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Abstract— Most important characteristics of wireless ad hoc
networks such as link distance distribution, connectivity, and
network capacity are dependent on the long-run properties of
the mobility profiles of communicating terminals. Therefore, the
analysis of the mobility models proposed for these networks
becomes crucial. The contribution of this paper is to provide
an analytical framework that is generalized enough to perform
the analysis of realistic random movement models over two-
dimensional regions. The synthetic scenarios that can be cap-
tured include hotspots where mobiles accumulate with higher
probability and spend more time, and take into consideration
location and displacement dependent speed distributions. By
the utilization of the framework to random waypoint mobility
model, we derive an approximation to the spatial distribution of
terminals over rectangular regions. We validate the accuracy
of this approximation via simulation, and by comparing the
marginals with proven results for one-dimensional regions we
find out that the quality of the approximation is insensitive to
the proportion between dimensions of the terrain.

Index Terms— Mobility Modeling, Long-Run Analysis, Ad Hoc
Networks, Two-Dimensional Regions.

I. I NTRODUCTION

IN WIRELESS ad hoc networks communicating termi-
nals move with respect to many different mobility

patterns each one having unique attributes. Therefore, mobility
modeling and its analysis become very important for the
performance evaluation of these kinds of networks. In this
paper, we focus on the long-run location and speed distribution
analysis of a generalized random mobility modeling approach
over two-dimensional mobility terrains.

The modeling methodology we are concentrating on is
originally defined in [1] as a generalized model that is flexible
enough to capture the major characteristics of several realistic
movement profiles. In that paper, long-run location and speed
distributions are given in closed form expressions for one-
dimensional regions. Here, we extend the analysis to two-
dimensional terrains. A variety of examples are also given
to show how the proposed model and its long-run analysis
framework work for a broad range of mobility modeling
approaches.

In what follows, we give a brief description of the gen-
eralized random mobility characterization approach that is
analyzed in this article. LetR denote the two-dimensional
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bounded region on which mobile terminals operate. A mobile
located at the pointXs = (Xs1

,Xs2
) ∈ R, selects a random

point Xd = (Xd1
,Xd2

) ∈ R as destination according to the
conditional probability density function (pdf)fXd|Xs

(xd|xs),
and moves to pointXd on the straight line segment joining
the two points, and at a speedV that is drawn randomly
from the interval[vmin, vmax], wherevmin > 0, according to
the conditional pdffV |Xs,Xd

. After reaching the destination,
mobile pauses for a random amount of time, denoted byTp,
atXd, which is distributed with respect to the conditional pdf
fTp|Xd

, and whole cycle is repeated by selecting a new desti-
nation. Hence, the pattern of a mobile terminal is composed of
consecutive movement epochs between the randomly selected
pointsXs andXd, and it is uncorrelated with the movement
behaviors of other terminals. Throughout this paper, we use
the triplet< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> to characterize the
movement pattern of a mobile that moves with respect to this
model.

Among the parameters of the triplet< fXd|Xs
, fV |Xs,Xd

,
fTp|Xd

>, the conditional pdffXd|Xs
identifies the distribution

of Xd given Xs at the embedded points in time where
a new movement epoch starts. Incorporation of this kernel
into this mobility characterization methodology providesthe
ability to define hotspots on the two-dimensional mobility
terrain where mobiles accumulate with higher probability,
and correlations between consecutive hotspot decisions can
be successfully modeled. Furthermore, sinceV is randomly
drawn fromfV |Xs,Xd

, we have the flexibility of constructing
a correlation between the distribution ofV and the locations
of the starting pointXs and destinationXd. For instance, a
scenario that identifiesV proportional to the distance that is
going to be traveled, that is,|Xs −Xd|, can be easily defined.
In addition, the usage offTp|Xd

makes it possible to capture
different pause distributions at different destinations available
for the mobility model.

For wireless ad hoc networks, there have been proposed a
number of different mobility models. Comprehensive surveys
of these models can be found in [2], [3]. Among them, the
random waypoint model [4] is one of the most widely used
one for analytic and simulation-based performance analysis of
ad hoc networks. In this model, a mobile selects a destination
point in the mobility terrain with equal probability, and moves
to that point with a speed that is drawn uniformly from a
given range. After reaching the destination, mobile pausesfor a
random time, which has a distribution that is independent from
the current location, and whole cycle is repeated by selecting
a new destination. In [5], [6], [7], analytical frameworks are
presented for the long-run analysis of this mobility model.
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The analysis that we propose in this paper is also applicable
to random waypoint model, and to demonstrate the correctness
and superiority of our work, we present a comparison of the
results derived with the ones presented in literature.

The rest of this paper is outlined as follows. In Section II,
we describe analytical framework we developed for long-run
analysis. Section III provides the long-run distributionsfor a
limited version of the exact mobility formulation constructed
according to the methodology explained in the second section.
Section IV utilizes the results reached in section three to
derive approximations for the long-run distributions of the
generalized model proposed. In Section V, we focus on
example scenarios, and the final section presents a summary
of the paper.

II. M ETHODOLOGY AND DESCRIPTION OFANALYTICAL

FRAMEWORK

In this section, we describe the analytical framework we
establish for the long-run analysis of the generalized mobility
model proposed.

Now since the movement behavior of mobiles are assumed
to be uncorrelated with each other, we can concentrate on a
single terminal for long-run analysis. Hence, for the termi-
nal whose movement pattern is characterized by the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, let the vectorX(t) denote
the state descriptor whose components identify the current
location, destination, and the speed of that mobile at timet. In
our solution methodology, we discretisize the two-dimensional
mobility terrain R and approximate the random variableV
with a discrete random variable so that the stochastic process
{X(t), t ≥ 0} can be defined on a multidimensional discrete
state space. The assumptions that we have made to generate
this discrete state space are as follows:

A1: The bounded regionR is discretisized inton disjoint,
non-overlapping cells of the same shape denoted byci,
i = 0 . . . n− 1, such thatR ⊆

⋃n−1
i=0 ci wheren > 1. A

mobile terminal is assumed to occupy one of theci’s
at any moment in time, and movement epochs occur
between two randomly picked starting and destination
cells.

A2: The random variableV , that is, the speed during a
movement epoch, is approximated by the discrete ran-
dom variableV ∗ defined on the state spaceSV ∗ =
{z1, z2, . . . , zm} where zr = r∆v, r = 1, . . . ,m, for
some discretization parameter∆v > 0, and an integer
m ≥ 1 such that∆v ≤ vmin andvmax = m∆v.

Based on these assumptions, observe that a mobile can be in
pausing or moving modes at the cell it is currently located.

Additionally, instead of observing the state of a terminal
continuously, we observe it at embedded times denoted by
Tk, for k ∈ N, such thatT0 = 0, Tk+1 ≥ Tk, ∀k ∈ Z

+,
which point to the time of occurrence of one of the following
events:

E1: The terminal which is in pause mode, selects a new cell as
destination that is different from the current cell occupied,
and changes its state to moving state in the current cell
it is located,
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Fig. 1. Discretization of the square regionR into squares.

E2: The terminal which is traveling in the direction of the
target cell, moves out from the current cell and enters the
neighboring cell that lies on the shortest path between the
current and destination cells,

E3: The terminal reaches to the destination cell and enters the
pause mode at that location.

In our analysis, to apply assumptionA1, which is done to
approximate the exact location that can be occupied by a termi-
nal at any point in time, we focus on the discretization methods
that partition the regionR into squares or hexagons. The
reasoning behind concentrating on two different discretization
approaches forR concurrently will become more clear as we
proceed further in the long-run analysis. In Fig. 1, we applythe
square discretization approach to a square region. Visualization
of a discretization that is performed by hexagons can be found
in [8].

In Fig. 1, we also depict the scheme we decide on to identify
the cells on the discretisized region. Basically, the centers of
the cells are grouped by lines that are parallel to each other,
and the indexi of cell ci is denoted byi = (ℓi, ℓ

′
i) whereℓi

represents the line that the center ofci is located, andℓ′i is its
location on that line. For the rest of this paper, we will use
the notationsci and c(ℓi,ℓ′i)

interchangeably. Hence, if there
arenℓ lines, and ifqℓ denotes the number of cells on lineℓ,
then set of the cells on the discretisized region can be defined
as follows:

R̃ =

nℓ−1
⋃

ℓ=0

{c(ℓ,0), . . . , c(ℓ,qℓ−1)}, (1)

Clearly, the path traveled during a movement epoch de-
scribed by the discretisized version of the mobility charac-
terization we constructed is composed of consecutive straight
line segments between the centers of the cellsci, i =
0, . . . , n− 1. In other words, a mobile terminal moves to one
of the neighboring cells from the current cell occupied while
traveling towards the destination cell. Hence, ifd denotes the
number of available movement directions for the discretisized
mobility formulation, thend would be equal to the number
of the sides of the regular polygons used in the discretization
process. Thus,d = 4 for square discretization, andd = 6 for
hexagonal discretization, and letγı, ı = 0, . . . , d − 1 denote
those directions (see cellc(2,5) in Fig. 1). On the other hand,
in principle, if there are no obstacles on the regionR that can
restrict the movement directions, then mobile should be able
to move at any direction. Therefore, by discretizing the region,
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we are also forced todiscretisize the movement direction.
Obviously, if R is discretisized by regular polygons of the
same shape, as we are doing, thend can be at most equal to
six. Furthermore, if the discretization of a regionR with a
general shape (e.g. rectangle) with regular polygons is done
for the purpose approximating the exact location of a terminal,
as in our case, then using hexagons is a better choice because
the number of available movement directions are higher, anda
more realistic approximation can be done to the exact mobility
pattern.

