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Abstract 
 

A new hybrid dynamical-statistical downscaling technique is described to project mid- and end-

of-21st-century local precipitation changes associated with 36 global climate models (GCMs) in 

Phase 5 of the Coupled Model Intercomparison Project archive over the greater Los Angeles 

region. Land-averaged precipitation changes, ensemble-mean changes, and the spread of those 

changes for both time slices are presented. It is demonstrated that the results are similar to what 

would be produced if expensive dynamical downscaling techniques were instead applied to all 

GCMs. Changes in land-averaged ensemble-mean precipitation are near zero for both time slices, 

reflecting the region's typical position in the models at the node of oppositely-signed large-scale 

precipitation changes. For both time slices, the intermodel spread of changes is only about 0.2–

0.4 times as large as natural interannual variability in the baseline period. A caveat to these 

conclusions is that interannual variability in the tropical Pacific is generally regarded as a 

weakness of the GCMs. As a result, there is some chance the GCM responses in the tropical 

Pacific to a changing climate and associated impacts on Southern California precipitation are not 

credible. It is subjectively judged that this GCM weakness increases the uncertainty of regional 

precipitation change, perhaps by as much as 25%. Thus the possibility cannot be excluded that 

significant regional adaptation challenges related to either a precipitation increase or decrease 

would arise. However, the most likely downscaled outcome is a small change in local mean 

precipitation compared to natural variability, with large uncertainty in the sign of the change.  
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1. Introduction 
 
Fresh water in the Los Angeles region comes from local storms, snowpack drainage, and 

groundwater. Identifying how climate change may impact these sources is of pressing concern 

for ecosystems and municipal, agricultural, and recreational purposes. In this study we aim to 

quantify 21st century climate change impacts to mean local sources of precipitation across the 

greater Los Angeles Region. Local sources contribute approximately 10% to the water supply in 

the city of Los Angeles (Villaraigosa 2008). However, in some areas, such as the San Fernando 

Valley, it contributes a larger portion (Sheng and Wilson 2008, ULARA 2011). Furthermore, 

these local sources may come under increasing pressure in the future (Erb et al. 2011). We do not 

address potential changes to imported water sources (e.g. the Colorado River) or extreme events 

(e.g. Das et. al 2013) in this study. A separate study will examine responses of local snowpack to 

climate change.  

Projecting future precipitation changes over the Los Angeles region is challenging for 

two reasons. First, in GCM projections the region typically lies at the boundary of two 

oppositely-signed, large-scale zones of predicted precipitation change (van Oldenborgh et al. 

2014), as described by the “rich-get-richer” or “wet regions get wetter and dry regions drier” 

effect (Chou and Neelin 2004, Held and Soden 2006, Trenberth 2011, Durack et al. 2012). 

Northern, midlatitude areas are projected to get wetter, while southern, sub-tropical areas are 

projected to become drier. Second, the complex topography of Southern California creates 

variations in precipitation that cannot be represented by coarse resolution GCM simulations. It is 

particularly important to adequately represent the coastal mountains over Southern California as 

they generally lead to significant orographic precipitation effects (Hughes et al. 2008, Neiman et 

al. 2002).  
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To address the limitations of coarse resolution GCMs, a common practice is to downscale 

global projections to a much finer resolution. Dynamical and statistical downscaling techniques 

are available to perform such a task. Dynamical downscaling solves the equations of motion and 

other atmospheric equations numerically, using a regional model that is forced along the 

boundaries by GCM output. This may represent the most physically consistent method to 

downscale climate data, although systematic biases may still be present in the downscaled 

simulation. The major tradeoff for dynamical downscaling is the expense of huge computational 

costs. Dynamical downscaling of climate change signals has been done for Southern California. 

For example, Duffy et al. (2005) dynamically downscaled two GCM projections, finding no 

statistically significant change in precipitation over Southern California.  

