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Abstract— Most important characteristics of wireless ad hoc bounded region on which mobile terminals operate. A mobile
networks such as link distance distribution, connectivity, and |ocated at the poinf, = (X,,,X,,) € R, selects a random
network capacity are dependent on the long-run properties of point X; = (X,,,X,,) € R as destination according to the

the mobility profiles of communicating terminals. Therefore, the " I . . i
analysis of the mobility models proposed for these networks cOnditional probability density function (pdffix,|x. (z4|zs),

becomes crucial. The contribution of this paper is to provide and moves to poinX; on the straight line segment joining
an analytical framework that is generalized enough to perform the two points, and at a spedd that is drawn randomly
the analysis of realistic random movement models over two- from the interval[vmin, Vmax], Wherevy, > 0, according to

dimensional regions. The synthetic scenarios that can be cap-the conditional PdffV|X «,. After reaching the destination,

tured include hotspots where mobiles accumulate with higher bil f d t of ti denoted”
probability and spend more time, and take into consideration mobile pauses for a random amount of time, denoted y

location and displacement dependent speed distributions. By at X4, which is distributed with respect to the conditional pdf
the utilization of the framework to random waypoint mobility  fr,x,, and whole cycle is repeated by selecting a new desti-
model, we derive an approximation to the spatial distribution of nation. Hence, the pattern of a mobile terminal is compos$ed o
terminals over rectangular regions. We validate the accuracy .qnsecutive movement epochs between the randomly selected
of this approximation via simulation, and by comparing the . o .

marginals with proven results for one-dimensional regions we pomts_Xs and X, and 't_ is uncorrelated W'th_ the movement
find out that the quality of the approximation is insensitive to P€haviors of other terminals. Throughout this paper, we use
the proportion between dimensions of the terrain. the triplet < fx,x,, fv|x..x., f1,|x, > t0 characterize the

Index Terms— Mobility Modeling, Long-Run Analysis, Ad Hoc ~ movement pattern of a mobile that moves with respect to this

Networks, Two-Dimensional Regions. model.
Among the parameters of the triplet fx, x., fv|x. x.
I. INTRODUCTION fr,1x, >, the conditional pdffx,x, identifies the distribution
WIRELESS ad hoc networks communicating termiof X4 given X, at the embedded points in time where
nals move with respect to many different mobilityd new movement epoch starts. Incorporation of this kernel

patterns each one having unique attributes. Thereforeilityob into this mobility characterization methodology providie
modeling and its analysis become very important for th@bility to define hotspots on the two-dimensional mobility
performance evaluation of these kinds of networks. In thigrrain where mobiles accumulate with higher probability,
paper, we focus on the long-run location and speed disioibut 2nd correlations between consecutive hotspot decisions ca
analysis of a generalized random mobility modeling appinoaé€ successfully modeled. Furthermore, sifcés randomly
over two-dimensional mobility terrains. drawn from fy x_ x,, we have the flexibility of constructing
The modeling methodology we are concentrating on & correlation between the distribution &f and the locations
originally defined in [1] as a generalized model that is fléxib Of the starting pointX; and destinationX,. For instance, a
enough to capture the major characteristics of severabtigal scenario that identifie¥” proportional to the distance that is
movement profiles. In that paper, long-run location and ¢pe@oing to be traveled, that i$X — X4/, can be easily defined.
distributions are given in closed form expressions for on#? addition, the usage ofz,|x, makes it possible to capture
dimensional regions. Here, we extend the analysis to twaifferent pause distributions at different destinatioxailable
dimensional terrains. A variety of examples are also givdar the mobility model.
to show how the proposed model and its long-run analysisFor wireless ad hoc networks, there have been proposed a
framework work for a broad range of mobility modelingtumber of different mobility models. Comprehensive susvey
approaches. of these models can be found in [2], [3]. Among them, the
In what follows, we give a brief description of the genfandom waypoint model [4] is one of the most widely used
eralized random mobility characterization approach tsat @ne for analytic and simulation-based performance argtysi
analyzed in this article. LeR denote the two-dimensional@d hoc networks. In this model, a mobile selects a destimatio
point in the mobility terrain with equal probability, and mes
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The analysis that we propose in this paper is also applicable Y
to random waypoint model, and to demonstrate the corrextnes
R ; 50 51 52 53| 54 55 56
and superiority of our work, we present a comparison of the e : 7 '
results derived with the ones presented in literature. ; ;
. . . . 4,0 a1 42 43 44 45 46
The rest of this paper is outlined as follows. In Section II, A :
we describe analytical framework we developed for long-run 0. | s | e ds | 2| s8] a0
analysis. Section Il provides the long-run distributidios a ine3 | : "
limited version of the exact mobility formulation constted 20 (w2y/ | 22 | ds | 2a 2,5/ 70
according to the methodology explained in the second sectio ez | 24072 V2 *°
Section IV utilizes the results reached in section three to o | aa |22 | s | 1a | TPus| e
. . . . . . line 1
derive approximations for the long-run distributions og th
generalized model proposed. In Section V, we focus on i Y S R M N g
example scenarios, and the final section presents a summary
of the paper. Fig. 1. Discretization of the square regidtinto squares.
FE5: The terminal which is traveling in the direction of the
[I. METHODOLOGY AND DESCRIPTION OFANALYTICAL target cell, moves out from the current cell and enters the
FRAMEWORK neighboring cell that lies on the shortest path between the

In this section, we describe the analytical framework we ~Ccurrent and destination cells,
establish for the long-run analysis of the generalized fitpbi £3: The terminal reaches to the destination cell and enters the

model proposed. pause mode at that location.

Now since the movement behavior of mobiles are assumedn our analysis, to apply assumptioty, which is done to
to be uncorrelated with each other, we can concentrate o@pproximate the exact location that can be occupied by d-term
single terminal for long-run analysis. Hence, for the termhal atany pointin time, we focus on the discretization métho
nal whose movement pattern is characterized by the triptbgt partition the region?? into squares or hexagons. The
< fxax.> fvix.x. fr,x, >, let the vectorX(t) denote reasoning behind concentrating on two different discagion
the state descriptor whose components identify the curr@ftproaches fofz concurrently will become more clear as we
location, destination, and the speed of that mobile at tinke  proceed further in the long-run analysis. In Fig. 1, we appé/
our solution methodology, we discretisize the two-dimenal ~square discretization approach to a square region. Visatain
mobility terrain R and approximate the random variadle of a discretization that is performed by hexagons can bedoun
with a discrete random variable so that the stochastic psocén [8].
{X(t),t > 0} can be defined on a multidimensional discrete In Fig. 1, we also depict the scheme we decide on to identify
state space. The assumptions that we have made to genéhgecells on the discretisized region. Basically, the asneé
this discrete state space are as follows: the cells are grouped by lines that are parallel to each other

A;: The bounded regiorR is discretisized inton disjoint, and the index of cell ¢; is denoted byi = (4, £7) where/;
non-overlapping cells of the same shape denoted;by repre_sents the Img that the centercpfs chated, and’ is !ts
i=0...n—1, such thatR C U?:ol ¢; wheren > 1. A location on that line. For t_he rest of this paper, We.WI|| use
mobile terminal is assumed to_occupy one of this the not_at|on3cz- and c(, ¢y interchangeably. Hence, if Fhere
at any moment in time, and movement epochs occ@if€”w lines, and ifq, denotes the number of cells on lirfie
between two randomly picked starting and destinatigh€n set of the cells on the discretisized region can be dkfine
cells. as follows: ne—1

Ay: The random variableV, that is, the speed during a R=J{cwoy - cta-n} 1)
movement epoch, is approximated by the discrete ra”'CIearIy,

dom variable V" defined on the state spac - scribed by the discretisized version of the mobility charac

{21, 22, .,z"}} where z. = rAv, r = 1,...,m, for o ation we constructed is composed of consecutivegstrai

some discretization parameté&xv > 0, and an integer |4 segments between the centers of the cellsi —

m 2 1 such thatAv < vmin aNdUmax = MmAV. 0,...,n— 1. In other words, a mobile terminal moves to one
Based on these assumptions, observe that a mobile can bgfithe neighboring cells from the current cell occupied whil
pausing or moving modes at the cell it is currently located.traveling towards the destination cell. Henced iflenotes the