At this point, it should be noted that, the enforcement of
discretizing movement directions will not arise for the one-
dimensional case because there are only two directions for a
mobile to move on a one-dimensional region and discretization
method does not enforce any kind of restriction on these
directions. Clearly the fundamental difference between the
discretization parametersd, and n and m is that n and m
can be increased, butd, as we have mentioned above, can be
at most equal to six. This difference introduces a new issue
that has to be clarified before continuing. In what follows, we
explain this issue and our solution approach for it.

Now recall that according to our mobility model proposed,
during a movement epoch, mobile travels on the straight line
joining the pointsXs and Xd. In the discretisized version
of this mobility model, movement epochs occur between
randomly selected cells. Obviously if the mobile terminal is
allowed to move at any direction in the regionR, then the
shortest path between those two points is just the straight
line between them, and it is unique. However, for the discrete
formulation, the shortest path is defined in terms of the number
of jumps between cells. More importantly, for a discretization
that is done according to squares (i.e.,d = 4), or to hexagons
(i.e., d = 6), if p̃(d)(i, j), d = 4, 6, denotes the ordered list of
the cells that are located on a shortest path for the movement
epoch that had started atci, and ended up at destination cell
cj , then the members of̃p(d)(i, j) will not be necessarily
unique. The algorithm that we use in this paper to generate
p̃(d)(i, j) is as follows. If cj is towards the directionγı′ for
someı′ ∈ {0, . . . , d − 1} from ci, then mobile follows that
direction until it reaches destinationcj . On the other hand,
mobile proceeds to the next cell either in the directionγı′ or
γı′+1mod d with equal probabilities for someı′ ∈ {0, . . . , d−1}
that generates the least possible shortest path if selected, and
continues in that direction until it reaches to a cell that can be
joined tocj by following one of thed available directions. For
example, in Fig. 1, consider the scenario whereci = c(2,1) and
cj = c(5,3). Observe that for this scenario, this algorithm either
generates the path{c(2,1), c(2,2), c(2,3), c(3,3), c(4,3), c(5,3)} or
the path{c(2,1), c(3,1), c(4,1), c(5,1), c(5,2), c(5,3)}. It should be
also noted that, according to our notation, the first and the last
members of the list̃p(d)(i, j) areci andcj , respectively.

Having clarified these issues, we now proceed to the formal
definition of the discretisized mobility formulation. DenoteSk,
k ∈ N, as the state of the mobile terminal at timeTk. Hence,
based on assumptionsA1, A2, and the eventsE1, E2, E3 that
identify observation timesTk, for k ∈ N, the finite state-space
of Sk will be defined as follows:

S = SM ∪ SP (2)

where
SM = {(ci, cj , zr, q) | i, j = 0, . . . , n− 1, i 6= j,

r = 1, . . . ,m, q = 1} (3)

SP = {(ci, q) | i = 0, . . . , n− 1, q = 0} (4)

whereci is the current cell occupied,cj is the destination cell,
zr is the discretisized speed, andq is the indicator function
that is defined as follows:

q =

{

1, mobile is moving towards the target cell
0, mobile is pausing at the destination cell

(5)

Consequently, the stochastic process{X(t), t ≥ 0} can be
formally defined on the finite-state spaceS according to the
following expression:

X(t) = Sk, if Tk ≤ t < Tk+1

Notice that whenX(t) occupies a states ∈ SM, since the state
s has a separate dimension for the destination cell, the next
state to be visited can be determined from the components of
it. In other words, the future evolution of the stochastic process
{Sk, k ∈ N} becomes dependent only on the current state of
the mobile terminal, not on its history at previous observation
points. Furthermore, for alls ∈ S, the distribution of sojourn
time in states would be independent from the previous states
occupied and can be determined only from the components of
states.

Therefore, the stochastic process{Sk, Tk; k ∈ N} with
finite-state spaceS satisfies the conditions for beingMarkov
Renewal Process, and the process{X(t), t ≥ 0} can be
called as thesemi-Markov process (SMP) associated with
{Sk, Tk; k ∈ N} [9]. Moreover, since the distributions for
destination, speed, and pause time parameters are assumed
to be time-homogeneous in the mobility model proposed, the
distribution of state holding time in states, given that the
next state to be visited iss′, would be independent ofk.
Hence, the transitions of the processX(t) at the embedded
time instantsTk can be governed by thediscrete-time Markov
chain (DTMC) {Sk, k ∈ N} with finite-state spaceS in (2)
and transition probability matrixP = [ps s′ ], whereps s′ =
Pr{Sk+1 = s′ |Sk = s}, such that

∑

s′∈S ps s′ = 1 for all
s ∈ S. The process{Sk, k ∈ N} is also referred asembedded
DTMC of SMP.

Thus, in order to characterize the SMP{X(t), t ≥ 0} at the
long-run, the DTMC{Sk, k ∈ N} must satisfy the ergodicity
conditions and the mean state holding times must be finite.
If these conditions are satisfied, then the long-run proportion
of time spent in a states ∈ S can be obtained, and after
aggregating the states that has the samecurrent cell andspeed
components, the long-run distributions sought can be derived
for this discretisized version of the mobility formulation.

Notice that, as the discretization parametersn → ∞ and
m → ∞, we obtain better approximations to the location
and speed of the mobile terminals, respectively, and in the
limit we converge to a restricted version the continuous model
where the available movement directions are limited by thed
different directionsγ0, . . . , γd−1 given by

γı =

{ 2π ı
d , if d = 4,

2π (ı+1/2)
d , if d = 6,

(6)
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for ı = 0, . . . , d − 1. Visualization of these directions are
also provided in Fig. 1 ford = 4. Clearly because of the
methodology we decided to generatep̃(d)(i, j), at the limit
n→ ∞, the path followed during a movement epoch between
Xs andXd ∈ R will generally be composed of two directed
finite line segments towards the directionsγı1 andγı2 where
{ı1 = ı, ı2 = (ı+1)mod d} or {ı1 = (ı+1)mod d, ı2 = ı} for
someı ∈ {0, . . . , d− 1}. This can be also observed from the
example movement scenarios depicted in Fig. 1. Obviously if
Xd is towards any of directionsγı, ı = 0, . . . , d − 1, from
Xs, then the path will be composed of a single straight line.
For the rest of this report we will use the termcontinuous-
d mobility formulation to refer to this limited version of the
exact continuous mobility formulation. Finally, we note that,
sinced can be at most equal to six, a formal transition from
this limited case to the original continuous formulation cannot
be done. Therefore, in the following sections we will use
distributions of the continuous-d mobility formulation to gain
some insight into the methodology that can be used to derive
approximations for the long-run distributions of originalcase.

III. A NALYTICAL RESULTS FORTHE DISCRETISIZED AND

CONTINUOUS-d MOBILITY FORMULATION

In this section, we first concentrate on generating the long-
run location and speed distributions for the discretisizedcase,
and after that we will use those results to derive long-run
distributions of the continuous-d mobility formulation.

Now, to able to identify the transition probabilities of the
DTMC {Sk, k ∈ N}, we first denoteτj|i as the probability of
selecting cellcj as target from cellci. Then, according to the
mobility characterization parameterfXd|Xs

, τj|i will be given
by

τj|i =

∫

xd∈cj

fXd|Xs
(xd|Xs ∈ ci) dxd, (7)

Similarly, denoteνr|i,j as the conditional probability mass
function of V ∗ for a movement epoch that had started at cell
ci with destinationcj . Then, by using the parameterfV |Xs,Xd

we have

νr|i,j =

∫ r∆v

(r−1)∆v

fV |Xs,Xd
(v|Xs ∈ ci,Xd ∈ cj) dv (8)

for r = 1, . . . ,m. In addition, letnh(ci) denote the cells in the
neighborhood of cellci that can be reached in one jump from
it, and let[i′, i, j] denote the index of the cellci′ in the ordered
list that defines the path̃p(d)(i, j). Note that,[i, i, j] = 1, and
[j, i, j] =

∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ where
∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ denotes the number
of the cells on the path̃p(d)(i, j). Hence, if we are interested
in the probability of the cellci′ to be the next cell to be visited
after cell ci, that is,Pr{[i′, i, j] = 2}, thenPr{[i′, i, j] = 2}
is either equal to1, or 1/2, or 0 (i.e. ci′ is not on the path
p̃(d)(i, j)). For instance, in Fig. 1, whenci = c(2,1), cj =
c(5,3), andci′ = c(2,2), thenPr{[i′, i, j] = 2} = 1/2. On the
other hand, ifci = c(2,1), cj = c(2,3), and ci′ = c(2,2), then
Pr{[i′, i, j] = 2} = 1.

Based on these definitions, the transition probabilities cor-
responding to the eventsE1, E2, andE3, can be grouped as
in Table I.

