
Antibugging strategy in Software Testing

Homework #2
Submitted by : Karumanchi Sravanthi

skaruman@cstp.umkc.edu

Question #1

Develop a set of guidelines for antibugging.

Answer #1

Good design dictates that error conditions must be anticipated and error
handling paths set up to reroute or cleanly terminate processing when an
error occurs. Yourdon calls this approach antibugging.

Guidelines for antibugging:

1. Antibugging Strategy must be used right from the start

These strategies should be incorporated early into the design phase
rather than wait till the project is almost done. It becomes difficult to
start testing when the project is completely done as it might need
some redesigning and it would be too late to startover. The best way
to build an efficient and reliable product is to prevent errors in the
initial stages of the development. Software quality is the prime
priority from the initial stages.
 Error conditions must be anticipated and must be taken care of.
Errors must be tested so that the error handling paths can be
successfully terminated from processing when they occur or could
also be rerouted.
 The antibugging techniques are basically verification and
validation techniques for user data, passed parameters, initial values to
the parameter, data from the disk or files, user authentication and
authorization data.

2. Error descriptions have to be intelligible and should indicate the

possible cause of error

Error description should try to explain the cause of the error and try
and convey the location of the error as it helps to try and remove the
error. For example when it says “ Error: never reach this part of the
program”, it does not help as we do not know where the error has
occurred and it becomes ambiguous.

3. It should be able to identify error-prone areas

Testing is an area where one finds errors in the program. We must be
able to differentiate the data that is invalid and the one that is valid.
Doing this wrong leads to faulty test cases and thus improper
incorporation of error handling paths.

4. Errors should be categorized and handled uniformly throughout the
system

The errors can be categorized by their source or type of handling they
require. There should be uniformity in handling the error. For example
if there is a way an error is indicated during input, then it must be
maintained in a similar fashion throughout.

5. Tackle unanticipated errors

Generally we anticipate errors based on the test data and then take
action. But sometimes there is a possibility that we might have to face
unexpected or unanticipated errors. This could be due to lack of
exhaustive testing or because of some subtle conditions that are met.
Consequently when an unexpected error occurs, the existing
antibugging framework cannot detect the source or its corresponding
action. Hence we should establish some steps to take care of these
unanticipated errors.

6. Inadequacies in development of test cases

• Inadequate protection against corrupted data- There is no
guarantee that data on the disk is reliable. Someone can edit it
or change the data.

• Inadequate test for user input- It is not fair that users are told to
enter the data as input in a specific format.

• Inadequate test of passed parameters- A subroutine must make
sure that the data passed to it are valid and should not assume
that it is always called correctly.

• Inadequate protection against using it in a wrong way- Users
may purposely use it with bad input or try to trigger errors.

• Inadequate use of version- If there are multiple versions of the
executable code then there is a possibility that different versions
are used especially when the executable code is placed in
multiple files.

• Inadequate initial state validation- If a program should start
with all zeroes then it should not assume that it is zeroes but
perform a check.

7. Error condition processing should be carefully coded

If it is possible for the program to correct the error, then the error
handling code should be written with lot of care. Calling wrong error
handling routine may cause more problems than the actual errors. So
the error condition processing must be properly coded.

8. Adequate documentation of error handling routines and the error

messages should be done.

It is very important to document all error messages produced by the
system. Complete documentation of the error-handling routines is a
must with the functional documentation of the system.

Question #2

Discuss advantages of using this technique

Answer #2

The advantages of this technique are:

1. Testing of the program is easier since the error handling paths are
provided in the program itself. The program defends itself from bad
input, wrong stimuli from other parts of the program and other
exceptions occurring.

2. The behavior of the program becomes more predictable even in cases
of bad inputs. This many times prevents unexpectedly crashing or
termination of the program. This increases the user-friendliness of the
program.

3. Description of errors is much more comprehensible. The error
messages can become a good indication toward how to rectify the
error and what is the location of the error.

4. Removes discrepancies between errors reported and actual error
occurred.

5. Implicit assumptions are tested explicitly.
6. Prevents error conditions from intervening the system prior to

appropriate error handling.

Question #3

Discuss disadvantages of using this technique.

Answer #3

The disadvantages of using this technique are:

1. Code, which is not related to functional requirements of the program,
has to be incorporated in the program. Redundant code is incorporated
to check system state after modification.

2. Test cases have to be designed to check all the error-handling paths. If
one doesn’ t, then the path may fail when it is invoked, exacerbating an
already tough situation.

3. Time for program/system development increases. The overall time
period of development increases.

4. Currently no strategies or guidelines are defined for anti-bugging.
Thus it is completely a designers intellect and skill that helps in
effective anti-bugging.

5. Various tests have been performed to check if it is implemented
correctly.

References:

1. Software Engineering – A practitioner’s approach Roger S. Pressman
McGraw-Hill International Edition. Fifth Edition

2. A Review of Automated Debugging Systems: Knowledge, Strategies,
Techniques Mireille Ducasse, Anna-Maria Emde ACM Proceedings
http://dev.acm.org/pubs/articles/proceedings/soft/55823/p162-ducasse/p162-ducasse.pdf

3. www.QAcity.com Organized resources
4. IEEE Software Best Practices January 1996
5. SCISM Home Page
6. Object Oriented Analysis by Peter Coad and Edward Yourdon
7. Parasoft Press Releases – Dr. Adam Kolawa