Additionally, instead of observing the state of a terminglumber of available movement directions for the discrztigi
continuously, we observe it at embedded times denoted ®pility formulation, thend would be equal to the number
Ty, for k € N, such thatTy = 0, Tyy1 > Ty, Yk € Z,  of the sides of the regular polygons used in the discretinati
which point to the time of occurrence of one of the followingyrocess. Thusj = 4 for square discretization, anti= 6 for
events: hexagonal discretization, and let,» = 0,...,d — 1 denote
Ey: The terminal which is in pause mode, selects a new cell tse directions (see cel; 5 in Fig. 1). On the other hand,

destination that is different from the current cell occuapie in principle, if there are no obstacles on the regi®that can
and changes its state to moving state in the current cedktrict the movement directions, then mobile should be abl
it is located, to move at any direction. Therefore, by discretizing theaeg

the pach:t(r)aveled during a movement epoch de-



we are also forced taliscretisize the movement direction.  where
Obviously, if R is discretisized by regular polygons of the Sm = {(ci,¢j,20,q) |3, =0,...,n—1,i # j,

same shape, as we are doing, thiecan be at most equal to =1 m,q =1} A3)
six. Furthermore, if the discretization of a regidh with a o
general shape (e.g. rectangle) with regular polygons iedon Sp={(c;q)|1=0,...,n—1,¢ =0} )

for .the purpose approximating the exact location of a tem‘"nwhereci is the current cell occupied, is the destination cell,
as in our case, then using hexagons is a better choice becaus

h ber of abl direcii hiah ISf$ the discretisized speed, agdis the indicator function
the number of available movement directions are higheraangy.: is defined as follows:

more realistic approximation can be done to the exact nigbili - .
pattern g= { 1, mobile is moving towards the target cell (5)
At this point, it should be noted that, the enforcement of 0, mobile is pausing at the destination cell

discretizing movement directions will not arise for the ene Consequently, the stochastic procg36(¢),¢ > 0} can be
dimensional case because there are only two directions fofoamally defined on the finite-state spaseaccording to the
mobile to move on a one-dimensional region and discretinatifollowing expression:

method does not enforce any kind of restriction on these X(t) =Sy, if T <t < Ty

d?rectio_ns.. Clearly the fundamental diff(_arence betweea tlF\Iotice that wherX (¢) occupies a state € Sy, since the state

d'srfrst'zi?tlfn pa(jrarﬁjtterzﬂwanﬂ nv a':: T:ti 'Sn tgatg \:;md mn b has a separate dimension for the destination cell, the next

can be increased, b} as we have mentioned above, Can b iq 14 pe visited can be determined from the components of

at most equal to six. This difference introduces a new ISSHEn other words, the future evolution of the stochastioqass

that has to be clarified before continuing. In what followsg, W{S ke N} becc,)mes dependent only on the current state of
k>

explain this issue and our solution appr_o_ach for it, he mobile terminal, not on its history at previous obseovat
Now recall that according to our mobility model propose oints. Furthermore, for alk € S, the distribution of sojourn

during a movement epoch, mobile travels on the straight li e in states would be independent from the previous states

joining the p(.)mtSXS and X,. In the discretisized version occupied and can be determined only from the components of
of this mobility model, movement epochs occur betwee ates

randomly selected cells. Obviously if the mobile terminal i Therefore, the stochastic proceSy, Ty:k € N} with

allowed to move at any direction in the regidiy then the . . e " .
shortest path between those two points is just the straifr}lte state spacé satisfies the conditions for beirgarkov

. - . ; >
line between them, and it is unique. However, for the discret enewal Process, and the procesgX(t),t > 0} can be

formulation, the shortest path is defined in terms of the n&r;lmbca“ed as thesem-Markov process (SMP) associated with

. . . . {Sk,Tx; k € N} [9]. Moreover, since the distributions for
of jumps between cells. More importantly, for a discreimat T .
; . ! destination, speed, and pause time parameters are assumed
that is done according to squares (i&= 4), or to hexagons to be time-homogeneous in the mobility model proposed. the
(i.e.,d = 6), if p9(i,4), d = 4,6, denotes the ordered list of 9 y prop '

the cells that are located on a shortest path for the movemglnstmbmIon of state holding time in state given that the

- 3 .
epoch that had started at, and ended up at destination cel i);tc:tattﬁet?raaiit\i/éﬂ;egfIfh’e W?gliéi)'g?etﬁgngri?eggé d
cj, then the members of(¥) (i, ;) will not be necessarily i ’ b

unique. The algorithm that we use in this paper to genera e instantsT}, can be governed by thiiscrete-time Markov
: chain (DTMC) {Si, k € N} with finite-state space in (2)
and transition probability matri® = [ps«], wherep,y =
Pr{Si41 = s'|Sk = s}, such thaty" , spss = 1 for all
s € 8. The procesgSy, k € N} is also referred asmbedded
DTMC of SMP.
Thus, in order to characterize the SMK(t),t > 0} at the
long-run, the DTMC{S;, £k € N} must satisfy the ergodicity

O ) . L conditions and the mean state holding times must be finite.
joined toc; by following one of thed available directions. For o o :
If these conditions are satisfied, then the long-run promort

example, in Fig. 1, consider the scenario where- ¢(, ;) and . . .
¢j = ¢(5,3)- Observe that for this scenario, this algorithm eitheorf time spent in a stats € S can be obtained, and after

enerates the patfr . . . . Cs.3} OF aggregating the states that has the saoneent cell andspeed
g PaRE(2,1), €(22), €(2,3) 43.3): €(4,3)> ©(5.3) components, the long-run distributions sought can be eeriv
the path{C(gﬁl), 0(371), 0(471),0(5’1)7 0(572), C(5,3)}. It should be . . .. . e .
. . ) for this discretisized version of the mobility formulation
also noted that, according to our notation, the first anddbe | Notice that the discretization parameter nd
members of the lisp(?) (i, j) arec; andc;, respectively. otice V?’ aﬁt ir? b s;tc f a roxirFr)1a t? neet s—t>hoo|a tion
Having clarified these issues, we now proceed to the fornf4] = °°» W€ oblain betier approximations 1o the localio

definition of the discretisized mobility formulation. Dele®;,, ?rr%qt Szefgn O;rtréetom;?getr.t;rerg'naelrs’.(:r?stﬁgcég/r?% ?nd ;L]oghe
k € N, as the state of the mobile terminal at timig. Hence, imit w Verg st Versi Inuous

based on assumptions,, A,, and the event&,, E,, F; that where the available movement directions are limited bydhe

identify observation timeg},, for k € N, the finite state-space different directionsyo, . .., 7a-1 g|v§n by

of S, will be defined as follows: = if d=4, )
S=SuUSp ) Yo = o7 (13-1/2), if d— 6,

(i, ;) is as follows. Ifc; is towards the directiony, for
some? € {0,...,d — 1} from ¢;, then mobile follows that
direction until it reaches destinatiafy. On the other hand,
mobile proceeds to the next cell either in the directignor
Y/ +1mod ¢ With equal probabilities for som# € {0,...,d—1}
that generates the least possible shortest path if se)emted
continues in that direction until it reaches to a cell that ba



TABLE |

for« = 0,...,d — 1. Visualization of these directions are
TRANSITION PROBABILITIES OF THE PROCES$Sy, k € N}

also provided in Fig. 1 fod = 4. Clearly because of the

methodology we decided to generai€’) (i, j), at the limit [Eveny Transition Probability | Conditior®

n — 0o, the path followed during a movement epoch betweerg, (¢i,0) — (ciycj, zr, 1) %,jm’j i

X, and Xy € R will generally be composed of two directed &, [(¢; ¢, 2, 1) = (cir, ¢;, 20, 1) 4 o & nnlc),
finite line segments towards the directions and~,, where Pr{li’ij)=2} =
{11 = 1,12 = (14+1)mod d} or {11 = (++1)mod d, 15 = ¢} for 7 i e
somez € {0,...,d — 1}. This can be also observed from the e ((i g2y —
example movement scenarios depicted in Fig. 1. Obviously if 1/2

X, is towards any of directions,, + = 0,...,d — 1, from [ £s l(ci,¢j,2r 1) — (c;,0) 1 ¢j € (e

X,, then the path will be composed of a single straight ling.”?+7 =0---»n =1, r=1...m

For the rest of this report we will use the terontinuous- Movement epoch fromacel], i = 0,...,n—1 at the steady-
d mobility formulation to refer to this limited version of the State. Obviously, in order to satisfy the irreducibility, must
exact continuous mobility formulation. Finally, we noteath be greater tha for all i = 0,...,n — 1. Otherwise, some
sinced can be at most equal to six, a formal transition frorfells on the two-dimensional discretisized region will eev
this limited case to the original continuous formulatiomcat P€ Visited (i.e., selected as destination) and the chaiorbes
be done. Therefore, in the following sections we will uséeducible. Hence, a steady-state distribution must exst f
distributions of the continuoug-mobility formulation to gain Xs- The conditional pdffx, x, (z4|x;), which identifies the
some insight into the methodology that can be used to der@istribution of X, given X, at the embedded points in time

approximations for the long-run distributions of origirzise. Where a new epoch starts, is referred saxchastic density
kernel by Feller [10]. Under some “mild” regularity conditions

