyticalresults
are presented with example scenarios. Section IV concludes
the paper.

II. M OBILITY FORMULATION

In this section, we provide the formal description of the
generalized random mobility model introduced in Section I for
one-dimensional mobility terrains, and construct an analytical
framework for its long-run analysis. LetR = [0, a] represent
the bounded region on which mobile terminals operate,
and denoteXs ∈ R andXd ∈ R as the random variables
corresponding to the starting and destination points of a
movement epoch, respectively. Furthermore, let the random
variable V defined on the state space[vmin, vmax], where
vmin > 0, denote the speed of a terminal while moving from
Xs to Xd. In addition, denote the random variableTp with
state space[0,∞) as the pause time spent at destination point
Xd. With respect to these notations, and the mobility model
we proposed in this paper, we define the following parameters:

fXd|Xs
: the conditional probability density function

(pdf) of Xd givenXs,
fV |Xs,Xd

: the conditional pdf ofV givenXs andXd,
fTp|Xd

: the conditional pdf ofTp givenXd.

0 a
∆x

c0 ci−1 ci ci+1c1 cn−2 cn−1

Fig. 1. Discretization ofR = [0, a] according to cells of size∆x = a
n

.

Hence, the mobility formulation that is performed according to
the generalized random mobility model can be characterized
by the triplet < fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>. Since we
are concentrating on the long-run properties of the mobility
model, the initial distribution of the terminals can be arbitrary.

Before we proceed further, we note thatXs andXd actually
represent the destination points of any two consecutive move-
ment epochs, and the conditional pdffXd|Xs

that identifies the
distribution ofXd givenXs at the embedded points in time
where a new epoch starts, is referred asstochastic density
kernel by Feller [25]. We will identify the restrictions on the
choice offXd|Xs

required for the long-run characterization as
we proceed further in the analysis.

Now as we have noted in Section I, each terminal’s move-
ment is assumed to be independent from others. Thus, it is
enough to model a single terminal’s behavior for the long-
run analysis. For this purpose, letX(t) denote the state of
the mobile terminal at timet. According to the specifications
of the mobility model we proposed, the stochastic process
{X(t), t ≥ 0} must be defined on a state space that has
separate dimensions for current location, destination, and
speed, and more importantly, the ranges of these dimensions
must be continuous. However, in the analytical framework we
construct, we use a discretization method and describe the
mobility behavior of nodes with a stochastic process that is
defined on a multidimensionaldiscrete state space. In addition,
instead of observing the state of a terminal continuously, we
will observe it at embedded timesTk, for k ∈ N, such that
T0 = 0, Tk+1 ≥ Tk, ∀k ∈ Z

+. Also, these embedded times
are dependent on the evolution of the system that dictates the
movement behavior of the mobile node. The following list
formally defines the assumptions that the analytical framework
is built on:
A1: The regionR is discretisized inton cells of the same

length, that are denoted byci = [(i−1)∆x, i∆x), i =
0 . . . n−1, as shown in Fig. 1, where∆x = a

n for n > 1.
A mobile terminal is assumed to occupy one of theci’s
at any moment in time, and movement epochs start from
a cell and ends up at a different destination cell.

A2: The random variableV , which denotes the speed of a
mobile during a movement epoch, is approximated by the
discrete random variableV ∗ taking values in the state
spaceSV ∗ = {z1, z2, . . . , zm}, wherezr = r∆v, r =
1, . . . ,m, for some discretization parameter∆v > 0, and
m > 1 such that∆v ≤ vmin andvmax ≤ m∆v.

A3: Observation timeTk point to the time of occurrence of
one of the following events:
E1: In pause mode, the terminal selects a new destination

that is different from the current cell occupied, and
jumps into moving state at the current cell,

E2: While traveling in the direction of the target cell,
the terminal moves out from the current cell and
enters the neighbor cell that lies on the shortest path
joining the current and destination cells with the least
number of cells.
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E3: The terminal reaches to the destination cell and
enters the pause mode at that location.

Notice that the higher the degree of discretization for the
closed regionR is selected, the better approximation can
be done to the exact location of the terminals. Also, as the
discretization parameter∆v → 0 (i.e.,m → ∞), the discrete
approximating random variableV ∗ becomes indistinguishable
from the original random variableV . Therefore, as{n,m} →
∞, we converge to model with continuous state space. For the
rest of this paper, we will use the termdiscretisized mobility
formulation to refer to the version of the generalized random
mobility modeling approach that is constructed according to
the assumptionsA1, A2, andA3.

Now, letSk, k ∈ N, denote the state of the mobile terminal
at timeTk. Given the assumptionsA1, A2 andA3, the finite-
state space ofSk will be defined as follows:

S = {(ci, cj , zr, q) | i, j = 0, . . . , n− 1, i 6= j,

r = 1, . . . ,m, q = 1}
∪ {(ci, q) | i = 0, . . . , n− 1, q = 0} (1)

whereci is the current cell occupied,cj is the destination cell,
zr is the discretisized speed, andq is the indicator of being in
the mode of moving towards the target cell, or pausing at the
destination.

Hence, the stochastic process{X(t), t ≥ 0} that represents
the state of the mobile terminal at timet, can be redefined on
the finite-state spaceS by the following expression:

X(t) = Sk, if Tk ≤ t < Tk+1

where the timesT1, T2, . . . are the successive times of tran-
sitions of X(t), and S0,S1,S2, . . . represent the successive
states occupied byX(t).

Observe that by constructing a state space that has a separate
dimension for the destination cell of moving terminals, the
future evolution of the stochastic process{Sk, k ∈ N}
becomes dependent only on the current state of the mobile
terminal, not on its history at previous observation points.
Furthermore, assume that current state occupied byX(t) is s.
Once the states′ ∈ S has been selected with some probability
as the next state to be visited, the distribution of sojourn time
in states can be determined from the components of states.
Consequently, the following relationship will be valid forall
k ∈ N, and all possible sets{s, s′} ⊂ S.

Pr{Sk+1 = s′, Tk+1 − Tk ≤ t|Sk = s, Tk, . . . ,S0, T0}
= Pr{Sk+1 = s′, Tk+1 − Tk ≤ t |Sk = s}

Therefore, the stochastic process{Sk, Tk; k ∈ N} with finite-
state spaceS satisfies the conditions for beingMarkov Re-
newal Process, and the process{X(t), t ≥ 0} can be called as
the semi-Markov process (SMP) associated with{Sk, Tk; k ∈
N} [26]. Moreover, since the general distributions for des-
tination, speed, and pause time parameters are assumed to
be time-homogeneous in the model proposed, for each pair
(s, s′) ∈ S × S, the distribution of state holding time in state
s before moving to states′, given that the next state to be
visited iss′, would be independent ofk. Hence, based on the
results provided in [26] and [27] for the theory of semi-Markov

TABLE I

TRANSITION PROBABILITIES OF THE PROCESS{Sk, k ∈ N}

Event Transition Probability Condition∗

E1 (ci, 0) → (ci, cj , zr, 1)
τj|i

1−τi|i
νr|i,j i 6= j

E2 (ci, cj , zr, 1) → (ci+1, cj , zr, 1) 1 j > i + 1
(ci, cj , zr, 1) → (ci−1, cj , zr, 1) 1 j < i − 1

E3 (ci, cj , zr, 1) → (cj , 0) 1 |i − j| = 1
∗ i, j = 0, . . . , n − 1, r = 1 . . . m

processes, the transitions of the processX(t) from states to
states′ at the time instantsTk can be governed by thediscrete-
time Markov chain (DTMC){Sk, k ∈ N} with finite-state
spaceS and transition probability matrixP = [ps s′ ], where
ps s′ = Pr{Sk+1 = s′ |Sk = s}, such that

∑

s′∈S ps s′ = 1 for
all s ∈ S. The process{Sk, k ∈ N} is also calledembedded
DTMC of SMP.