Next, we examine the irreducibility and aperiodicity of the
DTMC {Sk, k ∈ N} with respect to the transition probabilities
defined in Table I. Letϕi denote the probability of starting a

TABLE I

TRANSITION PROBABILITIES OF THE PROCESS{Sk, k ∈ N}

Event Transition Probability Condition∗

E1 (ci, 0) → (ci, cj , zr, 1)
τj|i

1−τi|i
νr|i,j i 6= j

E2 (ci, cj , zr, 1) → (ci′ , cj , zr, 1) 1 cj /∈ nh(ci),
Pr{[i′,i,j]=2} =

1

1/2 cj /∈ nh(ci),
Pr{[i′,i,j]=2} =

1/2

E3 (ci, cj , zr, 1) → (cj , 0) 1 cj ∈ nh(ci)
∗ i, i′, j = 0, . . . , n − 1, r = 1 . . . m

movement epoch from a cellci, i = 0, . . . , n−1 at the steady-
state. Obviously, in order to satisfy the irreducibility,ϕi must
be greater than0 for all i = 0, . . . , n − 1. Otherwise, some
cells on the two-dimensional discretisized region will never
be visited (i.e., selected as destination) and the chain becomes
reducible. Hence, a steady-state distribution must exist for
Xs. The conditional pdffXd|Xs

(xd|xs), which identifies the
distribution ofXd givenXs at the embedded points in time
where a new epoch starts, is referred asstochastic density
kernel by Feller [10]. Under some “mild” regularity conditions
defined in [10] onfXd|Xs

(xd|xs) the steady-state distribution
of Xs with pdf fXs

(xd) can be uniquely determined from the
solution of the following integral equation

fXs
(xd) =

∫

xs∈R

fXd|Xs
(xd|xs)fXs

(xs)dxs, (9)

andϕi will then be equal to

ϕi =

∫

xd∈ci

fXs
(xd) dxd (10)

Observe that, ifT = [τj|i], and if the integral equation (9) has
a unique solution, thenϕi can be also obtained by solving
ϕT = ϕ, ||ϕ||1 = 1 whereϕ = [ϕ0, . . . , ϕn−1].

In view of the discussions above, the following can be easily
proven.

Lemma 1: If the pdf fXs
(xd) can be uniquely determined

from the solution of the integral equation (9), and ifνr|i,j > 0,
i, j = 0, . . . , n − 1 and r = 1, . . . ,m, then the embedded
DTMC {Sk, k ∈ N} defined on state spaceS in (2), with
transition probabilities given as in Table I, is irreducible and
aperiodic.

Next, we provide the steady-state distribution of the DTMC
{Sk, k ∈ N}.

Lemma 2: For the DTMC{Sk, k ∈ N} defined on the state
spaceS in (2), whered is either equal four or six, letπ(d)

i

and π(d)
(i,j,r) denote the steady-state probabilities of being in

the states of the forms = (ci, 0), i = 0, . . . , n − 1, and
s = (ci, cj , zr, 1), i, j = 0, . . . , n − 1, i 6= j, r = 1, . . . ,m,
respectively. If the conditions of Lemma 1 are satisfied, then
they are uniquely given by

π
(d)
i = ϕi (1 − τi|i)/N, (11)

π
(d)
i,j =

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′ τj|i′ νm|i′,j/N

+ 1
2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′ τj|i′ νm|i′,j/N (12)

where
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π
(d)
i,j = [π

(d)
(i,j,1), . . . , π

(d)
(i,j,m)], (13)

νm|i′,j = [ν1|i′,j , . . . , νm|i′,j ], (14)

and
p
(d)
t,1 (i, j) =

{

ci′ |ci′ ∈ R̃,Pr{ci ∈ p̃(d)(i′, j)} = 1
}

, (15)

p
(d)
t,2 (i, j) =

{

ci′ |ci′ ∈ R̃,Pr{ci ∈ p̃(d)(i′, j)} = 1/2
}

,(16)

andN =
∑n−1

i=0 π
(d)
i +

∑n−1
i=0

∑n−1
j=0,
j 6=i

∣

∣

∣

∣

∣

∣
π

(d)
i,j

∣

∣

∣

∣

∣

∣

1
.

Proof: Refer to [8].
It should be noted that, the setsp(d)

t,1 (i, j) in (15) and

p
(d)
t,2 (i, j) in (16) represent the subset of cells iñR from where

a movement epoch originated with destination cellcj passes
through the cellci with probabilities 1 and 1/2, respectively.

Now, let t̄s denote the sojourn time of the SMP{X(t), t ≥
0} in states ∈ S. Then, if s = (ci, cj , zr, 1) (i.e., mobile is
moving towards the destination with discrete speedzr), and
if ∆c(d) denotes the traveled distance in a cell while passing
trough it, then

t̄s =
∆c(d)

zr
(17)

On the other hand, ifs = (ci, 0), then we define the following.

t̄s = E[Tpi
] = E[Tp|Xs ∈ ci] (18)

Finally, in order to characterize the SMP{X(t), t ≥ 0} at the
long-run, the following must be satisfied [9]:

∑

s∈S

πst̄s <∞ (19)

Hence, by applying the theory of semi-Markov processes
we obtained the long-run proportion of time that the SMP
{X(t), t ≥ 0} is in a states ∈ S. After aggregating the states
in S that has the samecurrent location andspeed components,
including the ones with zero speed (i.e,s = (ci, 0)), we reach
to the following result.

Lemma 3: For the mobile terminal, whose mobility pattern
is characterized according to the discretisized version ofthe
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

> mobility formulation, letp(d)
i ,

i = 0, . . . , n− 1, d = 4, 6, denote the long-run proportion of
time that terminal stays in cellci, which can be a square or
hexagon. Similarly, denoteψ(d)

r as the long-run proportion of
time that mobile possesses speedzr = rδv, r = 0, . . . ,m. If
the conditions given by Lemma 1 are satisfied, and equation
(19) holds to be true, then

p
(d)
i =

ϕi (1 − τi|i)E[Tpi
] +

m
∑

r=1
k

(d)
i,r

N
(d)
n,m

, (20)

and

ψ(d)
r =























n−1
∑

i=0

ϕi (1 − τi|i)E[Tpi
] /N

(d)
n,m , if r = 0

n−1
∑

i=0

k
(d)
i,r /N

(d)
n,m , else

(21)

where

k
(d)
i,r =

∑

cj∈R̃−{ci}

(

∑

ci′∈p
(d)
t,1 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j ∆c(d)

+ 1
2

∑

ci′∈p
(d)
t,2 (i,j)

ϕi′τj|i′
1

zr
νr|i′,j ∆c(d)

)

, (22)

c1

c3c2

c0

a0 a
2

(a) n = 4, d = 4

c0 c1 c2 c3

a0 a
2

c4 c5 c6 c7

c8 c9 c10 c11

c12 c13 c14 c15

(b) n = 16, d = 4

Fig. 2. Discretisized version of a simple mobility scenario.

and
N (d)

n,m =

n−1
∑

i=0

ϕi (1 − τi|i)E[Tpi
] + D̂(d)

n (23)

where
D̂(d)

n =

n−1
∑

i=0

m
∑

r=1

k
(d)
i,r (24)

To simplify the formulation ofD̂(d)
n in (24) for some special

cases, we now state the following claim.
Claim 1: If the distribution ofV ∗ is assumed to be inde-

pendent from the location of the starting and destination cells
of the movement epochs, the expression forD̂

(d)
n in (24) is

equivalent to the following:

D̂(d)
n = E[

1

V ∗
]
∑

ci∈R̃

∑

cj∈R̃

ϕi τj|i dis
(d)(i, j) ∆c(d), (25)

wheredis(d)(i, j) =
∣

∣

∣

∣p̃(d)(i, j)
∣

∣

∣

∣ − 1, that is, the number of
the discrete jumps made on the pathp̃(d)(i, j).

Proof: Refer to [8].
Before continuing on with the long-run analysis of the

continuous-d mobility formulation, in order to clarify the
interpretation of termk(d)

i,r given in (22), we now concentrate
on a simple example scenario. Now, consider a continuous
mobility formulation (i.e., mobiles can move anywhere at any
direction) over the regionR = [0, a] × [0, a] where V is
deterministic and equalv, and the other mobility character-
ization parameters,fXd|Xs

and fTp|Xd
, can be arbitrary as

long as the integral equation in (9) is uniquely solvable and
equation (19) is satisfied. Now to be able to apply Lemma 3,
we need to generate the discretisized version of this mobility
formulation. Hence, assumen = 4, d = 4, and sinceV is
deterministic,m = 1. In Fig. 2.(a) we provided a visualization
of the discretisized mobility model generated according to
these assumptions.

Now for this discretisized mobility formulation, if we are
interested in the long-run proportion of time mobile stays in
cell c0 (i.e.,p(4)

0 ), then according to Lemma 3 we simply have

p
(4)
0 =

ϕ0 (1 − τ0|0)E[Tp0
] + k

(4)
0,1

N
(4)
4,1

, (26)

where

k
(4)
0,1 =

a

2v
(ϕ0τ1|0 + 1

2ϕ2τ1|2 + ϕ0τ2|0 + 1
2ϕ1τ2|1

ϕ0τ3|0 + ϕ1τ0|1 + ϕ2τ0|2 + ϕ3τ0|3), (27)

which is equal to the average time spent over the cellc0 while
moving between randomly picked cells. In other words,k

(4)
0,1

is equal toa/2
v multiplied with the probability of a movement
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epoch between two randomly picked cells that pass trough
the cell c0, including the ones starting or ending at cellc0.
Notice that in this simple formulationνr|i′,j = 1 for all
i′, j = 0, . . . , 3. However, if the distribution ofV is dependent
onXs andXd in the original continuous mobility formulation,
thenm > 1, and we have to multiply each additive term of
k

(4)
0,r , r = 1, . . . ,m with the probability of selecting speed
zr = rδv, (i.e.,νr|i′,j) and 1

zr
for the the movement epoch that

passes trough cellc0, as it is shown by the formulation ofk(d)
i,r

in (22). Observe that, for all choices ofV , the term
∑m

r=1 k
(d)
i,r

corresponds to the expected time spent over cellci while
moving between two randomly picked cells that are drawn
from the distributionsϕi′ in (10) andτj|i′ in (7), respectively.