1. ANALYTICAL RESULTS FORTHE DISCRETISIZED AND defined in [10] Oand‘Xs (md‘ms) the Steady_state distribution

CONTINUOUS-d MOBILITY FORMULATION of X, with pdf fx_(z4) can be uniquely determined from the
In this section, we first concentrate on generating the longelution of the following integral equation
run location and speed distributions for the discretisizask, _
and after that wepwill use those results to derive long-run fx.(@a) = /xseR Fxaix. (@ales) fx. (@s)des, ©
distributions of the continuoug-mobility formulation. and¢; will then be equal to
Now, to able to identify the transition probabilities of the . :/ . (q) da (10)
DTMC {Sy, k € N}, we first denoter;|; as the probability of F el T

selecting celle; as target from celt;. Then, according to the Observe that, ifl’ = [7;1:], and if the integral equation (9) has
mobility characterization parametgk, | x,, 7;; Will be given a unique solution, therp; can be also obtained by solving
by oT = ¢, |¢l, =1 wherep = [0, ..., pn1]-
KL A Fxaix, (xalXs € ci) daa, (") In view of the discussions above, the following can be easily
Similarly, denoteyr‘i’jjas the conditional probability massproven.
function of V* for a movement epoch that had started at cell Lemma 1: If the pdf fx_(x4) can be uniquely determined
c; with destinationc;. Then, by using the parametéy x  x, from the solution of the integral equation (9), andjf; ; > 0,
we have Aw i,j =0,...,n—1andr = 1,...,m, then the embedded
Frix.xa (0| X € ci, Xg € ;) dv (8) DTM_Q {Sk, k € N} def_med on_state spac_ﬁ in (2), _W|th

r—1)Av transition probabilities given as in Table |, is irredueitdnd

forr =1,...,m. In addition, letn,(c;) denote the cells in the aperiodic.

neighborhood of celt; that can be reached in one jump from Next, we provide the steady-state distribution of the DTMC
it, and let[i’, i, j] denote the index of the cel}. in the ordered (g, % c NJ.

list that defj?d?s_the patﬁ(d)(il{c)l; Note that,[i,i,j] = 1,and | emma 2: For the DTMC{S;, k € N} defined on the state
5,351 = |[p“9 (i, 5)|| where||p(i, j)| denotes the NUMDEr spaces in (2), whered is either equal four or six, let(?

Vrli,j =

5(d) (7.5 i i . .
of tt:: € cellbs g.rll,tthef?ﬁtb |§:wt ).bHetr;]ce, if \t/ve ﬁ‘rte 'Qter,es,tteg d wgf)j ., denote the steady-state probabilities of being in
N the probabliity ot the el 10 be the next cel 1o be VISEd e states of the form = (¢;,0), i = 0,...,n — 1, and

after cell¢;, that is,Pr{[¢’, 1, j] = 2}, thenPr{[¢/, 4, j] = 2}
is either equal tol, or 1/2, or 0 (i.e. ¢;» is not on the path
p'¥(4,5)). For instance, in Fig. 1, when; = ¢ 1), ¢; =
C(5.3)» andc; = €(2,2) thenPr{[i’,i,j] = 2} = 1/2. On the

= (¢, ¢j,20,1), 1,5 =0,...,n—1, 1 # j,r =1,...,m,
respectively. If the conditions of Lemma 1 are satisfiednthe
they are uniquely given by

other hand, ife; = c(a.1), ¢; = ¢(23), andcir = ¢(2.9), then 7@ = g (1—mp)/N, (11)
Pr{[i’,i,j] = 2} = 1. @ _ N
Based on these definitions, the transition probabilities co i z(d:) 4 ?DZ ity Vi
responding to the events,, F,, and F;3, can be grouped as €ir€py.1 (6:9)
in Table . + 3D Pv Tl Vi g/N (12)

Next, we examine the irreducibility and aperiodicity of the
DTMC {Sg, k € N} with respect to the transition probabilities
defined in Table I. Letp; denote the probability of starting awhere

Cir epiflg) ('LJ)



Co C3
G- [ﬂ.(d) (@D ] (13) clf (Tf CT r:t
ij 1) T (agm)b f’ *T % %4 +
Vmlitj = [Vlti’,ja RE) lei’yj]’ (14) cs Cy 10 ci1
and .
Py (i§) = {cvles € R Pr{e; € P90, j)} =1}, (15) Lol f % + 4
pi3 (i, j) = {clev € R, Pr{c; € zs<d><z",j>} — 1/2}(16) L
CQ C1 Co C3
andN = Y7l 4 st Z H K 0 a 0 . a
Proof: Refer to [8]. - ()n=4,d=4 (b)n=16, d=4
It should be noted that, the se;é ) (¢,7) in (15) and _ ) . ) ) B )
(d) Fig. 2. Discretisized version of a simple mobility scenario.
pi.s (i, 7) In (16) represent the subset of cellsinfrom where
a movement epoch originated with destination eglipasses and @ n-l 5 (d)
through the celk; with probabilities 1 and 1/2, respectively. N, =i (1= 7)) E[T,,] + DS (23)
Now, lett, denote the sojourn time of the SMX (¢),t > where i=0 el m
0} in states € S. Then, ifs = (¢;, ¢, 2-, 1) (i.e., mobile is D(d) Z Zk (24)

moving towards the destination with discrete spegll and et
if Ac9 denotes the traveled distance in a cell while passingtq simplify the formulation ofO'? in (24) for some special
trough it, then A cases, we now state the following claim.

ts = a7 Claim 1: If the distribution of V* is assumed to be inde-
On the other hand, i = (¢;, 0), then we define the following. pendent from the location of the starting and destinatidls ce
of the movement epochs, the expressmnw in (24) is

ts = E[Ty] = B[T,|X, € i (18) equivalent to the following:
Finally, in order to characterize the SMX(t),t > 0} at the . 1 . .
Iong-r{m, the following must be satisf'i\gd [(9]): : DY = E[W} Z Z i 7jji dis'D (i, j) A, (25)
Zﬂ's{s < 00 (19) ci€ER c;ER
pymp wheredis (i, j) = |p'¥(i,5)| — 1, that is, the number of
Hence, by applying the theory of semi-Markov processeise discrete jumps made on the p@fﬁ (4,7).
we obtained the long-run proportion of time that the SMP  Proof: Refer to [8]. u

{X(t),t > 0} is in a states € S. After aggregating the states Before continuing on with the long-run analysis of the
in S that has the samairrent location andspeed components, continuousd mobility formulation, in order to clarify the
including the ones with zero speed (ise= (c;, 0)), we reach interpretation of termc(d) given in (22), we now concentrate
to the following result. on a simple example scenario. Now, consider a continuous
Lemma 3: For the mobile terminal, whose mobility patterrmobility formulation (i.e., mobiles can move anywhere ay an
is characterized according to the discretisized versiothef direction) over the regionlR = [0,a] x [0,a] where V is
< fXd\Xsa.fV|Xs,XdafT x, > mobility formulation, letp!”’,  deterministic and equat, and the other mobility character-
i=0,. — 1, d = 4,6, denote the long-run proportion ofization parametersfx, x, and fr, X, Can be arbitrary as
time that termmal stays in ceHZ, which can be a square orlong as the integral equation in (9) is uniquely solvable and
hexagon. Similarly, denoteT as the long-run proportion of equation (19) is satisfied. Now to be able to apply Lemma 3,
time that mobile possesses spegd= rév, r = 0,...,m. If we need to generate the discretisized version of this ntpbili
the conditions given by Lemma 1 are satisfied, and equatifsrmulation. Hence, assume = 4, d = 4, and sinceV is

(19) holds to be true, then " deterministicyn = 1. In Fig. 2.(a) we provided a visualization
0i (1 =1)E[Ty,] + > kgdr) of the discretisized mobility model generated according to
pgd) — r=1 7 (20) these assumptions.
N,(Lflm Now for this discretisized mobility formulation, if we are
and . interested in the long-run proportion of time mobile stays i
S i (1= 7134) E[T)] INSD, L ifr=0 cell ¢ (i.e., '), then according to Lemma 3 we simply have
i= 4
Pl = 01 (21) o = o (1 — 7010) E[T),] + k?( ) (26)
n— 0o - (4) ’
DN else Ny i
z;) or /N where ’
a
where k(()41) = —(poTijo + 32712 + PoT2i0 + 5P1T2Y1
k(d) — Z ( Z Vi T '/i 1281 -Ac(d) 2v
b puTile, Vrlit.g ©oT3j0 + P170)1 + P2Toj2 + ©370i3), (27)

c;€ER—{c;} € ) (i,5) L - i
4 v €LY (0 which is equal to the average time spent over the gglthile

1 .
+ % Z @i/rﬂi/z—rmm Ac(d)), (22) moving between randomly picked cells. In other Workl(%?
cir€pyY (i.9) is equal to“/2 multiplied with the probability of a movement



epoch between two randomly picked cells that pass troughwe have

the cell ¢g, including the ones starting or ending at cejl > i (l=mp) BT ]+ X kgﬁ)

Notice that in this simple formulation,;; ; = 1 for all PW(a) = ci€R(3) ci€R(5) (29)
i’,5=0,...,3. However, if the distribution of/ is dependent Nl(g)l ’

on X, and X, in the original continuous mobility formulation, ~ '

thenm > 1, and we have to multiply each additive term ofvhere R(5) = {co, c1, s, c5}, that is, the set of discrete cells
k(()flr), r = 1,...,m with the probability of selecting speed!ocated on the regiotk(3).