Consequently, if the DTMC{Sk, k ∈ N} satisfies the
ergodicity conditions, and if the mean state holding times are
finite, then the SMP{X(t), t ≥ 0} can be characterized at
the long-run. Clearly, if long-run proportion of times spent
at the states of the discrete state spaceS are known, then
by aggregating the states that has the same current cell
component, that is,ci, the long-run location distribution for
the discretisized region can be easily obtained. After this,
by observing the limiting behavior of that discrete result as
n → ∞ andm → ∞, the continuous result can be derived.
The same approach can be also used to obtain long-run speed
distribution but in that case, the states with the same speed
component, that is,zr, must be aggregated. In the following
section, we will at first generate the irreducible stochastic
matrix P explicitly. Then, we will apply this approach to
derive long-run location and speed distributions of continuous
case.

III. A NALYTICAL RESULTS FORDISCRETISIZED AND

CONTINUOUS MOBILITY FORMULATIONS

In this section, we apply our solution framework with the
ultimate aim of finding closed form expressions for the long-
run location and speed distributions overR = [0, a].

Now to describe the transition probabilities of the embedded
DTMC {Sk, k ∈ N}, we first define:

τj|i = Pr{Xd ∈ cj |Xs ∈ ci}

=

∫ (j+1) ∆x

j ∆x

dxd fXd|Xs
(xd|Xs ∈ ci), (2)

for i, j = 0, . . . , n − 1. Next, sinceV is allowed to be
dependent onXs and Xd, we define the probability mass
function of V ∗ given Xs ∈ ci andXd ∈ cj , that is, for a
movement epoch that had started atci and destined tocj , by

νr|i,j = Pr{V ∗ = zr|Xs ∈ ci,Xd ∈ cj}

=

∫ r∆v

(r−1)∆v

fV |Xs,Xd
(v|Xs ∈ ci,Xd ∈ cj) dv, (3)

for r = 1, . . . ,m.
Based on the eventsE1, E2, and E3 that cause state

changes, andτj|i and νr|i,j and given above, the possible
transitions and the corresponding transition probabilities of the
embedded DTMC can be grouped as in Table I.
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Fig. 2. State transition diagram for the process{Sk, k ∈ N}, wheren = 4
andm = 2.

It should be noted from Table I that whenE1 occurs, the
mobile that is located atci jumps to moving mode in the
current cell occupied. We enforced these transitions for the
purpose of uniquely identifying moving and pausing terminals.
In Fig. 2 we depicted the state transition diagram of the process
{Sk, k ∈ N} for a simple case where n=4 and m=2.

Next, we formulate the transition probability matrixP
of the process{Sk, k ∈ N} in full generality. Clearly the
structure of the matrixP depends on the order imposed on
the states inS. The ordering that we have decided on is
S = {S0,S1, . . . ,Sn−1}, where eachSi hasm(n − 1) + 1
states according to the following order:

Si = {(ci, c0, z1, 1), . . . , (ci, c0, zm, 1), . . . ,

(ci, ci−1, z1, 1), . . . , (ci, ci−1, zm, 1), (ci, 0),

(ci, ci+1, z1, 1), . . . , (ci, ci+1, zm, 1), . . . ,

(ci, cn−1, z1, 1), . . . , (ci, cn−1, zm, 1)}. (4)

Based on this ordering, the transition probability matrixP
has the following discrete-time level-dependent quasi-birth-
and-death process (QBD) form [28]:

P =

















A
(0)
1 A

(0)
0

A
(1)
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(1)
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(1)
0

. . .
.. .

. . .

A
(n−2)
2 A

(n−2)
1 A

(n−2)
0
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(n−1)
2 A

(n−1)
1

















(5)

where the matricesA(i)
0 , A

(i)
1 , andA(i)

2 , i = 0, . . . , n− 1, are
(m(n− 1) + 1) × (m(n− 1) + 1), and defined as

A
(i)
0 =





e
(i)
0

I1

Im(n−i−2)



, A
(i)
2 =





Im(i−1)

I1

e
(i)
2



,

A
(i)
1 =













B
(i)
0 . . . B

(i)
i−1 B

(i)
i+1 . . . B

(i)
n−1













(6)

where upper left block ofA(i)
1 is a zero matrix of sizemi×

mi, andIh denote theh×h identity matrix for some positive

integerh. Moreover, the1 × m row vectorB(i)
j , for i, j =

0, . . . , n − 1, where i 6= j, and column vectorse(i)
0 , e

(i)
2 of

respective sizesm(i+1)×1 andm(n−i)×1, are respectively
defined by

B
(i)
j =

τj|i

1 − τi|i
νm|i,j , e

(i)
0 = [0, . . . , 0, em−1]

T,

e
(i)
2 = [em−1, 0, . . . , 0]T (7)

whereνm|i,j = [ν1|i,j , . . . , νm|i,j ], andeh is the1× h vector

of ones. The remaining blocks of the matricesA(i)
0 , A

(i)
1 , and

A
(i)
2 are zero matrices of sizes that can be easily derived from

the dimensions of the other blocks.
Before we can proceed with the long-run analysis of the

SMP {X(t), t ≥ 0}, we must first find the steady-state
distribution of the embedded DTMC{Sk, k ∈ N} with the
transition probability matrixP given in (5). Clearly, this
distribution exists if and only if a steady-state distribution
exists for Xs

1, and {Sk, k ∈ N} satisfies the ergodicity
conditions. Hence, we focus on these issues now.

Under the “mild” regularity conditions defined by Feller
[25] on fXd|Xs

(xd|xs), there exists a steady-state distribution
for Xs with pdf fXs

(xd), which can be uniquely determined
from the solution of the following integral equation

fXs
(xd) =

∫ a

0

fXd|Xs
(xd|xs)fXs

(xs)dxs (8)

Observe that the integral equation given above is used to obtain
the steady-state behavior of the discrete-time2, continuous-
state Markov process{Xs}. From a different perspective,
let T = [τj|i], and let ϕi, i = 0, . . . , n − 1 denote the
probability of starting a movement epoch from cellci at the
steady-state. Based on these notations, this integral equation
is just the analog version of ϕT = ϕ with ||ϕ||1 = 1,
whereϕ = [ϕ0, . . . , ϕn−1]. Clearly if the distribution ofXd

is assumed to be independent fromXs, then the solution
of the integral equation (8) would be simple. However, for
other cases, derivingfXs

(xd) can be a very tedious task.
We will return back this point later in Subsection III-B that
concentrates on the mobility scenarios where choice ofXd is
dependent onXs.

Hence, if the pdffXs
(xd) can be uniquely determined from

the solution of (8), thenϕi will be given by

ϕi =

∫ (i+1) ∆x

i ∆x

dxd fXs
(xd) (9)

Next, we examine the ergodicity of{Sk, k ∈ N}.
Lemma 1: If the pdf fXs

(xd) can be uniquely determined
from the integral equation (8), and ifνr|i,j > 0, i, j =
0, . . . , n − 1 and r = 1, . . . ,m, then the embedded DTMC
{Sk, k ∈ N} defined on state spaceS = {S0,S1, . . . ,Sn−1},
with transition probability matrixP defined as in (5), will be
irreducible and aperiodic.