Statistical downscaling is computationally cheap compared with dynamical downscaling, 

but hinges on currently existing relationships that may or may not hold true in the future. This 

technique has also been applied in the region of interest. For example, Hayhoe et al. (2004) 

statistically downscale four GCMs using historically derived empirical relationships and find 

small decreases in future wintertime precipitation in Southern California for three of the four 

simulations. A recent study by Pierce et al. (2012) uses separate dynamical and statistical 

downscaling techniques across 16 global climate models to examine future precipitation changes 

over California. Like Hayhoe et al. (2004), the statistical downscaling approaches used in Pierce 

et al. (2012) rely only on historical relationships (i.e. they assume stationarity) between variables 

when calculating climate change signals. After averaging across all downscaled projections, the 

authors find wintertime precipitation decreases of 5% over Southern California. Maurer (2007) 

statistically downscale future global precipitation and temperature output to drive a hydrologic 

model and find slight increases in wintertime precipitation over a basin in Southern California. 
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Das et al. (2013) statistically downscale 16 GCMs over the Sierra Nevada and find increased 3-

day flood discharges, even though models tended to disagree on the sign of mean annual 

precipitation change. Pierce et al. (2013) also examine possible changes to daily precipitation 

over California. Using both dynamical and statistical downscaling techniques, they find evidence 

of increased wintertime precipitation over California, particularly over the northern part, due to 

an increase in daily precipitation intensity. Note that these previous studies rely on CMIP3 

models, while this study only analyzes CMIP5 models. The two ensembles may exhibit different 

behavior in some cases. For example, Neelin et al. (2013) find that ensemble-mean drying in the 

CMIP3 archive is stronger over Southern California than in the CMIP5 archive.  

The present study uses a new blended dynamical-statistical approach to project mid- and 

end-of-21st century December-January-March-February (DJFM) precipitation changes at a high 

resolution over the Los Angeles region. Whereas previous studies use only a dynamical or 

empirical statistical downscaling technique, this study develops statistical relationships directly 

from dynamically downscaled output. Using this method we are able to limit the assumption of 

stationarity that is often employed in statistical downscaling exercises (e.g. Hayhoe et al. 2004, 

Maurer 2007, Pierce et al. 2012). This technique also allows for downscaling of 36 GCMs in the 

CMIP5 archive (Table 1), providing analyses on intermodel spread and ensemble-mean changes. 

In addition to projecting 21st century precipitation changes over Southern California, another 

major aim of this study is to place climate change signals in context of the region’s significant 

hydroclimate variability. Huge interannual variability in precipitation over Southern California is 

largely attributed to its relationships with large-scale natural climate variability patterns such as 

the El Niño–Southern Oscillation and the Pacific/North American Pattern (Cayan and Roads 
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1984, Redmond and Koch, 1991, Dettinger et al. 1998, Cayan et al. 1999, Leung et al. 2003, 

Berg et al. 2013).  

The structure of the study is as follows: Section 2 describes the downscaling techniques 

and provides observational evaluation of the current climate simulation. Section 3 shows future 

precipitation changes according to 36 downscaled GCMs and explains the physical mechanisms 

behind the changes. A discussion of the relationship between climate change and interannual 

variability patterns is presented in Section 4, with a summary of major findings in Section 5.  

 

2. Downscaling techniques and validation results 

a. Dynamical downscaling  

1) Dynamical downscaling framework  

A dynamical downscaling simulation over Southern California was performed using the Weather 

Research and Forecasting Model (WRF), version 3.2 (WRF, Skamarock et al. 2008). We use 

three nested domains (18 km, 6 km, and 2 km) to reach a resolution high enough to represent the 

complex topography and coastlines of Southern California adequately. The three domains and 

topography associated with the outermost (18 km) domain are presented in Figure 1a. The 

outermost domain encompasses all of California and the adjacent Pacific Ocean, while the 

middle domain focuses on Southern California, including the southern Sierra Nevada mountain 

range. Finally, the innermost (2 km) domain is centered over the greater Los Angeles region. 