2, = 16w, (€., ;) and L for the the movement epoch that Now based on the interpretation ﬁfi«) in (22), the term
passes trough ced, as it is shown by the formulation (kfdr) Doeie R(%)kﬁ) corresponds to the average time spent over

a

in (22). Observe that, for all choices Bf, the termy>™ , k(¥ £(5) while moving between randomly picked two cells.
corresponds to the expected time spent over quthle Notice that both of those cells or one of th(-_zm can be also
moving between two randomly picked cells that are drawpflong toR(3). Hence we reach to the following:
from the distributionsp;, in (10) andr;; in (7), respectively. 1 o

Next we proceed to the long-run ajrllalysis of the continuous-z kz(jll) = Z Z pir Tjlir Pra) (i, 5) » Jig) (@', 5) Ac
d mobility formulation. At first, recall that in this case sic ci€R(%) cj€ReyeR
movement directions are restricted to four or six different o » . (30)
directions, the path followed during a movement epoch b&here Fis)(',j) denotes the probability passing over the
tween the pointsX, € R and X, € R will be composed '€gion R(3) while moving from ¢, to ¢;, and Jis)(i', j)
two or one line segments each directed towards one of fifPresents the number of discrete jumps dvef) while mov-
available directions, in (6), 2= 0,...,d — 1. Thus, in order INg- Notice that the termy(. (', j) Ac? represents the total

to keep the formulation of this case separate from the ex&l§tance traveled ovef(3), which is required to calculate the
model, where movement epochs occur on a single directed IR¢rage time spent. . o @
segment that can have any direction, let the random vasiable Therefore, in order to obtain the limiting form at." ()
X (1) = (Xl(d)(t),XQ(d)(t)) and V(@ (1), whered is either @87 — 00, We need to derive the limiting expression of
four or six, denote the location and the speed of a mobfig€ double summation given in (30) which requires a proper
. g e
terminal at timet, respectively. Note thak (4)(t) € R, and formulation of Ps)(¢', j) and Jis)(7', j). _
since the mobile can be in moving or pausing modes at anyThus, we now focus on the formalization of the observations
point in time, V(9 (¢) is either equal to0, or in the range W€ mentioned above. In order to keep our formulation as
[Vamin, Vmax]- simple as possible, we concentrate on deriving the long-run
Now let X (@ — (X(d) X(d)) and V(@ denote the random distributions of the continuous<i.e., d = 4) and continuous-
L2 and 6 (i.e., d = 6) mobility formulations over square and hexag-

variables having the long-run distribution of (% (¢) - : _ ;

V() (1), respectively. Recall that in the discretisized versiofna mOb'“_ty terrains of S|de_Iength,_rezg)ectlvely. Den_ote
of the mobility formulation, we assumed the random varighidhese terrains with the generic notatiéti”) (a), whered is
X@(#) and V@(1) to take only discrete values, and insubstltuted by 4 if it is a square, else by 6 (i.e., hexagon).

Lemma 3, provided the long-run proportion of times that é[sr?, to ddesr?ribeh Iong-r;m Iobg?tion distribu tio(rl)consiﬂlye
mobile stays in celle;, (i.e., p(-d) in (20)), and possessesWIt d an t_ € shape o mo__||ty terrain (|._eR (a)), V\;e
speedz, (ie z/;(d) : focus on defining the probability mass function (pmf)Xsf®)

in (21)). Therefore, in order to deriVeoveras uare subregion %) (a), and a hexagonal subregion
the distributions ofX (¥ and V(?), we need to focus on the. q 9 ' 9 g

6 d . 2
limiting behavior of the discrete distributions given byrhma : i(ugri).ifIZZEt—R(él)(gﬁz) :er?g)ig;gﬁsél SEb%egLSi?ﬁ ' Cvé:g; ®
3 as discretization parametetsand m approaches infinity. 2 € R (q) and siée lengthh such thatR(@ ( l;) C R (q)

As an illustration of the methodology that is going to b?n Fig. 3, we provided illustrations ok (a) é\ndj%(‘*)(a: b).
applied during this transition, lets concentrate on theptm We al.so, denote bys®(a,b) the set of all nonintersécti.ng
mobility formulation whose Qiscretisi;ed version is depdt R (2, b) C R@(a). ’

I(ri]eFIgdetzéE;)i.niSt?cc)aléntg attk,lemottr:]:rt rsnltr)nbpijlli?y rzﬁggctaim; In addition to the these notations, I&(*)(p, z,, zq,,b)
U denote the length of the total distance traveled over the

parameters can be arbitrary. Now for the dlscret|5|zed,cggﬁbregionR(d) (.b) for a movement epoch that occurs be-

let pfld)(%) denotg the Long—runaproportcion of time.mobile IS veen the pointsr, and x4, and passes througR(@ (z, b)

located in the regiorf?(3) = [0, 3] < [0, 5. Hence, ifd =4 i robability p, which can be equal td, 1/2, or 0 for

andn = 4, we have @ a @ the continuoust mobility formulation. In Fig. 3, we depict
Py (5) =po (28) L& (p, x5, 24, x,b) for example movement epochs. Finally, we

2
Wherep(()4) is defined by (26). Notice that in this formulationdeﬁ

ne
the discretization parametet is skipped because sindé =
v, andm = 1. S(d)(p,l'd,:E,b)
Next, the important question is what will be the limiting = {z,|lzs € RD(a), LD (p, x4, xq,2,b) # 0} (31)

form of P,(f)(%) in (28) asn — oo. Hence, if we assume Based on the notations given in the preceding two para-

n = 16, then discretisized region given in Fig. 2.(a) will begraphs, we are now ready to state the main theorem of this
transformed to form given in Fig. 2.(b). By applying Lemmasection.
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Theorem 1: For the mobile terminal, whose mobility pat- H(d)
tern is characterized by the continuadisaobility formulation

over the mobility terrainR(?) (a), d = 4,6, let Fyw (z,a,b)

denote probability mass function (4 over the subregion

R (2,b) C R (a). Also, let fy ., denote the pdf ob/ ().

If the pdf fx, (z4) can be uniquely determined from the in

tegral equation (9), an8[T,| X, = =] < oo, YV, € R¥(a),
and fyix..x, > 0, Vv € [Umin,Vmax], @aNd Vg, 24 €
R (a), then
FX(d>(:c,a,b)

VUmax

E[T,|X.€RW (a,b)| Pr{X.€RD (2,b)} + [ KD (x,v,b,a) dv

= Umin 32
E[T,|X,€R® (a)]+D® , (32)

and
E[T,|X:eR¥ (a)]8(9) 5=0
E[T,|X,€RD (a)]+D@> =
o) ()= K@ (z,,b,a) (33)
R(D) (z,b)es(d) (a,b) -
E[T,|X.€R@ (a)| + D@ v E [’Umln, ’Umax]
where

KD (z,0,b,a)

= / dza ( dze KD (L xa,z,0.b)

z4€RD (a) z5€SD(1,24,2,b)
1
T2

z,€5(D(1/2,24,2,b)

dzs kD (1/2,26,24,2,0,b) ), (34)

k:(d) (p7a:5 Vzd 7$7v7b)

=fx.(2) Fx g1 x, (@alza) L v x, x, (0]zs2a) LD (pa,xa,2.b), (35)

Umax
/ dv K9 (z,v,b,a)
v

min

and

D@ —
R (,b es<d>( b)

(36)

Proof: Refer to [8]. ]
We may note that the ternf”’“a?dd)(zvba) dv, where

we need to partitiorR(?) (a) with respect taR(? (z, b). Clearly
this will increase the complexity of the results presentgd b
Theorem 1. However since we are aimed at using the distri-
butions of the continuoug-case to reach some conclusions
about the exact case, we decided to keep the presentation of
the results given by Theorem 1 as simple as possible

Now, in view of the result given by Claim 1 fob\ (@
(25), if V (i.e., the speed for a movement epoch) is assumed
to be independent from the distributions &f, and X4, then
we get the following forD(?® in (36):

DD

= B[] 37)

where

— [ do. [ dvati o) b ealed o, - vl
2. €RD (a) z4€R (a)

(38)
where |z, — a:d|( ) represent the total distance traveled be-
tween the pointss = (zs,,2s,) andxzy = (z4,, zq4,) for the
‘continuousd mobility formulation. Clearly ifd = 4, then

(39)

which is also know as thManhattan distance [11]. Also,
notice that|z, — md|( > |z xd\ , Vos,xq € R.

Finally, based on the definition @@ in (38), theE[V (@]
will be given by the following even if the distribution df is
dependent on the distributions &f, and X.