Proof: Please refer to [29].
Thus, when the conditions ofergodicity for the DTMC

{Sk, k ∈ N} are satisfied, the steady-state distribution of it,

1SinceXd is theXs of the next mobility epoch,Xs andXd can be used
interchangeably at the long-run.

2The stochastic process{Xs} changes its state at embedded time instants
that represent the starting time of a new movement epoch.
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which we denote byπs for states ∈ Si, i = 0 . . . n− 1, can
be uniquely determined by solving the matrix equation

πP = π, with ||π||1 = 1 (10)

whereπ = [π0,π1, . . . ,πn−1], and πi is a (row) vector of
sizem(n−1)+1 whose elements areπs, ∀s ∈ Si, according
to the order given by (4).πi can be also called the solution
vector for leveli, i = 0, . . . , n− 1, as in [30].

Next, we examine the solution of the linear system given by
(10). To the best of our knowledge, if there are no additional
assumptions made on the properties of the matrixP , the most
efficient direct computational procedure to find the steady-state
distribution of finite-state level-dependent QBDs is presented
in [28]. By using that procedure, one can obtainπ numerically
for some moderate values ofn andm. However, as we made
clear before, we are aimed at finding the limiting behavior
of the long-run distributions for the discretisized case as
{n,m} → ∞. Clearly this can only be done after deriving the
location and speed distributions in closed from expressions.
Therefore, we focused on an alternative direct approach and
derived the following result.

Lemma 2: If the conditions given in Lemma 1 for the
ergodicity of the DTMC{Sk, k ∈ N} are satisfied, then
the solution vectorπi for level i, i = 0, . . . , n − 1, of the
level-dependent QBD process given in (5), with the matrices
A

(i)
0 , A

(i)
2 , andA(i)

1 defined as in (6), is given by

πi = [πi,0, . . . ,πi,i, . . . ,πi,n−1]/N (11)

where

πi,j =























n−1
∑

ℓ=i

ϕℓ τj|ℓ νm|ℓ,j , if j < i

ϕi (1 − τi|i), if j = i
i

∑

ℓ=0

ϕℓ τj|ℓ νm|ℓ,j , if j > i

, (12)

whereνm|i,j = [ν1|i,j , . . . , νm|i,j ], andN =
∑n−1

i=0 ||πi||1.
Proof: Please refer to [29].

To characterize the SMP{X(t), t ≥ 0} at the long-run,
it remains to formulate the expected state holding times. For
this purpose, let̄ts be the expected holding time in states ∈
S. Recall that in Section II, we decomposed the state space
S into two groups that represent moving (i.e.,q = 1), and
pausing (i.e.,q = 0) terminals. Therefore, sinceR = [0, a]
is discretisized by cells of size∆x, the expected time that is
going to be spent at a cellci by moving terminals is simply

t̄s =
∆x

zr
(13)

where s = (ci, cj , zr, 1), i, j = 0, . . . , n − 1, andr =
1, . . . ,m, such thati 6= j. To formulate the mean time that is
spent in a state of the forms = (ci, 0), i = 0, . . . , n− 1, we
also define the following notation:

t̄s = E[Tpi
] = E[Tp|Xs ∈ ci]

=

∫ ∞

0

Pr{Tp > tp|Xs ∈ ci} dtp (14)

Notice that the following equation
∑

s∈S

πst̄s <∞ (15)

is satisfied only if the minimum speed a mobile can at-
tain is nonzero, and mean pause time spent at destinations
are finite. Hence, if the mobility characterization parameters
fV |Xs,Xd

andfTp|Xd
are selected appropriately to satisfy these

conditions, then the conditions given in [26] for the long-
run characterization of SMPs are satisfied, andPs, which
corresponds to long-run proportion of time that the process
is in states, is simply

Ps =
πst̄s

∑

s′∈S

πs′ t̄s′

, ∀s ∈ S (16)

Finally, after aggregating the states that belong to the same
level (i.e.,Si, i = 0, . . . , n − 1) of the level-dependent QBD
process{Sk, k ∈ N}, we obtained the following result for
the long-run location distribution of the discretisized one-
dimensional regions.

Lemma 3: For the mobile terminal, whose mobility pattern
is formulated according to the discretisized version of the<
fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> mobility characterization, letpi,
i = 0, . . . , n− 1, denote the long-run proportion of time that
terminal stays in cellci. If the conditions given in Lemma 1
holds, and if the equation (15) is satisfied, then

pi =
ϕi (1 − τi|i)E[Tpi

] + ki ∆x
n−1
∑

ı=0
ϕı (1 − τı|ı)E[Tpı

] + D̂n ∆x

(17)

where
ki =

i−1
∑

j=0

n−1
∑

ℓ=i

ϕℓ τj|ℓ

m
∑

r=1

1

zr
νr|ℓ,j

+

n−1
∑

j=i+1

i
∑

ℓ=0

ϕℓ τj|ℓ

m
∑

r=1

1

zr
νr|ℓ,j , (18)

and D̂n =
n−1
∑

ı=0

kı (19)

Proof: Please refer to [29].
Next, we turn our attention to the limiting behavior of

the discrete result derived in Lemma 3, and summarize our
fundamental result for the long-run location distribution.

Theorem 1: For the mobile terminal, whose mobility pat-
tern is characterized by< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, let
fX(x), x ∈ [0, a], denote the pdf of its location distribution at
the long-run. If the pdffXs

(xd) can be uniquely determined
from the integral equation (8), andE[Tp|Xs = xs] <
∞, ∀xs ∈ [0, a], and fV |Xs,Xd

> 0, ∀ v ∈ [vmin, vmax],
and∀xs, xd ∈ [0, a], then

fX(x) =
fXs

(x)E[Tp|Xs = x] + kX(x)

E[Tp|0 ≤ Xs ≤ a] + D̂
(20)

where

kX(x) =

x
∫

0

dxd

a
∫

x

dxs gX(xs, xd)+

a
∫

x

dxd

x
∫

0

dxs gX(xs, xd) (21)

where

gX(xs, xd) = fXs
(xs)fXd|Xs

(xd|xs)E[ 1
V
|Xs=xs,Xd=xd], (22)

and
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E[ 1
V
|Xs=xs,Xd=xd] =

∫ vmax

vmin

dv
1

v
fV |Xs,Xd

(v|xs, xd), (23)

and

D̂ =

∫ a

0

dx kX(x) (24)

Proof: Please refer to [29].
It should be noted that if the distribution ofV is independent

from Xs andXd, then the pdffV can be employed instead of
fV |Xs,Xd

for mobility characterization, andkX (21), andD̂
(24) simplifies to

kX(x) = E[
1

V
]

∫ x

0

dxd

∫ a

x

dxs fXs
(xs)fXd|Xs

(xd|xs)

+ E[
1

V
]

∫ a

x

dxd

∫ x

0

dxs fXs
(xs)fXd|Xs

(xd|xs)(25)

D̂ = E[
1

V
]D̄ (26)

where

D̄ =

∫ a

0

dxd

∫ xd

0

dxs(xd − xs)fXs
(xs)fXd|Xs

(xd|xs)

+

∫ a

0

dxd

∫ a

xd

dxs(xs − xd)fXs
(xs)fXd|Xs

(xd|xs)(27)

Notice thatD̄ is actually the average distance between the two
pointsXs andXd drawn at random according to the pdfsfXs

,
andfXd|Xs

, respectively. In addition, ifXd is also independent
fromXs, thenfXd

can be used instead offXd|Xs
, andkX (21)

further simplifies to

kX(x) = 2 E[
1

V
]

∫ x

0

dxd

∫ a

x

dxs fXd
(xs)fXd

(xd) (28)

Having defined the long-run location distribution, we now
concentrate on the long-run speed distribution. Clearly in
order to achieve this, we need to aggregate the steady-state
probabilities of the states inS that has the same speed
component, and take the limit of the resulting expression
as {∆x,∆v} → 0. Thus, for the mobile terminal whose
movement behavior is characterized according to the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, let the continuous random
variableṼ (t) defined on the state space{0}∪ {v|vmin ≤ v ≤
vmax} denote the speed of a mobile terminal at timet. Note
that, since the mobile can be in pausing mode at some point in
time, Ṽ (t) can also attain the zero value. Next, letṼ represent
the random variable having the long-run distribution ofV (t),
and denote its pdf byfṼ . Finally, referring back to assumption
A2, denote the discrete random variableṼ ∗ defined on the
state spaceSeV ∗ = {0} ∪ SV ∗ = {z0, z1, z2, . . . , zm}, where
zr = r∆v, r = 0, 1, . . . ,m, as the discrete approximation to
the continuous random variablẽV .