Next we proceed to the long-run analysis of the continuous-
d mobility formulation. At first, recall that in this case since
movement directions are restricted to four or six different
directions, the path followed during a movement epoch be-
tween the pointsXs ∈ R and Xd ∈ R will be composed
two or one line segments each directed towards one of the
available directionsγı in (6), ı = 0, . . . , d− 1. Thus, in order
to keep the formulation of this case separate from the exact
model, where movement epochs occur on a single directed line
segment that can have any direction, let the random variables
X(d)(t) = (X

(d)
1 (t),X

(d)
2 (t)) and Ṽ (d)(t), whered is either

four or six, denote the location and the speed of a mobile
terminal at timet, respectively. Note thatX(d)(t) ∈ R, and
since the mobile can be in moving or pausing modes at any
point in time, Ṽ (d)(t) is either equal to0, or in the range
[vmin, vmax].

Now let X(d) = (X
(d)
1 ,X

(d)
2 ) and Ṽ (d) denote the random

variables having the long-run distribution ofX(d)(t) and
Ṽ (d)(t), respectively. Recall that in the discretisized version
of the mobility formulation, we assumed the random variables
X(d)(t) and Ṽ (d)(t) to take only discrete values, and in
Lemma 3, provided the long-run proportion of times that a
mobile stays in cellci, (i.e., p(d)

i in (20)), and possesses
speedzr (i.e., ψ(d)

r in (21)). Therefore, in order to derive
the distributions ofX(d) and Ṽ (d), we need to focus on the
limiting behavior of the discrete distributions given by Lemma
3 as discretization parametersn andm approaches infinity.

As an illustration of the methodology that is going to be
applied during this transition, lets concentrate on the simple
mobility formulation whose discretisized version is depicted
in Fig. 2.(a). Recall that, in that simple modelV = v
(i.e., deterministic) and the other mobility characterization
parameters can be arbitrary. Now for the discretisized case,
let P (d)

n (a
2 ) denote the long-run proportion of time mobile is

located in the regionR(a
2 ) = [0, a

2 ] × [0, a
2 ]. Hence, ifd = 4

andn = 4, we have
P

(4)
4 (a

2 ) = p
(4)
0 (28)

wherep(4)
0 is defined by (26). Notice that in this formulation

the discretization parameterm is skipped because sinceV =
v, andm = 1.

Next, the important question is what will be the limiting
form of P (4)

n (a
2 ) in (28) asn → ∞. Hence, if we assume

n = 16, then discretisized region given in Fig. 2.(a) will be
transformed to form given in Fig. 2.(b). By applying Lemma

3 we have

P
(4)
16 (a

2 ) =

∑

ci∈R̃( a
2 )

ϕi (1 − τi|i)E[Tpi
] +

∑

ci∈R̃( a
2 )

k
(4)
i,1

N
(4)
16,1

, (29)

whereR̃(a
2 ) = {c0, c1, c4, c5}, that is, the set of discrete cells

located on the regionR(a
2 ).

Now based on the interpretation ofk(d)
i,r in (22), the term

∑

ci∈R̃( a
2 ) k

(4)
i,1 corresponds to the average time spent over

R(a
2 ) while moving between randomly picked two cells.

Notice that both of those cells or one of them can be also
belong toR̃(a

2 ). Hence we reach to the following:

∑

ci∈R̃( a
2 )

k
(4)
i,1 =

∑

cj∈R̃

∑

ci′∈R̃

ϕi′ τj|i′ P( a
2 )(i

′, j)
1

v
J( a

2 )(i
′, j)∆c(d)

(30)
where P( a

2 )(i
′, j) denotes the probability passing over the

region R(a
2 ) while moving from ci′ to cj , and J( a

2 )(i
′, j)

represents the number of discrete jumps overR(a
2 ) while mov-

ing. Notice that the termJ( a
2 )(i

′, j)∆c(d) represents the total
distance traveled overR(a

2 ), which is required to calculate the
average time spent.

Therefore, in order to obtain the limiting form ofP (4)
n (a

2 )
as n → ∞, we need to derive the limiting expression of
the double summation given in (30) which requires a proper
formulation ofP( a

2 )(i
′, j) andJ( a

2 )(i
′, j).

Thus, we now focus on the formalization of the observations
we mentioned above. In order to keep our formulation as
simple as possible, we concentrate on deriving the long-run
distributions of the continuous-4 (i.e., d = 4) and continuous-
6 (i.e., d = 6) mobility formulations over square and hexag-
onal mobility terrains of side lengtha, respectively. Denote
these terrains with the generic notationR(d)(a), whered is
substituted by 4 if it is a square, else by 6 (i.e., hexagon).
Also, to describe long-run location distribution consistently
with d and the shape of mobility terrain (i.e.,R(d)(a)), we
focus on defining the probability mass function (pmf) ofX(d)

over a square subregion inR(4)(a), and a hexagonal subregion
in R(6)(a). Let R(d)(x, b) denote these subregions, which is
a square ifd = 4, and a hexagon ifd = 6, with center
x ∈ R(d)(a) and side lengthb such thatR(d)(x, b) ⊆ R(d)(a).
In Fig. 3, we provided illustrations ofR(4)(a) andR(4)(x, b).
We also denote byS(d)(a, b) the set of all nonintersecting
R(d)(x, b) ⊆ R(d)(a).

In addition to the these notations, letL(d)(p, xs, xd, x, b)
denote the length of the total distance traveled over the
subregionR(d)(x, b) for a movement epoch that occurs be-
tween the pointsxs and xd, and passes throughR(d)(x, b)
with probability p, which can be equal to1, 1/2, or 0 for
the continuous-d mobility formulation. In Fig. 3, we depict
L(4)(p, xs, xd, x, b) for example movement epochs. Finally, we
define

S(d)(p, xd, x, b)

= {xs|xs ∈ R(d)(a), L(d)(p, xs, xd, x, b) 6= 0} (31)
Based on the notations given in the preceding two para-

graphs, we are now ready to state the main theorem of this
section.
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x

b

b
a

xs

xd

L(4)(1
2, xs, xd, x, b)

R(4)(x, b)
xs xd

L(4)(1, xs, xd, x, b)

Fig. 3. Illustrations ofR(4)(a), R(4)(x, b), andL(4)(p, xs, xd, x, b).

Theorem 1: For the mobile terminal, whose mobility pat-
tern is characterized by the continuous-d mobility formulation
over the mobility terrainR(d)(a), d = 4, 6, let FX(d)(x, a, b)
denote probability mass function ofX(d) over the subregion
R(d)(x, b) ⊆ R(d)(a). Also, let fṼ (d) denote the pdf of̃V (d).

If the pdf fXs
(xd) can be uniquely determined from the in-

tegral equation (9), andE[Tp|Xs = xs] <∞, ∀xs ∈ R(d)(a),
and fV |Xs,Xd

> 0, ∀ v ∈ [vmin, vmax], and ∀xs, xd ∈
R(d)(a), then

FX(d)(x, a, b)

=

E[Tp|Xs∈R(d)(x,b)] Pr{Xs∈R(d)(x,b)} +
vmax
∫

vmin

K(d)(x,v,b,a) dv

E[Tp|Xs∈R(d)(a)]+D̂(d)
, (32)

and

fṼ (d)(ṽ)=



















E[Tp|Xs∈R(d)(a)]δ(ṽ)

E[Tp|Xs∈R(d)(a)]+D̂(d)
, ṽ = 0

P

R(d)(x,b)∈S(d)(a,b)

K(d)(x,ṽ,b,a)

E[Tp|Xs∈R(d)(a)]+D̂(d)
, ṽ ∈ [vmin, vmax]

(33)

where

K(d)(x, v, b, a)

=

∫

xd∈R(d)(a)

dxd

(

∫

xs∈S(d)(1,xd,x,b)

dxs k(d)(1,xs,xd,x,v,b)

+ 1
2

∫

xs∈S(d)(1/2,xd,x,b)

dxs k(d)(1/2,xs,xd,x,v,b)
)

, (34)

k(d)(p,xs,xd,x,v,b)

=fXs (xs)fXd|Xs
(xd|xs) 1

v
fV |Xs,Xd

(v|xs,xd)L(d)(p,xs,xd,x,b), (35)

and

D̂(d) =
∑

R(d)(x,b)∈S(d)(a,b)

∫ vmax

vmin

dv K(d)(x,v,b,a) (36)

Proof: Refer to [8].
We may note that the term

∫ vmax

vmin
K(d)(x,v,b,a) dv, where

K(d)(x, v, b, a) is given in (34), corresponds to the expected
time spent over the regionR(d)(x, b) while moving between
the pointsXs andXd that are respectively drawn from the
distributions fXs

and fXd|Xs
. Also, in order to formulate

L(d)(p, xs, xd, x, b) and the regionS(d)(p, xd, x, b) explicitly

we need to partitionR(d)(a) with respect toR(d)(x, b). Clearly
this will increase the complexity of the results presented by
Theorem 1. However since we are aimed at using the distri-
butions of the continuous-d case to reach some conclusions
about the exact case, we decided to keep the presentation of
the results given by Theorem 1 as simple as possible.

Now, in view of the result given by Claim 1 for̂D(d)
n in

(25), if V (i.e., the speed for a movement epoch) is assumed
to be independent from the distributions ofXs andXd, then
we get the following forD̂(d) in (36):

D̂(d) = E[
1

V
]D̄(d) (37)

where

D̄(d) =

∫

xs∈R(d)(a)

dxs

∫

xd∈R(d)(a)

dxd fXs
(xs)fXd|Xs

(xd|xs) |xs − xd|
(d)

(38)
where |xs − xd|

(d) represent the total distance traveled be-
tween the pointsxs = (xs1

, xs2
) andxd = (xd1

, xd2
) for the

continuous-d mobility formulation. Clearly ifd = 4, then

|xs − xd|
(4)

= |xd1
− xs1

| + |xd2
− xs2

| (39)

which is also know as theManhattan distance [11]. Also,
notice that|xs − xd|

(4)
> |xs − xd|

(6) , ∀xs, xd ∈ R.
Finally, based on the definition of̄D(d) in (38), theE[Ṽ (d)]

will be given by the following even if the distribution ofV is
dependent on the distributions ofXs andXd.