D@
E[T,|X, € R@D(a)] + D@

25 — 2| = |z, — sy | + [T, — T,

EV@] =

(40)

IV. CONTINUOUSMOBILITY FORMULATION

In this section, we concentrate on the long-run properties o
the continuous mobility formulation. In order to be as géner
as possible, the mobility terraifi is assumed to be rectangular
defined by R = [0,a1] x [0,as]. Denote X (¢) and V(t),
respectively, as the location and speed of a mobile ternainal
time t. Because we are interested in the long-run distributions,
let X andV respectively denote the random variables having
the long-run distribution ofX (t) and V(¢). Notice that the
state spaces of and X (¥, andV andV () are the same but
since the continuoug-mobility formulation puts restriction
on the movement directions, their long-run speed and locati
distributions will be always different from each other.

Now as mentioned before, sineecan be either equal to
four or six, the results provided by Theorem 1 cannot be
extended formally to cover the exact case that allows mobile
to move at any direction. Therefore, we now concentrate on
using the results of Theorem 1 to construct an approximation
methodology for the long-run distributions of the original
continuous case.

Hence, analogous to the definition @(?)(z,b) inside

K (x,0,b,a) is given in (34), corresponds to the expectegk(?)(q4) (see Fig. 3), we define the foIIowmg rectangular

time spent over the regioR(® (x,b) while moving between subregion inside? =
the points X, and X, that are respectively drawn from the
distributions fx, and fx,x.. Also, in order to formulate

LD (p,x,,xq,2,b) and the regionS@ (p, 24, z,b) explicitly

[0, a1] x [0, ag] for the continuous case:

R(z, Az, Axs) = Aml

X [xg—

(21 — 82, 1 + A2

AIQ x + Awg]

(41)



L(wa L, Ty A\.’L"], A‘/LZ)

and
as ~
\ x E[Ty| X eR]S (D) s
\ — ¢ E[T,|X.€R|+D’ v=0
S I p ~ ’(Nj [~ ~
q{ﬁ | 77[ 77777 74 fV( ) R(w,Am]wAmzz):ES(fr(laig];?)mhAzz) -~ ’
t E[TP\XSER]—O—[A) , U E [’Uminy Umax]
‘ (44)
\
ey / where
0 5 o " K(z,v, Az, Axg) ‘
VA:E = / dxg / des k(xs, x4, 2,0, Axy, Axs), (45)
1
|:| za€R €S (vq,®,Az1,ATs)
: The region S(xq, z, Axy, Axs)
. X k(zs;xdvxa'UaA:El»AxQ)
Fig. 4. lllustrations ofS(z4, z, Az1, Azz) and L(zs, x4, ©, Ax1, Axs)
for the continuous mobility formulation. =fxs(@s)fx x4 (1d‘$s)%fv|xs,xd('U‘zs#fd)L(Is7$d7I»A$17A12)7(46)

wherex = (z1, 22), and Az, and Az, are selected such thatand

R(xz,Azy,Axy) C R. Also denoteS(Ax;, Ax,) as the set ) _ Z /
of all nonintersecting?(z, Azy, Azs) C R. v
Now notice that since the direction of movement is not
restricted, a movement epoch that starts from a pointvith Now recall that for the continuoug-mobility formulation,
destinationr; passes through the regidt(xz, Az, Azy) with  if V' is assumed to be independent fraky and X, then
probability one or zero. On the other hand, for the contimuouD® = E[L]D(®, where D is given by (38). Based on
d case, movement epochs passes throljH (z,b) with this observation we state the following approximation:
probability 1, 1/2, or 0. Hence, if we denote the the distance Approximation 2: If the distribution of V' is assumed to
traveled overR(z, Az, Az,) during a movement epoch bybe independent fromX, and X,, then the D in (47) is
L(zs, 24,7, Az1, Axy), the correspondent (D (p, z4,2,b)  approximated by

VUmax
dv K (z,v,Az1,Axs) (47)

min

R(z,Az1,Azo)ES(Axy,Axa)

in (31) can be simply defined by the following for the original D~ E[l]
continuous case: V
where

D= / dzs /dxd sz (xs)fXles (xd|xs) |xs - $d| (49)

rsER rd€ER

D (48)

S(xq, x, Axq, Axs)
={xs|lxs € R, L(zs, x4, ¢, Axy,Axs) # 0} (42)

In Fig. 4, we illustrateS(z4, x, Az1, Azs) and the line seg- where |z, — 4| denotes the euclidean distance betwegn

mentL(z, x4, x, Ax1, Azy) for a destination point, outside andz,.

the regionR(z, Az, Axs). In addition, from the formulation of2[V(?] in (40), we
In view of these definitions, and from the conclusions dggach to the following approximation. .

Theorem 1, we derive the following approximations for the Approximation 3: The expected value oV with the pdf

long-run distributions of the original continuous case. defined by (44) is approximated by
Approximation 1: For the mobile terminal, whose mobility o D 50
pattern is characterized by the triplet fx, x., fv|x, x, V]~ E[T,|X, € R+ D (50)

, fr,1x, >, over the mobility terrainR = [0, a;] x [0, ag], let
Fx(x, Azy, Axy) denote probability mass function 6f over  Having defined an approximation t&[V’] for the most
the subregiom?(z, Az, Azs) in (41). Also, letf;; denote the generic case, we note that the analytical work presented]in [
pdf of V. also derivesf;; and E[V] for a class of mobility models where

If the pdf fx, (z4) can be uniquely determined from thethe speed of a movement epoch is selected independently from
integral equation (9), an®[T,|X, = zs] < oo, Vo, € R, the distance that is going to be traveled for that epoch. In
and fy|x, x, > 0, Vv € [Umin, Umax], aNdV 25,74 € R, then order to be able to compare our results with the ones given

Fx(z,Ar;, Azy) and fy; are approximated by in that paper, we must consider the scenarios that the ttriple
< fxu, fv, fr, > is enough for mobility characterization, that
Fx(x, Az, Axy) is, distributions ofX,; and T, are independent fronX, and
_ E[T,|X,€R(x, Azxy, Azo)] Pr{X € R(z,Ax1,Ax2)}  V is independently selected frod¥, and X,. Hence, after
- E[T,|X,€ R+ D simplifying fg in (44), andE[V] in (50), we get
J K(z,v,Azy, Azy) dv %, v=0 i P
: A e T BV~ s BAD
E[T,|X, € R|+ D /v (v) [Tp] + El7]

W , VE [Umin ,vmax]
(43) (51)



whered(v) is defined as the direc delta function. The above %2

formulation of f; and E[V] are consistent with the ones

given in [7]. Hence, our approximations fof;, and E[V]

becomes exact for the mobility characterizations done by

< fxas IV f1, > Sfaf T ]
We should also note that, the results presented by Approx- [~~~ = e

imations 1, 2, and 3, becomes exact for a mobility modeling

that restricts the available movement directions to 4 or 6

different choices that are exactly defined By in equation

(6). As an application of this case, consider a mobility sciEn

where mobiles are only allowed to move on the grids over the( ‘

mobility terrain. 0 % o1
We finally note that, since we can only prove the limited “

direction case, we can never state that these approxinsatiQly s paritioning the regiois(

are highly accurate for all possible mobility scenarios roki

by the triplet< fx, x., fvix, x. > fr,)x, >- Fundamentally,

their accuracy is dependent on the frequency of the movemenijow from the definition of L(zy, x4, z, Ax1, Azy), and

epochs that is targeted to a destination point with a movirgso from Fig. 4, observe that

direction outside the directions, in (6), where: = 4,6.

Hence, in Section V, we concentrate on the applicabilityl(Zs: Za, , Ax1, Axs) = (g(ws, xa, v, Az, Axz))'/? (54)

and accuracy of our approximations for some example casgs 4 function g(z, z4, 7, A1, Axs) that is piecewise con-
that allows mobiles to move at any direction when traveling, oo on S(xq ;(va:cl 7A$2)’ for given z, € R. Clearly
towards the destination point. The methodology we follow ig, analytical ir%tégratién ofL (24, 24, 2, Ay sz') in (54)’

Eect:on v tol_ a(;lalyze t:]e accEracy of thle apptr)(_)lxlmatlons C8ler the given 4-dimensional integration region (see (53))
e also applied 1o analyze other example mobility cases. ;o complicated. Hence, we conclude that obtaining a closed
form expression fo (x, v, Az, Azs) even for the simplest
A. Approximation to the pdf of long-run location distribution  ©f all p%slsmle mobility characterization parameters iarhe
. .. impossible.
Before proceeding further, we now 'focus on 5|mpI|fy|pg However, if some exceptional choices of = (z,,zs,)
the results of Approximation 1 to derive an approximatioq,q wq = (za,,7q,) are not taken into consideration, for

to the pdf of long-run location distribution in closed formexample suppose that, 24 ¢ R(z, Ax1, Azs), |24, — 1]
Hence, letfx denote the pdf of, that is, the random variable _ Az, a'md|:cd | < Ay ther;L(x g x Az, As)
2 ) R s Ly ’