Now, let ψr denote the long-run proportion of time that a
mobile possesses speedzr, r = 0, 1, . . . ,m. After aggregating
the components of the vectorsπi,j , i, j = 0, . . . , n−1, defined
by (12) according to the states inS that have the same speed
component, and using the mean times that are going to be

spent in those states we get

ψr =







































(

n−1
∑

i=0

ϕi (1 − τi|i)E[Tpi
]
)

/N̂ , if r = 0

( n−1
∑

i=0

∆x
(

i−1
∑

j=0

n−1
∑

ℓ=i

ϕℓ τj|ℓ
1
zr
νr|ℓ,j

+
n−1
∑

j=i+1

i
∑

ℓ=0

ϕℓ τj|ℓ
1
zr
νr|ℓ,j

)

)

/N̂ , else

(29)
whereN̂ =

∑n−1
ı=0 ϕı (1 − τı|ı)E[Tpı

] + D̂n ∆x. Taking the
limit of this discrete result as{∆x,∆v} → 0, we reached to
the following theorem.

Theorem 2: For the mobile terminal, whose mobility pat-
tern is characterized by< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, if the
conditions that are given in Theorem 1 for the parameters
fXd|Xs

, E[Tp|Xs = xs], andfV |Xs,Xd
are satisfied, then

fṼ (ṽ)=











E[Tp|0≤Xs≤a]δ(ṽ)

E[Tp|0≤Xs≤a]+ bD , if ṽ = 0

R
a

0
dx kṼ (x,ṽ)

E[Tp|0≤Xs≤a]+ bD , if ṽ ∈ [vmin, vmax]
, (30)

and

E[Ṽ ] =
D̄

E[Tp|0 ≤ Xs ≤ a] + D̂
(31)

where

kṼ (x, ṽ) =

∫ x

0

dxd

∫ a

x

dxsgṼ (xs, xd, ṽ) (32)

+

∫ a

x

dxd

∫ x

0

dxsgṼ (xs, xd, ṽ),

where

gṼ (xs, xd, ṽ)=fXs
(xs)fXd|Xs

(xd|xs)
1

ṽ
fV |Xs,Xd

(ṽ|xs, xd)

(33)
Proof: Please refer to [29].

It should be noted that, if the distributions ofXd andTp are
independent fromXs, and if distribution ofV is also inde-
pendent ofXs andXd, then the mobility characterization can
be done by the triplet< fXd

, fV , fTp
>, and the formulation

of feV (v) andE[Ṽ ] for this simplified mobility formulation
will match to the results that are derived in [8] for a class of
mobility models where speed is selected independently from
the distance that is going to be traveled.

Finally, from the results presented by Theorems 1 and 2, it is
clear that the dependency ofXd onXs makes the fundamental
difference. Therefore, in the following two subsections, we
will at first concentrate on some example scenarios that uses
fXd

(i.e. distribution ofXd is independent fromXs) for
mobility characterization. Then, we will proceed to more
complicated scenarios by employing the stochastic density
kernelfXd|Xs

for mobility formulation.

A. Variants of mobility characterizations done by fXd

Example 1: The random waypoint model [3] represents
the simplest nontrivial case of our generalized modeling
approach, and can be characterized according to the triplet
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< fXd
, fV , fTp|Xd

>, where the parameters are defined by

fXd
(xd) =

{

1
a , if 0 ≤ xd ≤ a
0, otherwise

, (34)

fV (v) =

{

1
vmax−vmin

, if vmin ≤ v ≤ vmax

0, otherwise
(35)

and
fTp|Xd

(tp|xd) =

{

h(tp), if tp ≥ 0
0, otherwise

(36)

whereh(tp) is the pdf of the random variableTp, which is
independent from the location of the destination. Denotingthe
average time spent at the destinations byE[Tp] (i.e.,E[Tp] =
∫ ∞

0
tp h(tp) dtp), observing

E[
1

V
] =

ln(vmax

vmin
)

(vmax − vmin)
, (37)

and using Theorems 1 and 2, we obtained the following for
the pdf of the long-run location distribution and the expected
value of speed at the long-run:

fX(x) =
1
aE[Tp] + 2x(a−x)

a2 E[ 1
V ]

E[Tp] + a
3E[ 1

V ]
, (38)

E[Ṽ ] =
a/3

E[Tp] + a
3E[ 1

V ]
(39)

We note that if the speed choice for each movement epoch
is deterministic with a parameterv, then E[ 1

V ] must be
substituted with1

v . In addition, the analytical work presented
in [21], considers two different limited variations of the one-
dimensional result we derived for location distributions.At
first, they concentrate on the case whereE[Tp] = 0. Next,
they extend their analysis, and provide the location distribution
for the scenario where pause time is nonzero, and speed is
deterministic (i.e., constant speed). For these two cases,if we
make the appropriate changes in the formation offX given
in (38) (i.e.,E[Tp] = 0 for first case, andE[ 1

V ] = 1
v for the

other case), then the results will match the pdfs presented in
[21].

Example 2: In the random waypoint mobility model we
analyzed by Example 1,V is assumed to be independent from
|Xs − Xd|, that is, the distance traveled during a movement
epoch. However, in most of the realistic scenarios,V tends to
increase as|Xs −Xd| does. Thus, for this example, we make
an improvement on the random waypoint model by proposing
a fV |Xs,Xd

that provides the opportunity to determineV
proportional to the random variableD = |Xs − Xd| with
high probability.

Now, considered a truncated normal distribution [31] forV
according to the pdf given by

fV |Xs,Xd
(v|xs, xd)

=
Z(v−µ(xs,xd)

σ )

σ
(

Φ(vmax−µ(xs,xd)
σ ) − Φ( vmin−µ(xs,xd)

σ )
)

(40)

for vmin ≤ v ≤ vmax whereσ > 0, and

µ(xs, xd) = vmin +
(vmax − vmin)

a
|xs − xd| (41)

Z andΦ are the probability density and cumulative distribution
functions for the normal distribution [31].

Hence, we reached to the following results for this improved
case:

fX(x) =
1
aE[Tp] + kX(x)

E[Tp] + D̂
, (42)

E[Ṽ ] =
a/3

E[Tp] + D̂
(43)

where

kX(x) =
2

a2

∫ x

0

dxd

∫ a

x

dxs

∫ vmax

vmin

dv
1

v
fV |Xs,Xd

(v|xs, xd) (44)

wherefV |Xs,Xd
is defined by (40).