E[Ṽ (d)] =
D̄(d)

E[Tp|Xs ∈ R(d)(a)] + D̂(d)
(40)

IV. CONTINUOUS MOBILITY FORMULATION

In this section, we concentrate on the long-run properties of
the continuous mobility formulation. In order to be as generic
as possible, the mobility terrainR is assumed to be rectangular
defined byR = [0, a1] × [0, a2]. DenoteX(t) and Ṽ (t),
respectively, as the location and speed of a mobile terminalat
time t. Because we are interested in the long-run distributions,
let X and Ṽ respectively denote the random variables having
the long-run distribution ofX(t) and Ṽ (t). Notice that the
state spaces ofX andX(d), andṼ andṼ (d) are the same but
since the continuous-d mobility formulation puts restriction
on the movement directions, their long-run speed and location
distributions will be always different from each other.

Now as mentioned before, sinced can be either equal to
four or six, the results provided by Theorem 1 cannot be
extended formally to cover the exact case that allows mobile
to move at any direction. Therefore, we now concentrate on
using the results of Theorem 1 to construct an approximation
methodology for the long-run distributions of the original
continuous case.

Hence, analogous to the definition ofR(d)(x, b) inside
R(d)(a) (see Fig. 3), we define the following rectangular
subregion insideR = [0, a1]× [0, a2] for the continuous case:

R(x,∆x1,∆x2) = [x1 −
∆x1

2 , x1 + ∆x1

2 ]

× [x2 −
∆x2

2 , x2 + ∆x2

2 ] (41)
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xd

xs

x10 a1

0

a2

xx
2

L(xs, xd, x, ∆x1, ∆x2)

∆x1

∆
x

2

: The region S(xd, x, ∆x1, ∆x2)

Fig. 4. Illustrations ofS(xd, x, ∆x1, ∆x2) and L(xs, xd, x, ∆x1, ∆x2)
for the continuous mobility formulation.

wherex = (x1, x2), and∆x1 and∆x2 are selected such that
R(x,∆x1,∆x2) ⊆ R. Also denoteS(∆x1,∆x2) as the set
of all nonintersectingR(x,∆x1,∆x2) ⊆ R.

Now notice that since the direction of movement is not
restricted, a movement epoch that starts from a pointxs with
destinationxd passes through the regionR(x,∆x1,∆x2) with
probability one or zero. On the other hand, for the continuous-
d case, movement epochs passes throughR(d)(x, b) with
probability 1, 1/2, or 0. Hence, if we denote the the distance
traveled overR(x,∆x1,∆x2) during a movement epoch by
L(xs, xd, x,∆x1,∆x2), the correspondent ofS(d)(p, xd, x, b)
in (31) can be simply defined by the following for the original
continuous case:

S(xd, x,∆x1,∆x2)

= {xs|xs ∈ R,L(xs, xd, x,∆x1,∆x2) 6= 0} (42)

In Fig. 4, we illustrateS(xd, x,∆x1,∆x2) and the line seg-
mentL(xs, xd, x,∆x1,∆x2) for a destination pointxd outside
the regionR(x,∆x1,∆x2).

In view of these definitions, and from the conclusions of
Theorem 1, we derive the following approximations for the
long-run distributions of the original continuous case.

Approximation 1: For the mobile terminal, whose mobility
pattern is characterized by the triplet< fXd|Xs

, fV |Xs,Xd

, fTp|Xd
>, over the mobility terrainR = [0, a1] × [0, a2], let

FX(x,∆x1,∆x2) denote probability mass function ofX over
the subregionR(x,∆x1,∆x2) in (41). Also, letfṼ denote the
pdf of Ṽ .

If the pdf fXs
(xd) can be uniquely determined from the

integral equation (9), andE[Tp|Xs = xs] < ∞, ∀xs ∈ R,
andfV |Xs,Xd

> 0, ∀ v ∈ [vmin, vmax], and∀xs, xd ∈ R, then
FX(x,∆x1,∆x2) andfṼ are approximated by

FX(x,∆x1,∆x2)

≈
E[Tp|Xs∈R(x,∆x1,∆x2)] Pr{Xs∈R(x,∆x1,∆x2)}

E[Tp|Xs ∈ R] + D̂

+

vmax
∫

vmin

K(x, v,∆x1,∆x2) dv

E[Tp|Xs ∈ R] + D̂

(43)

and

fṼ (ṽ)≈















E[Tp|Xs∈R]δ(ṽ)

E[Tp|Xs∈R]+D̂
, ṽ = 0

P

R(x,∆x1,∆x2)∈S(∆x1,∆x2)

K(x,ṽ,∆x1,∆x2)

E[Tp|Xs∈R]+D̂
, ṽ ∈ [vmin, vmax]

,

(44)
where

K(x, v,∆x1,∆x2)

=

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs k(xs, xd, x, v,∆x1,∆x2), (45)

k(xs, xd, x, v,∆x1,∆x2)

=fXs (xs)fXd|Xs
(xd|xs) 1

v
fV |Xs,Xd

(v|xs,xd)L(xs,xd,x,∆x1,∆x2),(46)

and

D̂ =
∑

R(x,∆x1,∆x2)∈S(∆x1,∆x2)

∫ vmax

vmin

dv K(x,v,∆x1,∆x2) (47)

Now recall that for the continuous-d mobility formulation,
if V is assumed to be independent fromXs and Xd, then
D̂(d) = E[ 1

V ]D̄(d), where D̄(d) is given by (38). Based on
this observation we state the following approximation:

Approximation 2: If the distribution of V is assumed to
be independent fromXs and Xd, then the D̂ in (47) is
approximated by

D̂ ≈ E[
1

V
]D̄ (48)

where

D̄ =

∫

xs∈R

dxs

∫

xd∈R

dxd fXs
(xs)fXd|Xs

(xd|xs) |xs − xd| (49)

where |xs − xd| denotes the euclidean distance betweenxs

andxd.
In addition, from the formulation ofE[Ṽ (d)] in (40), we

reach to the following approximation.
Approximation 3: The expected value of̃V with the pdf

defined by (44) is approximated by

E[Ṽ ] ≈
D̄

E[Tp|Xs ∈ R] + D̂
(50)

Having defined an approximation toE[Ṽ ] for the most
generic case, we note that the analytical work presented in [7]
also derivesfṼ andE[Ṽ ] for a class of mobility models where
the speed of a movement epoch is selected independently from
the distance that is going to be traveled for that epoch. In
order to be able to compare our results with the ones given
in that paper, we must consider the scenarios that the triplet
< fXd

, fV , fTp
> is enough for mobility characterization, that

is, distributions ofXd andTp are independent fromXs, and
V is independently selected fromXs andXd. Hence, after
simplifying fṼ in (44), andE[Ṽ ] in (50), we get

fṼ (v)≈











E[Tp]δ(v)

E[Tp]+E[ 1
V

]D̄
, v=0

1
v

fV (v)D̄

E[Tp]+E[ 1
V

]D̄
, v∈[vmin,vmax]

, E[Ṽ ] ≈
D̄

E[Tp] + E[ 1
V ]D̄

(51)
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whereδ(v) is defined as the direc delta function. The above
formulation of fṼ and E[Ṽ ] are consistent with the ones
given in [7]. Hence, our approximations forfṼ and E[Ṽ ]
becomes exact for the mobility characterizations done by
< fXd

, fV , fTp
>.

We should also note that, the results presented by Approx-
imations 1, 2, and 3, becomes exact for a mobility modeling
that restricts the available movement directions to 4 or 6
different choices that are exactly defined byγı in equation
(6). As an application of this case, consider a mobility scenario
where mobiles are only allowed to move on the grids over the
mobility terrain.

We finally note that, since we can only prove the limited
direction case, we can never state that these approximations
are highly accurate for all possible mobility scenarios defined
by the triplet< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>. Fundamentally,
their accuracy is dependent on the frequency of the movement
epochs that is targeted to a destination point with a moving
direction outside the directionsγı in (6), where ı = 4, 6.
Hence, in Section V, we concentrate on the applicability
and accuracy of our approximations for some example cases
that allows mobiles to move at any direction when traveling
towards the destination point. The methodology we follow in
Section V to analyze the accuracy of the approximations can
be also applied to analyze other example mobility cases.

A. Approximation to the pdf of long-run location distribution

Before proceeding further, we now focus on simplifying
the results of Approximation 1 to derive an approximation
to the pdf of long-run location distribution in closed form.
Hence, letfX denote the pdf ofX, that is, the random variable
having the long-run distribution ofX(t). It then follows from
the definition given in [12] for the pdf of bivariate random
variables that

fX(x) = lim
∆x1→0
∆x2→0

FX(x,∆x1,∆x2)

∆x1 ∆x2
(52)

At this point, the important question is, given the triplet
< fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>, whether it is possible to find
a closed form expression for the termK(x, v,∆x1,∆x2) in
(45) so that the above limit can be taken explicitly. If this
can be done, then we can state an approximation tofX(x) in
closed form.