. . . . 2 2
having the long-run distribution ok (2). It then follows from i he expressible in terms of an easily integrable furctio

the. definition given in [12] for the pdf of bivariate randomy,, some mobility characterization choices.
variables that To be more precise, on the rectangular mobility terrain
Fx(z,Azy, Axy) (52) R = [0,a1] x [0,a2] assumezy, > =z + 22 and
Tgy, > To + %. Furthermore, letr(z;) denote the line

segment joining the points,; and (z; + Ag“,xg - A;'f’),

At this point, the important question is, given the triple@nd assume’r(0) > 0. In Fig. 5, we provided a visual-
< fxax. fvix. xa0 fr,1x, >, Whether it is possible to find ization of these assumptions. Notice that this special case
a closed form expression for the terii(z, v, Azy, Az,) in ~ also implies|zq, — z5,| > |z4, — 7] In addition, con-
(45) so that the above limit can be taken explicitly. If thigider the partitioning of the subregiofi(zq,x, Az, Axs)
can be done, then we can state an approximatiofita) in into three subregions as shown in Figure 5, and denote
closed form. L, (xs,xq,x,Ax1,Axs), r = 1,2, 3, as the distance traveled

To answer this question, we first concentrate on a simpgWer B(z, Az, Aza) whenaz, € S, (zq, z, Az, Azz). Next,
scenario whereX, is uniformly distributed over? for a given formulating L, (x5, zq, z, Az1, Az2) explicitly we get
X, andV is characterized byfy,. Obviously for this case
K(xz,v,Ax1, Axsy) in (45) simplifies to

Zq

L0 :Ss(xg, @, Ay, Axs)

: 3 L1 :So(xg, w, Ay, Axs)

T4, %, Ax1, Axo).

r)= lim
fX( ) Az1—0 Al’l ALL’Q
Axo—0

' Lr(ms; Td, T, Axl» Al’g)
Axq

|rd—ms|W7 r=2
1 s1
K(z,v,Axy, Axs) = o, 322 o aybe, Bl (55)
fV(v) |md7ms|( Tdy —Tsy o Tdy —Tsy )7 r=13
= ——— [ dzg drs L(xg, xq, x, Axy, Axs)(53)
(a1 a2)?v wherec; =1 andez = —1.

wa€l 2.€8(@am,A,00) Before we proceed further, it should be noted that, for

Therefore, to be able to derive a closed form expressitime formulation that assumes;, > z; + % and x4, >
for K(x,v, Azq, Axs), the integrandlL(xs, x4, x, Axy, Axs) 9 + A;‘% if we had concentrated on the case that only
must be expressible in terms of a function that can t#lows |z,, — zs,| > |zq, — 24|, and had partitioned

analytically integrated over the given integration region S(zq,x, Azq, Axs) in the same way as we did in Fig. 5, then
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the L, (xs, x4, 2, Azq, Azs), 7 = 1,3, would be also defined
by (55). However, ifr = 2, then

Tq
Azg

T, —Tsg ’

LQ(I’S,ZEd,(ﬂ,AiL'l,ACCQ) =lzg—xzs (56)

which is expected intuitively.

Now returning back to case that is constructed according
to the assumptionzy, — zs,| > |r4, — ®s,|, it IS Clear
that Lo (zs, 4, ¢, Ax1, Axe) > L. (x5, x4, ¢, Az1, Axs), T =
1,3 (also observe it from Fig. 5). Hence, concentrating on
Lo(zg,xq,x, Ax1, Axy) observe the following:

:ﬁ; Il
4{&

1 . . « e« s S
|:| . The region S(zq, x, Axy, Axs)

(g, *wsz)z ,
)

Lo(xs, 24,2, Axy, Axg) = Ay Lt (57)
Ty

Fig. 6.Partitioning ofS(z4, z, Az1, Az2) into s, subregions for a giver,.
Obviously as the difference betweml1 Zs, | and|zg, — s, |

increases, the tern&M converges to zero. Hence, we

IH(M) _ . .
can state the fo”OWlng where E[ | = s ) and D is given by (49). In

addition, f; and E[V] can be derived respectively from the
Lo(ws, x4, v, Az, Azs) ~ equations in (51).
In order to assess the accuracy of the approximation
we stated forFx(x, Az, Axs) by equation (61) for the

Finally, sinceLs(xs, x4, 2, Az, Axs) is always more dom-
inant thanL, (zs, x4, z, Ax1, Axs), r = 1,3, we conclude the

random waypoint model, we will how focus on the task
of evaluating F'x (z, Az1, Azs) in (61) numerically for all
R(z,Azq,Axs) € S(Azq,Azs), and comparing them with
the results derived from the simulation of the random waypoi
As a result, if mobility model is simple enough to statenobility model.
K(z,v, Az, Azz) as in (53), and if the above substitution Hence, observe first that to generate an approximation to
for L(xs, x4, z, Ax1, Axs) is used, then the result of AppProx- Fx (z, Az, Azy) from (61) for a givenR(z, Az, Axy), we
imation 1 can be simplified to derive an approximation fer need to evaluat& x (z, Az, Az,) numerically in (62), which
in closed form after tedious symbolic integrations. We alsg defined by a 4-dimensional integral. Obviously, the a@cyr
concentrate on the applicability of this statement in thetneof a result that can be derived from a numerical integration
section. methodology is dependent on teeoothness of the integrand
over the integration region [13]. Therefore, to increase th
V. EXAMPLE SCENARIOS accuracy of our numerical experiments, we partition théoreg
Example 1: The random waypoint model proposed in [4]S(z4, z, Az, Azo) into s, subregions, where, > 1, so that
which is commonly used to model node movement by thbe integrandL(z,, x4, z, Az1, Axy) (See (62)) evaluated for
performance analysis studies for wireless ad hoc networksfixedz, deviates less for all of the, that belongs to those
can be considered as the simplest nontrivial case for thgbregions. In Fig. 6, we illustrated this partitioning heat-
mobility characterizations that can be analyzed accordling ology for a givenz,. Next, to evaluate the 4-dimensional
the triplet < fx,|x., fvix. x. fr,x, >. For this model, integrals for each of these subregions, we first transformed
the distributions ofX,; and VV are assumed to be uniformthem to an integral over a hypercube [13]. Then, each of the
in the regionsR and [vmin, Umax), respectively. Moreover, resulting integrals are evaluated by repeated one-direaki
the distribution of 7, is considered to be the same at alintegrations according to the Gauss’ Formula [14]. Clehii
destinations. Therefore, for the rectangular mobilityrar is not “economical”, however, it is required in order to etk

following approximation.

L(ms, va. 7. Az, Ax2)%{Al’1, [Zay —%sy |>]Tay —Tsy | (59)

ACEQ, [Ta, —Ts) [<|Tay —Tsy|

R =10,a1] x [0, az], we simply have the accuracy of our approximation. The program implementin
1 it 24 € [0,01] x [0, as)] this methqdology is dggigned ina ggneric form in order tg als
fx.(xq) = { 81 az’ otherwise; ’ (60) capture different mobility characterization parametensq it
) is available from authors.

Hence, form Approximations 1 and 2 we reach the following In order to assess the accuracy of the approximation to
approximation for the pmf oX over R(z, Az, Azs) in (41):  Fx(x, Az, Azy), a simple simulation model is developed
consisting of a single node moving according to the random
X(Cf’ Az, Azs) waypoint mobility profile. In this model, during each sim-
T, + El]D ulation run, the node travels for, number of movement
epochs. For each movement epoch, the time spent at each
R(z, Axq, Axs) € S(Axy, Azs), while passing through it or
pausing at it, is exactly calculated, and added to the toted t
spent at the subregioR(z, Az, Axs) for the whole simula-
tion run. At the end of the rurf’x (z, Az, Azs) is derived by
normalizing the total time spent &(x, Az, Az,) to the total

[Tp(]l?z; Axy —|—E[ }
El

Fx(x, Al‘l, Al‘g)

(61)
where

Kx(x, Axy, Axs)
/ dxg /dms L(xs,xq,x, Az, Axs) (62)

za€R  z.€S5(xq,x,Ax1,Az2)
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Percentage of Error: ng’A)(b(D., b)) x 100 Percentage of Error: ng'A)(b(l), b)) x 100
a9 a2
1.237/0.425/0.352| 0.4 |0.355|0.323|0.345| 1.231 1.503]0.092| 1.72 | 2.476| 2.436| 1.691| 0.172| 1.573
0.563|0.212] 0.223(0.194/| 0.216| 0.259| 0.241| 0.494; 0.388| 0.536| 0.331| 0.865| 0.844| 0.295| 0.566| 0.47
0.491| 0.254] 0.133(0.143| 0.167| 0.246| 0.256| 0.41 0.189| 0.180] 0.33 [ 0.301| 0.326| 0.442| 0.182| 0.377
0.688|0.183/0.127(0.171| 0.25 | 0.2 0.215| 0.501] 1.432/0.11 | 0.323| 0.329| 0.406| 0.395| 0.142| 1.353
az az
6 6
0.632| 0.226] 0.226| 0.221| 0.259| 0.205| 0.159| 0.709| 4.07 | 0.551]0.328(0.839| 0.802| 0.348| 0.483| 3.805
1.04 |0.316|0.385| 0.346| 0.353] 0.291| 0.468| 1.291 3.862| 0.201| 1.752( 2.427| 2.434| 1.659| 0.048| 3.868|
0 0
0 @ 2 3w du bu 6w Tam 0 @ 20 3w dw sw bu  Tm
8 8 8 8 B B 8 ‘1 8 8 8 8 8 8 8 1