Clearly, because of the complicatedness offV |Xs,Xd
, kX(x)

can only be evaluated numerically for a givenx ∈ [0, a], and
also D̂. However, for the extreme caseσ → 0, we have

fV |Xs,Xd
(v|xs, xd) = δ(v − µ(xs, xd)) (45)

From a different point of view, for the limiting case where
σ → 0, V will be linearly dependent to|Xs−Xd| with respect
to the following transformation:

V = vmin +
(vmax − vmin)

a
|Xs −Xd| (46)

Thus, thekX(x) given by (44) simplifies to

kX(x) = 2
(

ln((vmax(a−x)+xvmin)/a)(x(vmax−vmin)−vmaxa)

+ ln((x(vmax−vmin)+vmina)/a)(x(vmin−vmax)−avmin)

+ avmin ln(vmin)+avmax ln(vmax)
)

/
(

a(vmax−vmin)2
)

, (47)

and D̂ will be given by

D̂ =
a(v2

max − v2
min − 2vminvmax ln(vmax

vmin
))

(vmax − vmin)3
(48)

Now, after substituting thêD given above by (48) to the
equation forE[Ṽ ] (43), a comparison of thatE[Ṽ ] with
the one defined by (39) in Example 1 reveals that since
D̂ (48) is less than(a/3) ln(vmax/vmin)

vmax−vmin
(i.e., D̂ in Example

1) for all vmax > vmin > 0, the E[Ṽ ] obtained for the
uniformly distributedV is always smaller than its counterpart
for the V that is defined by (46). This is consistent with the
intuitive expectations because whenV = vmin + ((vmax −
vmin)/a) |xs − xd|, the possibility of moving long distances
with low speeds becomes zero. On the other hand, for the
original random waypoint mobility model, sinceV is not
directly proportional toD, lower speeds might be selected for
longer distances and as a result, expected value of the long-run
speed decreases. It should be also noted that, asE[Tp] → 0
and vmax → vmin, E[Ṽ ] converges tovmin for both choices
of V , which is also expected because it corresponds to the
scenario where mobile travels with fixed speedvmin at all
times without pausing at any destination.

The other extreme case of interest for this example isσ →
∞, which simplifies to the scenario whereV is uniformly
distributed in [vmin, vmax]. Therefore, we conjecture that, if
fV |Xs,Xd

is defined according to (40), the lower bound for
E[Ṽ ] is given by (39) in Example 1, and the upper bound for
it is given by (43) with theD̂ defined as in (48). Obviously,
the difference between these bounds decreases asE[Tp] → ∞,
or vmin → vmax.
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B. Variants of mobility characterizations done by fXd|Xs

Example 3: As a basic example of a scheme where distri-
bution ofXd is dependent onXs, consider a scenario where
the closed regionR = [0, a] is partitioned into two subregions
R1 = [0, c) andR2 = [c, a) such that0 < c < a. In this
setting, when the starting pointXs ∈ R1, the destination
point Xd for that epoch will be distributed uniformly over
eitherR2 or R1 with respective probabilitiesα and (1 − α)
where0 < α < 1. Similarly, if Xs ∈ R2 , thenXd will be
distributed uniformly over eitherR1 or R2 with probabilities
β and (1 − β), respectively where0 < β < 1. Hence, the
stochastic density kernelfXd|Xs

will be formulated by

fXd|Xs
(xd|xs)=



































1−α
c , if xs ∈ [0, c) andxd ∈ [0, c)
α

a−c , if xs ∈ [0, c) andxd ∈ [c, a)

β
c , if xs ∈ [c, a) andxd ∈ [0, c)
1−β
a−c , if xs ∈ [c, a) andxd ∈ [c, a)

0, otherwise

(49)

where0 < α < 1 and0 < β < 1.
Now, let Xdk

denote theXd (i.e. destination point) of the
kth movement epoch. Then, based on the definition offXd|Xs

given above (49), we can construct the DTMC{Xdk
, k ∈

N} with states that represent the subregionsR1, R2, and a
transition probability matrixA given by

A =
R1

R2

[

1 − α α
β 1 − β

]

(50)

Obviously, the DTMC{Xdk
, k ∈ N} governs the decisions

of Xd at consecutive movement epochs, and in order to solve
fXs

(xd) uniquely from integral equation (8), it must satisfy
the conditions of ergodicity at first. Therefore,α or β can not
be equal to0 or 1, which is already required in the formulation
of fXd|Xs

.
Hence, by applying the integral equation defined in (8), we

can derive thefXs
(xd) for this example as follows:

fXs
(xd) =























1−α
c

∫ c

0
fXs

(xs)dxs

+β
c

∫ a

c
fXs

(xs)dxs, if xd ∈ [0, c)
α

a−c

∫ c

0
fXs

(xs)dxs

+ 1−β
a−c

∫ a

c
fXs

(xs)dxs, if xd ∈ [c, a)

(51)

which implies

fXs
(xd) =

{

k1, if xd ∈ [0, c)
k2, if xd ∈ [c, a)

(52)

for some constantsk1 andk2 ∈ R.
Now, let πA denote the steady state distribution of the

DTMC {Xdk
, k ∈ N} with transition probabilityA. Observe

thatπA = [ β
(α+β) ,

α
(α+β) ], and since{Xdk

, k ∈ N} determines
the subregionXd is located, we get

∫ c

0

fXs
(xd)dxd =

β

(α+ β)
,

∫ a

c

fXs
(xd)dxd =

α

(α+ β)
(53)

which concludes

fXs
(xd) =

{

β
(α+β)

1
c , if xd ∈ [0, c)

α
(α+β)

1
(a−c) , if xd ∈ [c, a)

(54)

Next, we focus on a more generic form for this scenario.
Consider a partitioning of the regionR = [0, a] into M
subregionsRi = [ai, ai+1), i = 1, . . . ,M such thatai+1 > ai

with a1 = 0, aM+1 = a, and let the stochastic density kernel
be defined by

fXd|Xs
(xd|xs)=











Ai,j

aj+1−aj
, if xs ∈ Ri, andxd ∈ Rj ,
i, j = 1, . . . ,M

0, otherwise

(55)

whereAi,j denote the probability of selectingXd uniformly
in subregionRj given thatXs is located in subregionRi.

Similar to the discussions for the solution of the integral
equation given by (51), since the functionfXd|Xs

(xd|xs) is
independent fromxd in all of the different subregions for
xs, fXs

(xd) will be equal to a constant value in all of the
subregionsRi, i = 1, . . . ,M , as in (52). Therefore, if the
DTMC {Xdk

, k ∈ N} with theM ×M transition probability
matrix A = [Ai,j ] is irreducible and aperiodic, then the
stationary pdf of the destination points is given by

fXs
(xd) =

{ πAi

ai+1−ai
, if xd ∈ Ri, i = 1, . . . ,M

0, otherwise
(56)

where πA = [πA1
, . . . , πAM

] is the solution of the linear
systemπAA = πA, ||πA||1 = 1.

As an application of this scenario, we focused on the one-
dimensional version of the random direction model described
in [32]. In this model, nodes are restricted to move between
the destinations that are located at theε neighborhood of
boundaries. After reaching the destination, mobile pausesfor
a specified amount of time, and travels to a new destination,
which is also located at theε neighborhood of boundaries.
Similar to the random waypoint mobility model, for each
movement epoch,V is selected independently from|Xs−Xd|.