Topography associated with this domain is seen in Figure 1b.  

Model sensitivity experiments were performed to find an optimal WRF configuration. 

Specifically, this simulation uses the Kain-Fritsch (new Eta) cumulus scheme (Kain 2004), 

Yonsei University boundary layer scheme (Hong et al. 2006), Purdue Lin microphysics scheme 
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(Lin et al. 1983), Rapid Radiative Transfer Model longwave radiation (Mlawer et al. 1997), 

Dudhia shortwave radiation schemes (Dudhia 1989), and the Noah land surface model (Chen and 

Dudhia 2001). Each domain has 43 sigma-levels in the vertical and vertical resolution is 

increased below 3 km to better simulate surface and boundary layer processes.  

Two time periods are simulated to initially project mid-21st century precipitation changes. 

We focus first on a “baseline” period spanning 1981–2000. In this case, WRF is forced along the 

boundaries of the outermost domain by the North American Regional Reanalysis (NARR). Then 

we simulate a range of future climates based on model output from five CMIP5 GCMs (CCSM4, 

CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM, and MPI-ESM-LR), all under the RCP8.5 

emissions scenario. For each future simulation, baseline (1981–2000) boundary conditions from 

NARR are perturbed with future monthly climatological changes (2041–2060 average minus 

1981–2000 average) to atmospheric variables and imposed on WRF. 3-dimensional atmospheric 

variables that were perturbed include temperature, relative humidity, zonal and meridional winds, 

and geopotential heights. Surface temperature, relative humidity, winds, and pressure were also 

perturbed. This technique has been used previously (e.g., Schär et al. 1996, Hara et al. 2008, 

Knutsen et al. 2008, Kawase et al. 2009, Lauer et al. 2010, Rasmussen et al. 2011, Seo and Xie 

2011 and Gutmann et al. 2012) and estimates future climates as perturbations to the same 

baseline mean-state, corresponding roughly to the present day. A limitation to this technique is 

that future interannual variability equals that of the baseline period. Implications of this 

limitation when analyzing downscaled changes are discussed further in sections 3c and 5. For an 

application of this downscaling method applied to future warming over the Los Angeles region, 

the reader is referred to Sun et al. (2014). 



10	   	   10	  

We first perform a 20-year future simulation (2041–2060), downscaling climate change 

signals in CCSM4. Computational expenses prevent full 20-year simulations for other models, so 

we perform a sensitivity test examining how long of a future period we needed to simulate to 

capture the full 20-year climate change signal. Figure 2 shows that by only simulating three 

future years (2058-2060) we are able to capture the full 20-year signal to a high degree of 

accuracy. (Other consecutive 3-year periods between 2041–2060 may also be highly 

representative of the full 20-year time span, though computational resources prevented this 

analysis). Spatial structures between the two signals are tightly correlated, with only slight 

discrepancies seen in the coastal zone. Averaged over the land, the 20-year and 3-year signals are 

-46.7 and -46.6 mm/wet season, respectively. Relying on this knowledge, we next dynamically 

downscale the four other GCMs (CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM, and MPI-

ESM-LR) for 2058–2060. In each simulation, boundary conditions were created by adding the 

2041–2060 minus 1981–2000 GCM changes to the 1998–2000 NARR values. Therefore, 

interannual variability over 2058–2060 is the same as 1998–2000; however, the perturbations 

imposed in the future runs represent a climate change signal associated with much longer 

averaging periods. Statistical downscaling techniques are then developed based on these 2058–

2060 minus 1998–2000 dynamically downscaled changes (section 2.b). The reader is directed to 

the supplementary material for a discussion on possible biases in the statistical model due to 

interannual variability differences between the 3-year-long and 20-year-long changes. Namely, it 

is found that the dynamical model underestimates the magnitude of average precipitation 

changes by around 20% due to being based on 3-year-long signals (2058–2060 minus 1998–

2000) compared to the 20-year-long signals (2041–2060 minus 1981–2000). Thus statistical 
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estimates based on these changes may be associated with a reduced spread by a complementary 

amount. The implications of this error are examined further in section 5.  