@

(b)

Fig. 7. B (6™, 5(2)) for Example 1 ¢1 = 1200, ag = 900, b = ia1/8, i = 0,...,7, 6" = b + a1/8, b = jas/6, j =0,...,5,
b = b 4+ a5/6, Vmin = 1 MIS, vmax = 20 M/s, T}, = U0, 30] sec).

run time of the experiment,. independent replications of thisapproximation to the pmf ofX = (X3, X5) over the sub-
experiment is run, and the fin&ly (x, Az, Azs) is obtained region R(x, Axzy, Axzs) numerically. With this knowledge at
by averaging the results of these runs. Also, at the beginnihand, we will now concentrate on finding[X;], E[X], and
of each replication, the initial location, and speed andspauCorr(X;, Xs). Hence, we sefAx; = % and Az, = Z—; for
time distributions of the node is determined according ® tlsome discretization parametets,n, € Z*, and define the
methodology explained in [6] for the efficient and reliableliscrete bivariate random variabfé* = (X7, X;) with the
simulation of random waypoint mobility model. finite state space

Now to be able to represent a comparison of the results oh: N
tained form (61), and from the simulation model we describ ={%25
above, consider the regidh{"), b"] x [b{”,55”] C R where 1o denote the subregioR(z*, Azy, Axy) in (41), wherer* €
biV,i =1,2, and b§-2)7j = 1,2, are multipliers of Az, and S* that the mobile is located at the long-run. Clearlypas—
Ax,, respectively. Notice that iPx (b(Y),5(2)) denotes the oo andn, — oo, X* converges to the continuous bivariate
probability of the mobile terminal to be located over theioeg random variableX .
b, 650 % 02, 657)] at the long-run, thetPx (b, 5(2)) can  Evaluating the distribution of(* from Fy (z, Az1, Ax,)
be easily derived by accumulating all of th& (z, Az,,Az,) in (61) we obtainedE[X]], E[X;], and Corr(Xy,X?)
such thatR(z, Azy, Azs) C BV, 657] x b2, 68¥]. Hence, numerically for several different parameter choices foe th
let p)((A)(b(l)7b(2)) and pg(S)(b(l)’b@)) respectively denote random waypoint mobility model. For all of the scenarios
the correspondent aPy (b)), b(?)) obtained from (61) (i.e., we considered, we set; and n, sufficiently large enough
Approximation 1) and from the simulation model. Based of® closely approximateX = (X, Xo) with X* = (X7, X3),
these notations, we define the following metric to asses thgd observed the following:
correctness of our conjecture for this mobility model.

- (271,1—21)Am1 } X { A;z ’3A2m2 s (2n,2—21)Am2 } (64)

E[X]] = % B[X3] = % Corr(X;,X3) =0
The simulation studies presented in [15], [16] points ouit th
the long-run location distribution of the random waypoint

_ _ _ (63) mobility model is more accumulated at the center of the

Finally, for our experiments, we considered[®1200Jm mopility terrain. More importantly, it is symmetric withspect
%[0, 900]m mobility terrain, and set the parameters of.mobilit){o center. Therefore, obtaining[X ;] and E[X}] as in (65) is
as follows: vmin = 1M/S, Umax = 20m/s, andT}, is uniform  eypected. However, the result fétorr(X7, X3) = 0 is not
over the rang¢0,730]sec. Then, we chos&z; = Azs = 5M,  ghserved before. In fact, our numerical experiments showed
and setn, = 10(53% :(1)10(()2)for the S|mulat|0n -expenment, that X7 and X3 are not independent. _ _
and evaluated=’,"" (b', b'*) for various choices ob; It should also be noted that analytical work presented in
and b{*,i = 1,2. The results are presented in Fig. 7.(a)s] for the spatial node distribution generated by this ritybi
Simulation results are acquired with %% confidence in- model concentrates on the case whéte= [0,a] x [0,a],
terval lower than0.001. Since the percentage of error, (i.e.}/ is deterministic with parametes, and E[T,] = 0, and
EC (M 52 x 100) is at most1.29% we conclude that formulates the long-run cumulative distribution functiover
the application of the Approximation 1 to random waypoird region with an area of?. If we substituteE[1/V] with ;1)
mobility model is accurate. and E[T,] = 0, and assumé\z; = Azy = 6, anda; = as,

Thus, usingFx (z, Azq,Azs) in (61) we can obtain an the formulation of the approximation we defined by (61) for

(65)
|p§5>(b(1),b<2)) _ p)((A)(b(l)7b(2))|

S,A
B 00,5) P (b)), p)
X s

3
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Fx(z, Axzy, Axs) becomes consistent with the formulation oEompared the results with simulation. In Fig. 7.(b) we pro-

the cumulative distribution function given in [5].

vided the E" (b, b)) for the same mobility parameter

We now focus on applying the approximation we definechoices we considered in Fig. 7.(a). From the values of

by (59) for L(,, 24, ©, Az1, Axs) to derive an approximation £$& (1), b

to fx(z) in (52) (|e the pdf ofX). First, notice from

b@) for different [, bS] x [, 582 € R, we
reached to the conclusion that the approximation we stated

the formulation of K'x (x, Az, Axzs) in (62) that when this by (66) for the long-run spatial distribution of the random
approximation is used, the integration of the integrandr ov@aypoint model over the given rectangular mobility terrain

the regionS(x4, x, Az, Azs), will be equal toAz; or Axg
times the area of the regiofi(xz4, x, Az, Azs). Hence, by

is quite accurate. Also notice that, the percentage of ®rror
(e, S BM,b®) x 100) presented in Fig. 7.(a). are

partitioning the boundaries of the 4-dimensional integrat better than the ones in Fig. 7.(b). This is expected because
that formulatesk x (z, Az, Axs) according to the condition tg evaluate theE(S A M, b)) in Fig. 7.(a), we computed

|Za, — s, > |24, — x5, | @nd its counterpart appropriately, Wep (z, Azy, Ax,) dlrectly from equation (43). However, in

obtained a closed form expression for (62). Finally, evéhga

the limit W as Az; — 0 and Azy — 0, we

reached the following approximation fgfiy :

Frle) = Fx(@) (66)
where
BT + EILRG)
= =, B D 7

where

ki(z)+ka(z)+ke(z)+ks(z),
ki(z)+ka(z)+ke(2)+ks(z),
ko (x)+ka(z)+ks () +ks(z),
ki(z)+ks(z)+ke(2)+k7(z),
ko (z)+ks(w)+ks (z)+k7(x),
ko (x)+ks (@) +ks(z)+k7(x),

0<z1 <G, 0<m2<%
%<Z‘1<a17 0<1‘2<(l2(1—%)

0<my <%, %<x2<a2(1—w )

%<1¢1<a1, ag(l——)<1 <a”1
O<w1<a71, ag(l—fi)<12<a2
a71<331<a1, azfl <zo<az

(68)
., 8 are defined by

wherex = (x1,x2), andk;(z), i = 1

_ (a1—=z)wa[2ag wi+ag(zy —wo)+ry 2207 (x
ki(z) = (a1 —=j)z2(2an ;ﬁigi 2)+®1 w397 (x)]
1%2%1

__ xy(ag—=z9)[2aq zotag(zg—z1)—z1 =

ko(z) = 1(ag—wo)[2ay 2021(23 1)—=1 w2971 (@)]
192 %2

ks(z) = (ay3—=zy)(ag—=zg)[ag(wy —aj)tag(ag+2ay)t(ag —xj)xags(w)]
3 2a% a% D)
ka(z) = Z12l(art2az)(ag —=q)—ag zp—(ag —x1)ra92(2)]
4(2) 3alaZ(a—a1)
k — =y(ag—xg)lay(ay —xfwg)tag(ag —2x;)—(ag —=1)(ag—x3)g; (=)]
5(x) 2aZa2(a;—=;)

— (ag—=my)wglag(ajtagtay)—(2ajtag)zot(ag—=y)(ag—w2)gy(®)]
ko(z) 2a% aZ(ag—w3)
r(z) = (a3 —=3)(ag—x2)[2ag vy +ay(zytzg—ag)+tz(ag—z3)ga(x)]
(AN Za% a%zl

— w3 wolag(2ajtap—z1)—(2a3tag)rg—w;(ag—x)ga(z)]
s(@) 2a2 a(ag—zg)
where

(ag—wp) 2 3
g1(z)=log(P22=52)) gy (z)=log( 52 ——)  (69)
and N is the normalization term given by
N = / k(x)dz) /D (70)
TER

It should be noted that since the tedfx, x4, x, Az, Axs)
is either substituted byAx; or Az, the functionk(z) in (68)
must be normalized in the regioR so thatfx (z) will be a
probability density function.