Now, in order to capture this model with thefXd|Xs
defined

by (55) on a one-dimensional topology, we have to setM = 3,
and divideR into subregionsR1 = [0, ε), R2 = [ε, a − ε),
andR3 = [a − ε, a). Since, the stochastic matrixA must be
irreducible and aperiodic, we define it by

A =
R1

R2

R3





0 ǫ 1 − ǫ
1
2 0 1

2
1 − ǫ ǫ 0



 (57)

where0 < ǫ < 1. Obviously, sinceǫ cannot be equal to0,
mobile terminals may select destination points located atR2.
However, asǫ → 0, the possibility of this case diminishes,
and we reach to desired scenario.

Hence, after obtaining thefXs
(xd) from (56) for a nonzero

ǫ, applying Theorem 1, and finally, by taking the limit of the
result asǫ → 0, we derived the following for the long-run
location distribution of this mobility model:

fX(x)=























E[Tp]/(2ε) + E[1/V ]x/ε

E[Tp]+D̂
, if x ∈ [0, ε)

E[1/V ]

E[Tp]+D̂
, if x ∈ [ε, a− ε)

E[Tp]/(2ε) + E[1/V ](a−x)/ε

E[Tp]+D̂
, if x ∈ [a− ε, a)

(58)
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Fig. 3. Highway scenario for Example 4.

whereD̂ = E[1/V ](a − ε), andE[Tp] is the expected pause
time spent at the destinations. Notice that,fX(x) converges
to 1

a asE[Tp] → 0 andε→ 0.
Before proceeding to a more sophisticated scenario, we

would like to emphasize an important issue about the usage
of the stochastic density kernelfXd|Xs

(xd|xs) for mobility
characterization. Now observe thatfXd|Xs

provides a mecha-
nism to accumulate the consecutive choices of destinationsto
subregions insideR. The transitions between the subregions
can be also controlled by the transition probability matrixA
we defined above. However,fXd|Xs

can not be employed in
controlling the direction of the mobile terminal at consecutive
movement epochs. For example, on the regionR = [0, a],
our formulation can not be used to capture a case where
mobile selects the destinations towards the pointa, with higher
probability for each movement epoch. In order to have a proba-
bilistic mechanism to control the direction, we must extendthe
mobility model with an underlying modulating Markov chain
that controls direction by making transitions at the embedded
times at which a new movement epoch starts. This is doable for
the discretisized version of the mobility formulation. However,
it will never end up with tractable closed form expressions like
the ones we presented by Lemmas 2 and 3.

Example 4: Consider the partitioning of the regionR =
[0, a] shown in Fig. 3 where mobile terminals are expected
to move between destinations located in the subregionsExi,
i = 1, 2, 3, without pausing at the subregionsH1 andH2.

From a practical point of view, this partitioning can be
considered as a highway scenario whereExi andHi represent
exit areas and highway segments, respectively. The exit areas
can be also considered as hotspots where mobile accumulate
with higher probability. Hence, for the purpose of using
our < fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> mobility characterization
approach to capture a highway scenario that is composed of
movement epochs between exit areas or hotspots, suppose that
if Xs ∈ Exi, thenXd will be uniformly distributed either
over Exj , for j 6= i, or overHj , j = 1, 2, with respective
probabilitiesα and 1/2 − α where 0 < α < 1/2. Notice
that, asα → 1/2, the possibility of a movement epoch to
start from a highway segment, or to pause at somewhere on
a highway segment becomes negligible. Furthermore, assume
that if Xs ∈ Hi, then Xd will be uniformly distributed
over eitherExi or Exi+1 with equal probabilities. Thus, the
stochastic density kernelfXd|Xs

will be given by

fXd|Xs
(xd|xs)=







































α
b , if xs ∈ Exi andxd ∈ Exj ,

i 6= j
(1/2)−α
(a−3b)/2 , if xs ∈ Exi andxd ∈ Hj

1/2
b , if xs ∈ Hi andxd ∈ Exj ,

j = i, i+ 1

0, otherwise

(59)

where0 < α < 1/2
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Fig. 4. Comparison offX and fXs
as α → 1/2 for Example 4. (a =

1000 m, b = 50 m, vmin = 1 m/s, vmax = 20 m/s, C ∈ {5, 10, 15}sec)

Based on this definition offXd|Xs
, the transition probability

matrix A corresponding the DTMC{Xdk
, k ∈ N} is

A =

Ex1

H1

Ex2

H2

Ex3













0 1
2 − α α 1

2 − α α
1
2 0 1

2 0 0
α 1

2 − α 0 1
2 − α α

0 0 1
2 0 1

2
α 1

2 − α α 1
2 − α 0













(60)

Observe that,A satisfies the conditions of ergodicity if and
only if α 6= 1/2, which is also required by the definition of
fXd|Xs

.
Hence, by applying the result given by equation (56) for the

fXd|Xs
of the form (55), we get

fXs
(xd) =















1+2α
8(1−α2)b , if xd ∈ Exi, i = 1, 3

1
4(1−α2)b , if xd ∈ Ex2

1−2α
2(1−α)(a−3b) , if xd ∈ Hj , j = 1, 2

(61)

Furthermore, since we want the terminals to pause at only exit
areas, we decided on the following function for the expected
pause times at the destinations

E[Tp|Xs] =

{

C, if Xs ∈ Exi, i = 1, 2, 3
0, otherwise

(62)

whereC is a constant> 0. In addition, we assume thatV is
defined by (46).

Based to the mobility characterization parameters we de-
scribed, we generatedkX and D̂ defined in Theorem 1 by
the dividing the ranges of the double integration operations
confidently to the subregions defined above. After this, we
derived the limiting expressions of them asα → 1/2, and
finally we obtained the pdffX for that limiting case (i.e., the
case where destinations are only selected at the exit areas).
SinceV is dependent onD, the final form offX is not simple
enough to fully present here. However, plots offX for different
cases, and a graphical comparison of it withfXs

can be found
in Fig. 4.

From Fig. 4, first observe thatfX andfXs
are substantially

different. This is expected because, during moving mobile
terminal passes through highway segments and although they
don’t pause at highways, the proportion of time spent at
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highways locations increases as they move between exit areas.
Furthermore, as the expected value of pause times at the
exit areas (i.e.C) increases, the value offX at the highway
segments decreases because they spend more time on the exit
areas at the long-run. In addition, this example also shows that
a performance analysis study that makes assumptions about
the location distribution can not ignore the times spent on
the highways that connect hotspots, or the subregions where
mobile terminals accumulate with higher probability.

C. Modeling Acceleration

The obvious unrealistic characteristic of the movement
behavior generated by our generalized approach of mobility
modeling is that at the beginning of a movement epoch that
had started atXs and destined toXd, the instantaneous speed,
that is, speed at any instant of time, of a mobile terminal
jumps from 0 to V abruptly implying an acceleration that
is ∞ in magnitude. In addition, when mobile reaches to the
destination, it decreases fromV to 0 with a deceleration that
is also∞ in magnitude. However, in realistic situations, the
magnitudes of acceleration and deceleration are finite, anda
mobile terminal cannot immediately increase its instantaneous
speed from0 to V at the pointXs, and also immediately drop
it from V to 0 at the pointXd. Clearly other random walk or
random waypoint like mobility models that we have mentioned
in Section I also possesses this unrealistic characteristic.