 

2) Model evaluation: spatial and temporal variability in the baseline 

Before presenting the results of the climate change experiments, we compare simulated 

interannual precipitation variations in the baseline (1981–2000) 2-km WRF output to 

observations. We use three observational datasets: California Irrigation Management Information 

System (CIMIS, http://wwwcimis.water.ca.gov/), NOAA Climate Prediction Center 0.25°x0.25° 

Daily US UNIFIED Precipitation (CPC, 

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html), and the 0.5°x0.5° gridded 

University of Delaware Precipitation product (UDel, 

http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html). Correlations between 

these data sets and WRF output may be less than 1.0 for multiple reasons, including WRF 

inaccuracies, unresolved sub-grid scale topography (i.e., elevation mismatch between the 

location being sampled and the WRF grid cell average), poor observational data quality, and 

inaccuracies in the boundary conditions (NARR) forcing WRF. Assuming the observational 

products are perfect, the model evaluation serves as a test of WRF’s ability to reproduce 

precipitation variations over the Los Angeles region when coarse resolution conditions (NARR) 

are imposed on it. If WRF is able to transform this coarse-resolution data into regional climate 

information that closely matches accurate observational products, we are confident WRF can 

regionalize the GCM signal in a way that is consistent with the real atmosphere’s dynamics.  

In Fig. 3a, we correlate monthly DJFM precipitation accumulations in the baseline period 

between each CIMIS station and the nearest WRF grid point. Each correlation in based on a 
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maximum sample size of 80 (4 wet-season months X 20 baseline years = 80 values). However, 

there are missing values in the observations, leading to an average sample size of 45 values. 

Twelve of the thirteen stations have correlations to WRF above 0.5, and more than half have 

correlations above 0.7. Thus, WRF generally simulates monthly precipitation variations at rain 

gauges across the domain reasonably well. The lone exception is Santa Barbara (r=0.37). We 

speculate that WRF simulates the complex interactions between small-scale circulations and 

rainfall at this location of intense coastal topography poorly. In Fig. 3b, we correlate 1981–2000 

DJFM-mean precipitation accumulations (20 values per grid point) between each CPC grid point 

and the nearest corresponding WRF grid point. Correlations greater than 0.6 are found across 

nearly the entire domain, with very high values (r>0.9) found along much of the densely 

populated coastal region. The domain-average correlation is 0.82. Thus interannual variability 

simulated in WRF and that recorded in the CPC gridded product is very similar.  

Additional validation of precipitation variability in the baseline WRF simulation is 

presented in Figure 4. This figure compares interannual variability of monthly precipitation 

amounts in the three observational datasets (CIMIS, CPC, and UDel) and WRF output at the 

scale of the domain. Each white, gray, or black dot in Fig. 4 represents monthly precipitation 

accumulations for each of the 20 baseline years that are simulated. The large dots represent 

monthly climatologies for each dataset. Two comparisons can be made in Fig. 4. The first is 

between CIMIS station-averaged monthly precipitation accumulations (white dots, see Fig. 3a 

for station locations) and corresponding accumulations averaged over the nearest grid points in 

the 2 km WRF domain (light gray dots). The levels of interannual variability in CIMIS and WRF 

station-averages are very similar for each month, and the two time series are highly correlated 

(r=0.88). Climatological accumulations for each month are also very similar, with an average 
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monthly climatology difference between the two datasets of approximately 6 mm, or 8%. 

Particularly noteworthy is the similarity between the observed and modeled bimodal structure of 

the temporal precipitation distribution, seen most dramatically in January and February. Both 

datasets capture the extremely dry (<25 mm) and wet (>250 mm) months within the baseline 

period.  