In order to asses the validity of the approximation we

presented by (66) we evaluatétj(A)
fx(z) in (67) over the reglon[bgl),b(l)}

), b)) by integrating
b, b5”] and

Fig. 7.(b), we approximated (xs, x4, ¢, Axq, Axs) by equa-
tion (59) to evaluate’x (x, Az, Azsy), which decreased the
quality of the approximation but gave us an approximation to
fx(z) in closed form.

In addition, if one is interested in a variant of random way-
point mobility model where mobiles may pause at different at
different X, that is, 7, x, needs to be employed in mobility
characterization in stead ¢t , then the approximation given
in (67) can be redefined as follows:

_ E[T,|Xq =z +E[ |k(z)/N
fX(-/E) — 142 _
E[T,|Xqs € R+ E[V]D
where E[T,|X; = z] is the expected pause time at the
destination pointz, and

BIT,|X] = / _drafx ) BT\ Xa =) (72)

Finally, we note that in [5] authors also present a very
accurate approximation for the pdf &f for the special case of
the original random waypoint model wheke= [0, 1] x [0, 1],
and speed choice for all movement epochs is constant. Im orde
to compare that approximation with the one given in this pape
numerically for this special case (i.e? = [0, 1] x [0, 1] and
speed is constant), we evaluated cumulative long-runitmcat
distributions for several subregions oveaccording to both of
them. We observed for various choicesHJT;,] andV that the
relative error between the results obtained from approtiona
and simulation is at most% for both of the approximation
methods defined in [5] and in (66).

Example 2: According to the results that are proved in
[1] for the one-dimensional version of the random waypoint
mobility model, the probability distribution function ok
(i.e., the first component ok = (X, X)) over the mobility

(71)

terrain R = [0, a4] is
ﬂE[Tp] Il(al 2301/3)E ‘1/
F — al al 73
X1 (./L']) E[Tp] + 0.31 E[V] ( )

Now, it is clear that an approximation to the marginal
distribution of X; can be stated from the approximation
defined by (66) for the joint probability density function of
X = (X1, X,) as follows:

/OQE1 du/oa2 dv fx (u,v)

In principle, if fx can closely approximatgy, then the
distribution F{"(z,) defined by (74) should also closely

F (1) = (74)
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F F
X,
0.9 1 f 09f %
).
F (A) .
o8l BTy ] 08F| ... P, %28
0.7H A . o = . N 4 0.7F A) ., —
_ _‘F a, allz ‘‘‘‘‘ FX, ta,=4a,
0.6H 0.6f
B F(A) a,=a, 14
0.5H 1 0.5f
0.4f 1 0.4f
0.3f : 1 0.3f
0.2f 1 0.2f
0.1f 1 0.1f
o i i i i o i i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x.la X la

171 171

(@) (b)
Fig. 8. Comparison oF'x, and F)(é) for Example 2 ¢; = 1000 m, Az = Az = 5M, Vmin = 1 M/S, Umae = 20 M/s, T}, = U|0, 30] sec).

approximateF'x, (z1) in (73) . To examine the correctness Before proceeding further, observe from the formulation of
of this statement, in Fig. 8 we consider several proportiorfg | x_ x, that asc — 0 the possibility of determining/”
betweena; and ay for the given mobility parameters, andproportional to|X, — X,4| increases. Also, as — oo we
provide a comparison of them. As it can be observed frooonverge to the original case, that¥sjs uniformly distributed
Fig. 8, the two distribution functions perfectly matcheshwi in [vyin, Vmax]-

each other for several proportions betwagnand a,. This Now formulating the f;; according to the equation (44)
observation is very important because it points out that tipeovided in Approximation 1, observe first that the integran
quality of approximation defined byx (x) in (66) for fx(z) of K(z,v, Azy, Ax,) in (45) will be given by

is insensitive to the frequency of the movement epochs thka(t Azr A

happen over the regioR = [0, a1] [0, a2] on the vertical and "\*s» > ©> ¥ 501 z2)

the horizontal directions. Hence, the approximationfigx) = %fwxs,xd (v|zs, 2q) L(Ts, 24, 7, A21, A2o) (T7)
defined in equation (66) becomes applicable to any rectangul (a1 a2)
region. which implies that finding a closed form expression for

Example 3: In Section IV, we stated that if the distributionX (z, v, Az1, Azs) is very complicated even if the approxi-
of V (i.e., the speed for a movement epoch) is independenation defined by (59) fol (z, x4, z, Az, Axs) is applied.
from X, and X4, then the pdf ofV (i.e. , fi7) and its expected ~ Therefore, to obtain an approximation to the distribution
value (i.e., E[V]) can be approximated by equations givenf V we use the numerical integration methodology we
in (51). As we have mentioned before, those equations axplained before in Example 1. Also, to test the accurachi®f t
consistent with the ones given in [7] for a class of mobilitpumerical results obtained, we modified the simulation rhode
models wherd/ selected independently from the distance thate presented in Example 1 according the new mechanism
is going to be traveled (i.e|Xs — Xg4l). to selectV, and finally obtained the probability distribution

Thus, for this example, we consider a variant of randoftinction of V', (i.e., Fyy(v) = [ du f; (u)) both from thef,
waypoint mobility model which incorporates the ability togiven in ApprOX|mat|on 1 and the simulation model. In Fig. 9
determineV according to|X, — X,4|, and concentrate onWwe provide a comparison of these two results for different
the accuracy of the approximation to the distribution16f values of o for the given mobility parameters. Simulation
we stated in Approximation 1 for the most generic mobilityesults are acquired with®% confidence interval lower than
characterization. 0.003. Observe that, the two distributions perfectly matches

Now for the original random waypoint model, keeping th&ith each other for all cases.
distributions of X, and 7,, the same as before, consider a Having provided this confidence for approximation to the

truncated normal distribution [17] for according to the pdf distribution of V' defined by Approximation 1, we now focus
given by on the effect of the choice of on the value ofE[V], which

is also formulated by (50). In Table Il, we prowde!a[ ]
fvix, x,(v|zs, za) for different choices ofs and E[T},]. The other parameters
Z(vw(is,zd)) are _the same with the experiments performed for the results
A ] e ey i v
o . , given finite value of
fOr vy < 0 < vy Whereo > 0, and o, the difference between thB[V] obtained, and theZ[V]
evaluated for ther — oo case increases ds[T),] increases.
(Umax — Umin) s — 4] (76) Both of these results are expected because akecreases,
‘ the possibility of moving long distances with artificiallpw

Z and® are the probability density and cumulative distributiogPeeds diminishes, and as a result, the expected value of the
functions for the normal distribution [17]. long-run speed increases.

o

,[L(CCS7 Id) = Umin +
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Fig. 9. Comparison of*; derived from Approximation 1 and Simulation for
Example 3 ¢1 = 1200 m, a2 = 900 m, Az; = Azy = 5M, vpin = 1 m/s,
Umax = 20 m/S,Tp = U[O, 30} sec).

(7]
(8]

TABLE Il
E[V] FOREXAMPLE 3
E[V] (m/s) (o]
(vmin=1M/S, viax=20 M/S)

E[Ty) (sec) || o o0 || =10 | 0 =5 | c=1 [10]

6.342 6.517 6.867 | 8.106
15 5.408 5.985 6.279 | 7.299 [11]

30 4.713 5.535 5.785 | 6.638
[12]

VI. SUMMARY

This paper concentrates on the analysis of a generaliz[(le%:]
random mobility modeling approach for wireless ad hoc nelf4l]
works over two-dimensional mobility terrains. The anadgti
framework we introduced is based on a special discretizatio
technique, and provided the long-run location and speed
characteristics in full generality for a limited version thfe 16]
model proposed where mobiles are only allowed to move
towards one of the finite number of available directions. We
provided approximations to the long-run distributions bét .-
exact mobility formulation, where mobiles can move at any
direction, from the analysis of this limited case. We also
examined the accuracy and applicability of our approxioreti
for a number of scenarios including random waypoint mapilit
model and a variant of it where the distribution of speed
selected for a movement epoch is dependent on the distan
that is going to be traveled.

From application of the results to random waypoint mobility
model we derived an approximation to the long-run locatio
distribution over rectangular mobility regions. We vatieldithe
accuracy of the approximation by simulation, and after com-
paring the marginals with proven results for one-dimeraion
regions pointed out that accuracy is insensitive to praport
between the dimensions of the rectangular region. Our aisaly

]

and example scenarios indicate that rich mobility modefs ca

be efficiently brought into the analytical studies concatirig
performance characteristics of wireless ad hoc networks.
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