To answer this question, we first concentrate on a simple
scenario whereXd is uniformly distributed overR for a given
Xs, and V is characterized byfV . Obviously for this case,
K(x, v,∆x1,∆x2) in (45) simplifies to

K(x, v,∆x1,∆x2)

=
fV (v)

(a1 a2)2 v

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs L(xs, xd, x,∆x1,∆x2)(53)

Therefore, to be able to derive a closed form expression
for K(x, v,∆x1,∆x2), the integrandL(xs, xd, x,∆x1,∆x2)
must be expressible in terms of a function that can be
analytically integrated over the given integration region.

:S1(xd, x, ∆x1, ∆x2)

:S3(xd, x, ∆x1, ∆x2)

:S2(xd, x, ∆x1, ∆x2)

∆x1

x1

xd

0 a1

a2

0

∆
x

2

x
2

xs

xs

xs

Fig. 5. Partitioning the regionS(xd, x, ∆x1, ∆x2).

Now from the definition ofL(xs, xd, x,∆x1,∆x2), and
also from Fig. 4, observe that

L(xs, xd, x,∆x1,∆x2) = (g(xs, xd, x,∆x1,∆x2))
1/2 (54)

for a function g(xs, xd, x,∆x1,∆x2) that is piecewise con-
tinuous onS(xd, x,∆x1,∆x2) for given xd ∈ R. Clearly,
the analytical integration ofL(xs, xd, x,∆x1,∆x2) in (54)
over the given 4-dimensional integration region (see (53))
is complicated. Hence, we conclude that obtaining a closed
form expression forK(x, v,∆x1,∆x2) even for the simplest
of all possible mobility characterization parameters is nearly
impossible.

However, if some exceptional choices ofxs = (xs1
, xs2

)
and xd = (xd1

, xd2
) are not taken into consideration, for

example, suppose thatxs, xd /∈ R(x,∆x1,∆x2), |xd1
− x1|

> ∆x1

2 , and |xd2
− x2| >

∆x2

2 , thenL(xs, xd, x,∆x1,∆x2)
will be expressible in terms of an easily integrable function
for some mobility characterization choices.

To be more precise, on the rectangular mobility terrain
R = [0, a1] × [0, a2] assumexd1

> x1 + ∆x1

2 and
xd2

> x2 + ∆x2

2 . Furthermore, letℓR(x1) denote the line
segment joining the pointsxd and (x1 + ∆x1

2 , x2 − ∆x2

2 ),
and assumeℓR(0) > 0. In Fig. 5, we provided a visual-
ization of these assumptions. Notice that this special case
also implies |xd1

− xs1
| > |xd2

− xs2
|. In addition, con-

sider the partitioning of the subregionS(xd, x,∆x1,∆x2)
into three subregions as shown in Figure 5, and denote
Lr(xs, xd, x,∆x1,∆x2), r = 1, 2, 3, as the distance traveled
overR(x,∆x1,∆x2) whenxs ∈ Sr(xd, x,∆x1,∆x2). Next,
formulatingLr(xs, xd, x,∆x1,∆x2) explicitly we get

Lr(xs, xd, x,∆x1,∆x2)

=







|xd−xs|
∆x1

xd1
−xs1

, r=2

|xd−xs|(
x2+cr

∆x2
2 −xs2

xd2
−xs2

−
x1+cr

∆x1
2 −xs1

xd1
−xs1

), r=1,3

(55)

wherec1 = 1 andc3 = −1.
Before we proceed further, it should be noted that, for

the formulation that assumesxd1
> x1 + ∆x1

2 and xd2
>

x2 + ∆x2

2 , if we had concentrated on the case that only
allows |xd2

− xs2
| > |xd1

− xs1
|, and had partitioned

S(xd, x,∆x1,∆x2) in the same way as we did in Fig. 5, then
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theLr(xs, xd, x,∆x1,∆x2), r = 1, 3, would be also defined
by (55). However, ifr = 2, then

L2(xs, xd, x,∆x1,∆x2) =|xd−xs|
∆x2

xd2
−xs2

, (56)

which is expected intuitively.
Now returning back to case that is constructed according

to the assumption|xd1
− xs1

| > |xd2
− xs2

|, it is clear
thatL2(xs, xd, x,∆x1,∆x2) > Lr(xs, xd, x,∆x1,∆x2), r =
1, 3 (also observe it from Fig. 5). Hence, concentrating on
L2(xs, xd, x,∆x1,∆x2) observe the following:

L2(xs, xd, x,∆x1,∆x2) = ∆x1

s

1+
(xd2

−xs2
)2

(xd1
−xs1

)2
, (57)

Obviously as the difference between|xd1
−xs1

| and|xd2
−xs2

|

increases, the term
(xd2

−xs2
)2

(xd1
−xs1

)2 converges to zero. Hence, we
can state the following:

L2(xs, xd, x,∆x1,∆x2) ≈ ∆x1 (58)

Finally, sinceL2(xs, xd, x,∆x1,∆x2) is always more dom-
inant thanLr(xs, xd, x,∆x1,∆x2), r = 1, 3, we conclude the
following approximation.

L(xs, xd, x,∆x1,∆x2)≈

{

∆x1, |xd1
−xs1

|>|xd2
−xs2

|

∆x2, |xd1
−xs1

|<|xd2
−xs2

|
(59)

As a result, if mobility model is simple enough to state
K(x, v,∆x1,∆x2) as in (53), and if the above substitution
for L(xs, xd, x,∆x1,∆x2) is used, then the result of Approx-
imation 1 can be simplified to derive an approximation forfX

in closed form after tedious symbolic integrations. We also
concentrate on the applicability of this statement in the next
section.

V. EXAMPLE SCENARIOS

Example 1: The random waypoint model proposed in [4],
which is commonly used to model node movement by the
performance analysis studies for wireless ad hoc networks,
can be considered as the simplest nontrivial case for the
mobility characterizations that can be analyzed accordingto
the triplet < fXd|Xs

, fV |Xs,Xd
, fTp|Xd

>. For this model,
the distributions ofXd and V are assumed to be uniform
in the regionsR and [vmin, vmax], respectively. Moreover,
the distribution ofTp is considered to be the same at all
destinations. Therefore, for the rectangular mobility terrain
R = [0, a1] × [0, a2], we simply have

fXs
(xd) =

{

1
a1 a2

, if xd ∈ [0, a1] × [0, a2]

0, otherwise
(60)

Hence, form Approximations 1 and 2 we reach the following
approximation for the pmf ofX overR(x,∆x1,∆x2) in (41):

FX(x,∆x1,∆x2)≈

E[Tp]∆x1 ∆x2

a1 a2
+ E[ 1

V ]KX(x,∆x1,∆x2)

E[Tp] + E[ 1
V ]D̄

(61)
where

KX(x,∆x1,∆x2)

=

∫

xd∈R

dxd

∫

xs∈S(xd,x,∆x1,∆x2)

dxs L(xs, xd, x,∆x1,∆x2) (62)

xd

• • • • • sr1

x
2

∆
x

2

x1

∆x1

: The region S(xd, x, ∆x1, ∆x2)

Fig. 6.Partitioning ofS(xd, x, ∆x1, ∆x2) into sr subregions for a givenxd.

where E[ 1
V ] =

ln( vmax
vmin

)

(vmax−vmin) , and D̄ is given by (49). In

addition, fṼ andE[Ṽ ] can be derived respectively from the
equations in (51).

In order to assess the accuracy of the approximation
we stated forFX(x,∆x1,∆x2) by equation (61) for the
random waypoint model, we will now focus on the task
of evaluatingFX(x,∆x1,∆x2) in (61) numerically for all
R(x,∆x1,∆x2) ∈ S(∆x1,∆x2), and comparing them with
the results derived from the simulation of the random waypoint
mobility model.

Hence, observe first that to generate an approximation to
FX(x,∆x1,∆x2) from (61) for a givenR(x,∆x1,∆x2), we
need to evaluateKX(x,∆x1,∆x2) numerically in (62), which
is defined by a 4-dimensional integral. Obviously, the accuracy
of a result that can be derived from a numerical integration
methodology is dependent on thesmoothness of the integrand
over the integration region [13]. Therefore, to increase the
accuracy of our numerical experiments, we partition the region
S(xd, x,∆x1,∆x2) into sr subregions, wheresr ≥ 1, so that
the integrandL(xs, xd, x,∆x1,∆x2) (see (62)) evaluated for
a fixedxd deviates less for all of thexs that belongs to those
subregions. In Fig. 6, we illustrated this partitioning method-
ology for a givenxd. Next, to evaluate the 4-dimensional
integrals for each of these subregions, we first transformed
them to an integral over a hypercube [13]. Then, each of the
resulting integrals are evaluated by repeated one-dimensional
integrations according to the Gauss’ Formula [14]. Clearly, this
is not “economical”, however, it is required in order to evaluate
the accuracy of our approximation. The program implementing
this methodology is designed in a generic form in order to also
capture different mobility characterization parameters,and it
is available from authors.

In order to assess the accuracy of the approximation to
FX(x,∆x1,∆x2), a simple simulation model is developed
consisting of a single node moving according to the random
waypoint mobility profile. In this model, during each sim-
ulation run, the node travels forne number of movement
epochs. For each movement epoch, the time spent at each
R(x,∆x1,∆x2) ∈ S(∆x1,∆x2), while passing through it or
pausing at it, is exactly calculated, and added to the total time
spent at the subregionR(x,∆x1,∆x2) for the whole simula-
tion run. At the end of the run,FX(x,∆x1,∆x2) is derived by
normalizing the total time spent atR(x,∆x1,∆x2) to the total
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Fig. 7. E
(S,A)
X (b(1), b(2)) for Example 1 (a1 = 1200, a2 = 900, b

(1)
1 = i a1/8, i = 0, . . . , 7, b

(1)
2 = b

(1)
1 + a1/8, b

(2)
1 = j a2/6, j = 0, . . . , 5,

b
(2)
2 = b

(2)
1 + a2/6, vmin = 1 m/s, vmax = 20 m/s, Tp = U [0, 30] sec).

run time of the experiment.nr independent replications of this
experiment is run, and the finalFX(x,∆x1,∆x2) is obtained
by averaging the results of these runs. Also, at the beginning
of each replication, the initial location, and speed and pause
time distributions of the node is determined according to the
methodology explained in [6] for the efficient and reliable
simulation of random waypoint mobility model.