Now in order to remove this unrealistic movement behavior
from our mobility formulation, assume that for each movement
epoch, a mobile terminal increases its speed from0 to V
uniformly with an acceleration that hasconstant magnitude,
travels at speedV for a distance, and when it gets close
to destination, it decreases its speed fromV to 0 uniformly
with an deceleration that is alsoconstant in magnitude. Let
φacc and φdec denote the magnitudes of acceleration and
deceleration, respectively. Before we proceed further in the
analysis, we assume that the distance between the pointXd

and the location at which mobile starts slowing down must be
exactly equal to the distance required to decrease speed from
V to 0 with a deceleration that is equal toφdec in magnitude
(i.e., a symmetric environment). In addition, in the rest of
this subsection, since terminals accelerate to and from speed
V , which is drawn randomly from[vmin, vmax], the random
variableV will be also called as “target speed”. Hence, let
fφ(Xs,Xd, V, φacc, φdec,X) denote the speed of the mobile
terminal at the point X for the movement epoch betweenXs

andXd with target speedV , constant accelerationφacc, and
constant decelerationφdec. Notice that acceleration becomes0
when the terminal reaches target speedV . However, for some
exceptional cases, the absolute distance betweenXs andXd

can be so small that the mobile might be forced to decelerate
before reaching to target speedV . In order to illustrate these
characteristics, in Fig. 5 and Fig. 6, we focused on a single
movement epoch between the pointsXs andXd whereXd >
Xs, and plotted the instantaneous speed of a terminal versus
its location (i.e.X). Observe that when destinationXd is too
close toXs, mobile terminal cannot reach instantaneous speed
V , which is selected as the speed of the movement interval
betweenXs andXd, and has to decelerate after an acceleration
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Fig. 6. Mobile slows down before reaching target speedV .

period. More formally, for the case whereXd > Xs, let
X1 = Xs + V 2

2φacc
, andX2 = Xd− V 2

2φdec
. Hence, ifX1 ≤ X2,

then

fφ(Xs,Xd,V,φacc,φdec,X)=







√
2φacc (X−Xs), X∈(Xs,X1]

V , X∈(X1,X2]√
V 2−2φdec (X−X2), X∈(X2,Xd]

(63)

On the other hand, ifX1 > X2 (i.e., mobile must slow down
before reaching speedV ), then

fφ(Xs,Xd,V,φacc,φdec,X)=

{√
2φacc (X−Xs), X∈(Xs,Xmid]√
2φdec (Xd−X), X∈(Xmid,Xd]

(64)

whereXmid = Xs + φdec(Xd−Xs)
φdec+φacc

.

For the other case whereXd < Xs, let X1 = Xs − V 2

2φacc
,

andX2 = Xd + V 2

2φdec
. Hence, ifX1 ≥ X2, then

fφ(Xs,Xd,V,φacc,φdec,X)=







√
2φacc (Xs−X), X∈(X1,Xs]

V , X∈(X2,X1]√
V 2+2φdec (X−X2), X∈(Xd,X2]

(65)

However, ifX1 < X2 (i.e., exceptional case), then

fφ(Xs,Xd,V,φacc,φdec,X)=

{√
2φacc (Xs−X), X∈(Xmid,Xs]√
2φdec (X−Xd), X∈(Xd,Xmid]

(66)

whereXmid = Xs − φdec(Xs−Xd)
φdec+φacc

.
We note that ifφacc = ∞ andφdec = ∞, thenX1 = Xs

and X2 = Xd for all of the cases we defined above, and
consequentlyfφ(Xs,Xd, V, φacc, φdec,X) = V at all points
betweenXs andXd.
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It is now apparent from these formulations that in order
to capture acceleration-deceleration characteristics ofvehicles,
mobility formulation must keep the information about the
starting point (i.e.,Xs) of each movement epoch that is des-
tined to the pointXd. Since we employ the stochastic density
kernel fXd|Xs

in mobility characterization, this requirement
has already been satisfied.

Now in order to formulate the long-run location and speed
distributions according to the acceleration and deceleration
parameters, we first need to extend the results given for the
discretisized mobility formulation. Returning back to Lemma
2, observe from the formulation ofπi,j (12) (i.e., the prob-
ability of being in cellci and moving towards cellcj at the
steady-state) that the steady-state probability of being at ci for
a movement epoch that had started atcℓ and destined tocj with
a target speed ofzr = r∆v is simplyϕℓ τj|ℓ νr|ℓ,j/N . Hence,
the acceleration and deceleration characteristics can be easily
incorporated into the formulation ofpi (17) given in Lemma
3 by substituting thezr appearing inside the formulation of
ki (18) with the discretisized version of speed that can be
achieved at cellci for a movement epoch that had started
at cℓ and destined tocj . In other words, thezr that is
appearing inside the formulation ofki (18) must be dependent
on the locations of starting and destination cells and also
acceleration-deceleration characteristics of the vehicle. Thus,
using the limiting approach that was applied to derive the result
presented in Theorem 1, it can be easily proven that, in orderto
capture acceleration-deceleration characteristics withthe long-
run location distribution, it is enough to redefinekX (21) by

kX(x)=

x
∫

0

dxd

a
∫

x

dxs gX(xs, xd, x) +

a
∫

x

dxd

x
∫

0

dxs gX(xs, xd, x)

(67)where

gX(xs, xd, x)=fXs
(xs)fXd|Xs

(xd|xs)E[ 1
V
|Xs=xs,Xd=xd,X=x]

(68)where

E[ 1
V
|Xs=xs,Xd=xd,X=x]

=

∫ vmax

vmin

dv

fφ(xs, xd, v, φacc, φdec, x)
fV |Xs,Xd

(v|xs, xd), (69)

At this point, we should note that thekX defined in (21) is
formulated byE[ 1

V |Xs = xs,Xd = xd] (23), which has the
same value for allX between the pointsXs andXd, which
doesn’t apply to the finite acceleration-deceleration case.

Next, notice that when acceleration-deceleration formula-
tion comes into the picture, since mobile accelerates (decel-
erates) to (from) target speedV , Ṽ (t), that is, the speed of
the mobile at timet, must be defined on the set{0}∪ {v|0 <
v ≤ vmax}. Therefore, the distribution of̃V (i.e., the random
variable having the long-run distribution of̃V (t)) can only
be determined by considering all possible target speedsV ∈
[vmin, vmax] for a given movement epoch betweenXs and
Xd, and checking whether it is possible to have speedṼ at a
point X on the path betweenXs andXd. As a result, using
the formulation ofπi,j (12), we obtained the following pdf
for Ṽ , which was first defined in Theorem 2 for the infinite
acceleration-deceleration case,
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Fig. 7. fX for Example 5. (a = 1000 m, vmin = 1 m/s, vmax = 20 m/s,
E[Tp] = 15 sec)

feV (ṽ) =











E[Tp|0≤Xs≤a]δ(ṽ)

E[Tp|0≤Xs≤a]+ bD , if ṽ = 0

R
a

0
dx kṼ (x,ṽ)

E[Tp|0≤Xs≤a]+ bD , if ṽ ∈ (0, vmax]
, (70)

wherekṼ (x, ṽ) is defined by (33), but the integrand of it, (i.e.,
gṼ (xs, xd, ṽ) (33)), is reformulated by

gṼ (xs, xd, ṽ, x)

= fXs
(xs)fXd|Xs

(xd|xs)g̃φ(xs, xd, ṽ, φacc, φdec, x) (71)

where

g̃φ(xs, xd, ṽ, φacc, φdec, x)

=

vmax
∫

vmin

dvfV |Xs,Xd
(v|xs, xd)

1

ṽ
1{ṽ=fφ(xs,xd,v,φacc,φdec,x)}, (72)

which implies

E[Ṽ ] =
D̄

E[Tp|0 ≤ Xs ≤ a] + D̂
(73)

whereD̄ is simply given by (27), and̂D is again defined by
(24), but its integrand is thekX formulated above by (67).