Now to be able to represent a comparison of the results ob-
tained form (61), and from the simulation model we described
above, consider the region[b(1)1 , b

(1)
2 ]× [b

(2)
1 , b

(2)
2 ] ⊆ R where

b
(1)
i , i = 1, 2, and b(2)j , j = 1, 2, are multipliers of∆x1 and

∆x2, respectively. Notice that ifPX(b(1), b(2)) denotes the
probability of the mobile terminal to be located over the region
[b

(1)
1 , b

(1)
2 ]× [b

(2)
1 , b

(2)
2 ] at the long-run, thenPX(b(1), b(2)) can

be easily derived by accumulating all of theFX(x,∆x1,∆x2)

such thatR(x,∆x1,∆x2) ⊂ [b
(1)
1 , b

(1)
2 ] × [b

(2)
1 , b

(2)
2 ]. Hence,

let P (A)
X (b(1), b(2)) and P

(S)
X (b(1), b(2)) respectively denote

the correspondent ofPX(b(1), b(2)) obtained from (61) (i.e.,
Approximation 1) and from the simulation model. Based on
these notations, we define the following metric to asses the
correctness of our conjecture for this mobility model.

E
(S,A)
X (b(1), b(2)) =

|P
(S)
X (b(1), b(2)) − P

(A)
X (b(1), b(2))|

P
(S)
X (b(1), b(2))

,

(63)
Finally, for our experiments, we considered a[0, 1200]m

×[0, 900]m mobility terrain, and set the parameters of mobility
as follows:vmin = 1m/s, vmax = 20m/s, andTp is uniform
over the range[0, 30]sec. Then, we chose∆x1 = ∆x2 = 5m,
and setne = 107, nr = 100 for the simulation experiment,
and evaluatedE(S,A)

X (b(1), b(2)) for various choices ofb(1)i

and b(2)i , i = 1, 2. The results are presented in Fig. 7.(a).
Simulation results are acquired with a95% confidence in-
terval lower than0.001. Since the percentage of error, (i.e.,
E

(S,A)
X (b(1), b(2)) × 100) is at most1.29% we conclude that

the application of the Approximation 1 to random waypoint
mobility model is accurate.

Thus, usingFX(x,∆x1,∆x2) in (61) we can obtain an

approximation to the pmf ofX = (X1,X2) over the sub-
regionR(x,∆x1,∆x2) numerically. With this knowledge at
hand, we will now concentrate on findingE[X1], E[X2], and
Corr(X1,X2). Hence, we set∆x1 = a1

n1
and∆x2 = a2

n2
for

some discretization parametersn1, n2 ∈ Z
+, and define the

discrete bivariate random variableX∗ = (X∗
1 ,X

∗
2 ) with the

finite state space

S∗={∆x1
2 ,

3∆x1
2 ,...,

(2n1−1)∆x1
2 }×{∆x2

2 ,
3∆x2

2 ,...,
(2n2−1)∆x2

2 } (64)

to denote the subregionR(x∗,∆x1,∆x2) in (41), wherex∗ ∈
S∗, that the mobile is located at the long-run. Clearly, asn1 →
∞ and n2 → ∞, X∗ converges to the continuous bivariate
random variableX.

Evaluating the distribution ofX∗ from FX(x,∆x1,∆x2)
in (61) we obtainedE[X∗

1 ], E[X∗
2 ], and Corr(X∗

1 ,X
∗
2 )

numerically for several different parameter choices for the
random waypoint mobility model. For all of the scenarios
we considered, we setn1 and n2 sufficiently large enough
to closely approximateX = (X1,X2) with X∗ = (X∗

1 ,X
∗
2 ),

and observed the following:

E[X∗
1 ] =

a1

2
, E[X∗

2 ] =
a2

2
, Corr(X∗

1 ,X
∗
2 ) = 0 (65)

The simulation studies presented in [15], [16] points out that
the long-run location distribution of the random waypoint
mobility model is more accumulated at the center of the
mobility terrain. More importantly, it is symmetric with respect
to center. Therefore, obtainingE[X∗

1 ] andE[X∗
2 ] as in (65) is

expected. However, the result forCorr(X∗
1 ,X

∗
2 ) = 0 is not

observed before. In fact, our numerical experiments showed
thatX∗

1 andX∗
2 are not independent.

It should also be noted that analytical work presented in
[5] for the spatial node distribution generated by this mobility
model concentrates on the case whereR = [0, a] × [0, a],
V is deterministic with parameterv, and E[Tp] = 0, and
formulates the long-run cumulative distribution functionover
a region with an area ofδ2. If we substituteE[1/V ] with 1

v ,
andE[Tp] = 0, and assume∆x1 = ∆x2 = δ, anda1 = a2,
the formulation of the approximation we defined by (61) for



12

FX(x,∆x1,∆x2) becomes consistent with the formulation of
the cumulative distribution function given in [5].

We now focus on applying the approximation we defined
by (59) forL(xs, xd, x,∆x1,∆x2) to derive an approximation
to fX(x) in (52) (i.e., the pdf ofX). First, notice from
the formulation ofKX(x,∆x1,∆x2) in (62) that when this
approximation is used, the integration of the integrand over
the regionS(xd, x,∆x1,∆x2), will be equal to∆x1 or ∆x2

times the area of the regionS(xd, x,∆x1,∆x2). Hence, by
partitioning the boundaries of the 4-dimensional integration
that formulatesKX(x,∆x1,∆x2) according to the condition
|xd1

−xs1
| > |xd2

−xs2
| and its counterpart appropriately, we

obtained a closed form expression for (62). Finally, evaluating
the limit FX(x,∆x1,∆x2)

∆x1 ∆x2
as ∆x1 → 0 and ∆x2 → 0, we

reached the following approximation forfX :

fX(x) ≈ f̃X(x) (66)

where

f̃X(x) =
E[Tp]

1
a1 a2

+ E[ 1
V ]k(x)/Ñ

E[Tp] + E[ 1
V ]D̄

(67)

where

k(x)=































k1(x)+k4(x)+k6(x)+k8(x), 0<x1<
a1
2 , 0<x2<

a2x1
a1

k1(x)+k4(x)+k6(x)+k8(x), a1
2 <x1<a1, 0<x2<a2(1−

x1
a1

)

k2(x)+k4(x)+k5(x)+k8(x), 0<x1<
a1
2 ,

a2x1
a1

<x2<a2(1−
x1
a1

)

k1(x)+k3(x)+k6(x)+k7(x), a1
2 <x1<a1, a2(1−

x1
a1

)<x2<
a2x1

a1

k2(x)+k3(x)+k5(x)+k7(x), 0<x1<
a1
2 , a2(1−

x1
a1

)<x2<a2

k2(x)+k3(x)+k5(x)+k7(x), a1
2 <x1<a1,

a2x1
a1

<x2<a2

(68)
wherex = (x1, x2), andki(x), i = 1, . . . , 8 are defined by

k1(x) = (a1−x1)x2[2 a2 x1+a1(x1−x2)+x1 x2g1(x)]

2 a2
1 a2

2 x1

k2(x) = x1(a2−x2)[2 a1 x2+a2(x2−x1)−x1 x2g1(x)]

2 a2
1 a2

2 x2

k3(x) = (a1−x1)(a2−x2)[a2(x1−a1)+x2(a2+2a1)+(a1−x1)x2g2(x)]

2 a2
1 a2

2 x2

k4(x) = x1 x2[(a1+2 a2)(a1−x1)−a1 x2−(a1−x1)x2g2(x)]

2 a2
1 a2

2(a1−x1)

k5(x) = x1(a2−x2)[a1(a1−x1+x2)+a2(a1−2x1)−(a1−x1)(a2−x2)g1(x)]

2 a2
1 a2

2(a1−x1)

k6(x) = (a1−x1)x2[a2(a1+a2+x1)−(2 a1+a2)x2+(a1−x1)(a2−x2)g1(x)]

2 a2
1 a2

2(a2−x2)

k7(x) = (a1−x1)(a2−x2)[2 a2 x1+a1(x1+x2−a2)+x1(a2−x2)g2(x)]

2 a2
1 a2

2 x1

k8(x) = x1 x2[a2(2 a1+a2−x1)−(2 a1+a2)x2−x1(a2−x2)g2(x)]

2 a2
1 a2

2(a2−x2)

where

g1(x)=log(
x1(a2−x2)

(a1−x1)x2
), g2(x)=log(

x1 x2
(a1−x1)(a2−x2)

) (69)

and Ñ is the normalization term given by

Ñ =
(

∫

x∈R

k(x) dx
)

/D̄ (70)

It should be noted that since the termL(xs, xd, x,∆x1,∆x2)
is either substituted by∆x1 or ∆x2, the functionk(x) in (68)
must be normalized in the regionR so thatf̃X(x) will be a
probability density function.

In order to asses the validity of the approximation we
presented by (66) we evaluatedP (A)

X (b(1), b(2)) by integrating
f̃X(x) in (67) over the region[b(1)1 , b

(1)
2 ] × [b

(2)
1 , b

(2)
2 ] and

compared the results with simulation. In Fig. 7.(b) we pro-
vided theE(S,A)

X (b(1), b(2)) for the same mobility parameter
choices we considered in Fig. 7.(a). From the values of
E

(S,A)
X (b(1), b(2)) for different [b(1)1 , b

(1)
2 ]× [b

(2)
1 , b

(2)
2 ] ⊆ R, we

reached to the conclusion that the approximation we stated
by (66) for the long-run spatial distribution of the random
waypoint model over the given rectangular mobility terrain
is quite accurate. Also notice that, the percentage of errors
(i.e., E(S,A)

X (b(1), b(2)) × 100) presented in Fig. 7.(a). are
better than the ones in Fig. 7.(b). This is expected because
to evaluate theE(S,A)

X (b(1), b(2)) in Fig. 7.(a), we computed
FX(x,∆x1,∆x2) directly from equation (43). However, in
Fig. 7.(b), we approximatedL(xs, xd, x,∆x1,∆x2) by equa-
tion (59) to evaluateFX(x,∆x1,∆x2), which decreased the
quality of the approximation but gave us an approximation to
fX(x) in closed form.

In addition, if one is interested in a variant of random way-
point mobility model where mobiles may pause at different at
differentXd, that is,fTp|Xd

needs to be employed in mobility
characterization in stead offTp

, then the approximation given
in (67) can be redefined as follows:

f̃X(x) =
E[Tp|Xd = x] 1

a1 a2
+ E[ 1

V ]k(x)/Ñ

E[Tp|Xd ∈ R] + E[ 1
V ]D̄

(71)

where E[Tp|Xd = x] is the expected pause time at the
destination pointx, and

E[Tp|Xd] =

∫

xd∈R

dxdfXs
(xd)E[Tp|Xd = xd] (72)

Finally, we note that in [5] authors also present a very
accurate approximation for the pdf ofX for the special case of
the original random waypoint model whereR = [0, 1]× [0, 1],
and speed choice for all movement epochs is constant. In order
to compare that approximation with the one given in this paper
numerically for this special case (i.e.,R = [0, 1] × [0, 1] and
speed is constant), we evaluated cumulative long-run location
distributions for several subregions overR according to both of
them. We observed for various choices ofE[Tp] andV that the
relative error between the results obtained from approximation
and simulation is at most2% for both of the approximation
methods defined in [5] and in (66).

Example 2: According to the results that are proved in
[1] for the one-dimensional version of the random waypoint
mobility model, the probability distribution function ofX1

(i.e., the first component ofX = (X1,X2)) over the mobility
terrainR = [0, a1] is

FX1
(x1) =

x1

a1
E[Tp] +

x2
1(a1−2x1/3)

a2
1

E[ 1
V ]

E[Tp] + a1

3 E[ 1
V ]

(73)

Now, it is clear that an approximation to the marginal
distribution of X1 can be stated from the approximation
defined by (66) for the joint probability density function of
X = (X1,X2) as follows:

F
(A)
X1

(x1) =

∫ x1

0

du

∫ a2

0

dvf̃X(u, v) (74)

In principle, if f̃X can closely approximatefX , then the
distribution F

(A)
X1

(x1) defined by (74) should also closely
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Fig. 8. Comparison ofFX1

andF
(A)
X1

for Example 2 (a1 = 1000 m, ∆x1 = ∆x2 = 5m, vmin = 1 m/s, vmax = 20 m/s, Tp = U [0, 30] sec).

approximateFX1
(x1) in (73) . To examine the correctness

of this statement, in Fig. 8 we consider several proportions
betweena1 and a2 for the given mobility parameters, and
provide a comparison of them. As it can be observed from
Fig. 8, the two distribution functions perfectly matches with
each other for several proportions betweena1 and a2. This
observation is very important because it points out that the
quality of approximation defined bỹfX(x) in (66) for fX(x)
is insensitive to the frequency of the movement epochs that
happen over the regionR = [0, a1]×[0, a2] on the vertical and
the horizontal directions. Hence, the approximation tofX(x)
defined in equation (66) becomes applicable to any rectangular
region.

Example 3: In Section IV, we stated that if the distribution
of V (i.e., the speed for a movement epoch) is independent
from Xs andXd, then the pdf ofṼ (i.e., fṼ ) and its expected
value (i.e.,E[Ṽ ]) can be approximated by equations given
in (51). As we have mentioned before, those equations are
consistent with the ones given in [7] for a class of mobility
models whereV selected independently from the distance that
is going to be traveled (i.e.,|Xs −Xd|).

Thus, for this example, we consider a variant of random
waypoint mobility model which incorporates the ability to
determineV according to |Xs − Xd|, and concentrate on
the accuracy of the approximation to the distribution ofṼ
we stated in Approximation 1 for the most generic mobility
characterization.

Now for the original random waypoint model, keeping the
distributions ofXd and Tp the same as before, consider a
truncated normal distribution [17] forV according to the pdf
given by

fV |Xs,Xd
(v|xs, xd)

=
Z(v−µ(xs,xd)

σ )

σ
(

Φ(vmax−µ(xs,xd)
σ ) − Φ( vmin−µ(xs,xd)

σ )
)

(75)

for vmin ≤ v ≤ vmax whereσ > 0, and

µ(xs, xd) = vmin +
(vmax − vmin)

a
|xs − xd| (76)

Z andΦ are the probability density and cumulative distribution
functions for the normal distribution [17].

Before proceeding further, observe from the formulation of
fV |Xs,Xd

that asσ → 0 the possibility of determiningV
proportional to|Xs − Xd| increases. Also, asσ → ∞ we
converge to the original case, that is,V is uniformly distributed
in [vmin, vmax].

Now formulating thefṼ according to the equation (44)
provided in Approximation 1, observe first that the integrand
of K(x, v,∆x1,∆x2) in (45) will be given by

k(xs, xd, x, v,∆x1,∆x2)

=
1

(a1 a2)2v
fV |Xs,Xd

(v|xs, xd)L(xs, xd, x,∆x1,∆x2),(77)

which implies that finding a closed form expression for
K(x, v,∆x1,∆x2) is very complicated even if the approxi-
mation defined by (59) forL(xs, xd, x,∆x1,∆x2) is applied.

Therefore, to obtain an approximation to the distribution
of Ṽ we use the numerical integration methodology we
explained before in Example 1. Also, to test the accuracy of the
numerical results obtained, we modified the simulation model
we presented in Example 1 according the new mechanism
to selectV , and finally obtained the probability distribution
function ofṼ , (i.e.,FṼ (v) =

∫ v

vmin
dufṼ (u)) both from thefṼ

given in Approximation 1 and the simulation model. In Fig. 9
we provide a comparison of these two results for different
values of σ for the given mobility parameters. Simulation
results are acquired with a95% confidence interval lower than
0.003. Observe that, the two distributions perfectly matches
with each other for all cases.

Having provided this confidence for approximation to the
distribution of Ṽ defined by Approximation 1, we now focus
on the effect of the choice ofσ on the value ofE[Ṽ ], which
is also formulated by (50). In Table II, we providedE[Ṽ ]
for different choices ofσ and E[Tp]. The other parameters
are the same with the experiments performed for the results
depicted in Fig. 9. First, observe that for a givenE[Tp], E[Ṽ ]
increases asσ decreases. Also, for a given finite value of
σ, the difference between theE[Ṽ ] obtained, and theE[Ṽ ]
evaluated for theσ → ∞ case increases asE[Tp] increases.
Both of these results are expected because asσ decreases,
the possibility of moving long distances with artificially low
speeds diminishes, and as a result, the expected value of the
long-run speed increases.



14

1 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v

F
V
(v

)

 

 
∼ 

σ=1, Appx.

σ=1, Simul.

σ=5, Appx.

σ=5, Simul.

σ=10, Appx.

σ=10, Simul.

Fig. 9. Comparison ofFṼ derived from Approximation 1 and Simulation for
Example 3 (a1 = 1200 m, a2 = 900 m, ∆x1 = ∆x2 = 5m, vmin = 1 m/s,
vmax = 20 m/s, Tp = U [0, 30] sec).

TABLE II

E[Ṽ ] FOR EXAMPLE 3

E[Ṽ ] (m/s)
(vmin=1 m/s, vmax=20 m/s)

E[Tp] (sec) σ → ∞ σ = 10 σ = 5 σ = 1
0 6.342 6.517 6.867 8.106
15 5.408 5.985 6.279 7.299
30 4.713 5.535 5.785 6.638

VI. SUMMARY

This paper concentrates on the analysis of a generalized
random mobility modeling approach for wireless ad hoc net-
works over two-dimensional mobility terrains. The analytical
framework we introduced is based on a special discretization
technique, and provided the long-run location and speed
characteristics in full generality for a limited version ofthe
model proposed where mobiles are only allowed to move
towards one of the finite number of available directions. We
provided approximations to the long-run distributions of the
exact mobility formulation, where mobiles can move at any
direction, from the analysis of this limited case. We also
examined the accuracy and applicability of our approximations
for a number of scenarios including random waypoint mobility
model and a variant of it where the distribution of speed
selected for a movement epoch is dependent on the distance
that is going to be traveled.

From application of the results to random waypoint mobility
model we derived an approximation to the long-run location
distribution over rectangular mobility regions. We validated the
accuracy of the approximation by simulation, and after com-
paring the marginals with proven results for one-dimensional
regions pointed out that accuracy is insensitive to proportion
between the dimensions of the rectangular region. Our analysis
and example scenarios indicate that rich mobility models can
be efficiently brought into the analytical studies concentrating
performance characteristics of wireless ad hoc networks.
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