At this point, it should be noted that since the function
fφ(Xs,Xd, V, φacc, φdec,X) is determined according to the
comparison of the variablesX1 andX2, which are defined in
terms ofXs, Xd, V , φacc, andφdec, it is very complicated
to find closed form expressions forkX (67) even for the sim-
plest nontrivial case (i.e., random waypoint mobility model).
Therefore, in the following example scenarios, which are
presented to demonstrate the effects of different acceleration-
deceleration parameters on the long-run location distribution
and expected value of speed at the long-run, we evaluatedkX ,
and alsoD̂ using numerical integration methods.

Example 5: We now focus on the original random waypoint
model (i.e., uniformly selected destination and speed, location
independent pause time distribution). Fig. 7 depicts several
fX that are obtained for different acceleration-deceleration
parameters.

First, observe that asφacc and φdec increases, the plot of
fX gets close to the plot of the case whereφacc = ∞ and
φdec = ∞, which is consistent with the intuitive expectations.
Second, for reasonable values ofφacc andφdec, the probability
of the terminal to be located at the center of the region is lower
than the case of infinite acceleration and deceleration.
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Fig. 8. fX for Example 6. (a = 1000 m, V is uniform in [vmin, vmax],
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is given by (40),σ = 5,

vmin = 1 m/s, vmax = 20 m/s, C = 10 sec)

Example 6: For this example, we assume that the distri-
bution of Xd is independent fromXs and is given by the
following sinusoidal function

fXd
(xd) =

3π(1 + sin(3πxd/a))

a(2 + 3π)
(74)

which has maximums at the pointsa/6 and5a/6, and mini-
mum ata/2. Furthermore, we assume that

E[Tp|Xs = xs] = aC fXd
(xs) (75)

whereC > 0, which impliesE[Tp|0 ≤ Xs ≤ a] ≈ 1.31C.
Observe that, these mobility characterization parameterscan

be used model a scenario where mobiles select the destinations
around the pointsa/6 and 5a/6 with higher probability, and
pause for a longer amount of time around those locations.

In Fig. 8, we assumedV to be uniformly distributed in
[vmin, vmax], and plottedfX for different acceleration and
deceleration parameters. Clearly the first observation that we
have made in Example 5 for the effects of the acceleration-
deceleration on the random waypoint model is also valid for
this scenario. However, it is clear that for this scenario, the
difference between finite and infinite acceleration-deceleration
cases becomes noticeable as acceleration-deceleration param-
eters decreases, especially at the center of the region.

For comparison purposes, we also concentrated on the case
wherefV |Xs,Xd

is defined by the truncated normal distribution

TABLE II

E[Ṽ ] (m/s)FOR EXAMPLE 7 (vmin=1 m/s,vmax=20 m/s )

φacc φdec E[Tp] E[Ṽ ] E[Ṽ ] E[Ṽ ] E[Ṽ ]
(m/s2) (m/s2) (sec) σ → ∞ σ = 10 σ = 5 σ = 1

0.5 1 0 5.03 5.31 5.71 6.39
1.5 3 0 5.82 6.15 6.62 7.41
2.5 5 0 6.02 6.37 6.84 7.65
∞ ∞ 0 6.34 6.70 7.17 8.00

0.5 1 5 4.68 4.92 5.26 5.84
1.5 3 5 5.35 5.63 6.02 6.67
2.5 5 5 5.52 5.81 6.20 6.86
∞ ∞ 5 5.79 6.09 6.48 7.15

0.5 1 15 4.10 4.26 4.55 4.97
1.5 3 15 4.61 4.82 5.09 5.56
2.5 5 15 4.74 4.95 5.23 5.69
∞ ∞ 15 4.93 5.15 5.42 5.88

defined in Example 2 by (40). Remember that, sinceµ(xs, xd)
is linearly dependent to|xd − xs|, the possibility of selecting
V directly proportional to|Xd−Xs| increases asσ decreases.
In Fig. 9, we setσ = 5 and plotted fX for different
acceleration-deceleration parameters. Notice that whenV is
proportional to the distance that is going to be traveled (i.e.,
|Xs − Xd|), the differences between long-run distributions
in the neighborhood of the pointsa/6 and 5a/6 becomes
less sensitive to the acceleration-deceleration characteristics
of vehicles. In addition, long-run proportion of times spent at
the locations connecting the pointsa/6 and 5a/6 decreases
when V is proportional to|Xs − Xd|. These are expected
because in this scenario, mobility model do not assign a speed
V for a movement epoch that is impossible to achieve, for
example, high speed for a short distance, or a speed that
is unrealistically low for long distance. As a result, mobiles
spend less proportion of time on the locations connecting
hotspots. We also note that, the experiments that are presented
by Fig. 9, can be also done for less values ofσ. However,
since we are evaluating thekX and D̂ numerically, the cost
of the numerical integration procedures increases as the p.d.f.
fV |Xs,Xd

converges to the form given by (45) (i.e., the unit-
impulse function at the pointµ(xs, xd)).

Example 7: As a final example, we concentrated on the
measureE[Ṽ ], that is, expected speed at the long-run, which
is formulated by (73) for the finite acceleration-deceleration
parameters. In order to also analyze the case that captures
the method of determiningV according to the distance that is
going to be traveled, we considered the mobility parametersof
Example 2. Recall that, thefV |Xs,Xd

defined by (40) in Exam-
ple 2 converges to the uniform distribution in[vmin, vmax] as
σ → ∞. Hence, we evaluatedE[Ṽ ] for four different values of
σ, and for infinite and various finite acceleration-deceleration
parameters. Results are shown in Table II.

As it can be seen in Table II, the values ofE[Ṽ ] for the finite
acceleration-deceleration parameters are always less than their
counterparts that are evaluated by assuming acceleration and
deceleration to be infinite. Obviously, the difference between
them increases as the parametersφacc and φdec decreases.
On the other hand, the gap between theE[Ṽ ] obtained for
the same infinite and finite pairs ofφacc andφdec decreases,
asE[Tp] increases, which is expected because the proportion
of time Ṽ possesses zero speed also increases. In addition,
for given values ofφacc, φdec, andE[Tp], a comparison of
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the value ofE[Ṽ ] with its counterpart for the infiniteφacc,
φdec case reveals out that the difference between them is
more or less the same for all values ofσ considered. From
this observation, we conclude that ifDφ(Xs,Xd, V ) denotes
the total distance traveled while accelerating and decelerating
during a movement epoch betweenXs andXd with a target
speed ofV , then the proportionDφ(Xs,Xd,V )

|Xs−Xd|
averaged over

all possibleXs, Xd, andV is rather insensitive to the choice
of σ. Hence, even ifV is determined according to the distance
that is going to be traveled with high probability, there will
always be periods of acceleration and deceleration that affects
the value ofE[Ṽ ].

Consequently, the results presented in Table II shows that if
a performance measure of interest evaluated for an wirelessad
hoc network is dependent on the expected speed at the long run
(i.e., E[Ṽ ]), then the acceleration-deceleration characteristics
of the mobile terminals must be captured by the mobility
model.

IV. CONCLUSIONS

For ad hoc wireless networks, we proposed a generalized
random mobility model capable of capturing several scenarios,
including hotspots and displacement dependent speed distribu-
tions. The analytical framework we presented for the long-run
analysis of this generic mobility model over one-dimensional
mobility terrains provided closed form expressions for the
long-run location and speed distributions. We also provided an
extension on our results so that they can be used to examine the
effects of acceleration characteristics of vehicles on thelong-
run location and speed distributions. Our example scenarios
verify the usefulness of our analytical framework. Future work
will consider the extension of these results to two-dimensional
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