The second comparison to make in Fig. 4 is between the UDel, CPC, and WRF land-

average monthly accumulations (medium gray, dark gray, and black dots, respectively). Like the 

CIMIS comparison, WRF variability in monthly precipitation accumulations tightly matches 

what is observed in the UDel (average r=0.94) and CPC (average r=0.96) datasets. Differences in 

monthly climatologies between WRF and UDel are approximately 17 mm (28%), and 

approximately 9 mm (15%) between WRF and CPC. Interestingly, for both WRF-based and 

observation-based datasets, there are strong similarities in magnitude between the station-

averaged (white and light gray dots) and land-averaged values (medium gray, dark gray, and 

black dots). This indicates that the station-averages adequately sample the land fraction of the 

domain. For example, the average monthly climatology difference between CIMIS station-

averaged (white dots) and CPC land-averaged (dark gray dots) values is only approximately 16 

mm.  

Finally, we assess WRF’s ability to simulate spatial variations in station-averaged (in the 

case of CIMIS rain gauges) and land-averaged (in the case of UDel and CPC gridded 

observations) precipitation totals over the baseline period. Results are seen in Figure 5, which 

shows scatter plots between simulated and observed (CIMIS: black circles, UDel: red circles, 

CPC: cyan circles) station or land-averaged wet-season total accumulations. Note that CIMIS 

observations begin in 1989, so only 12 wet seasons are included in this portion of the plot. WRF 
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reproduces the CIMIS observations (r=0.83, average bias of +15 mm) better than UDel (r=0.59, 

bias of +229 mm) or CPC (r=0.55, bias of +221 mm). The large disagreement between WRF and 

the two gridded products is likely due to the horizontal resolution differences between them. 

Coarse resolutions in the gridded products (0.25° x 0.25° for CPC and 0.5° x 0.5° for UDel) may 

not resolve the full orographic effects on precipitation, which are included in WRF and of course 

the station measurements. As noted above, discrepancies between WRF and CIMIS values or 

any data product may arise due to sub-grid scale topography and poor observational data quality, 

in addition to model deficiencies and inaccuracies in the boundary conditions (NARR).  

 

b. Hybrid dynamical-statistical downscaling framework  

1) Empirical orthogonal function analysis  

Here we present the hybrid dynamical-statistical approach to generating future precipitation 

projections. We begin by forming statistical relationships between precipitation changes in the 

five dynamically downscaled GCMs to large-scale parameters in GCM output. The first step is 

identifying common spatial patterns between monthly wet-season precipitation changes (2058–

2060 minus 1998–2000) for all five downscaled models. Each GCM’s dynamically downscaled 

monthly precipitation changes over the course of the wet season (DJFM) can be seen in Figure 6. 

We make two remarks on the variations in Fig. 6. First, there is variation in the sign and 

magnitude of mid-21st-century precipitation changes in dynamically downscaled results. Some 

downscaled GCMs, such as CCSM4 (Fig. 6, first row), show future drying over most of the 

coastal zone and high elevations for all months, while others, such as CNRM-CM5 (Fig. 6, 

second row), project moistening for much of the domain over most months. Other outcomes lie 

between these two cases, and are not necessarily consistent in sign across the domain. Second, 
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we note that although there is large variation across downscaled models and months, there 

appears to be a common area where most of the action occurs—a pattern tied to orography, with 

enhanced loading in the coastal zone and throughout the mountainous regions. This suggests that 

performing an empirical orthogonal function (EOF) analysis on the aggregated set of these 

monthly precipitation change patterns could yield a single, robust spatial pattern of change.  

Following this reasoning, an EOF analysis is performed over the spatial patterns in Fig. 6. 

Since the EOF analysis spans both models and months, the patterns it generates maximize both 

intermodel and intermonthly variability. The three leading modes are shown in Figure 7. The 

first accounts for 70% of the variability seen in Fig. 6, confirming our suspicion that the majority 

of the variance can be accounted for with a single spatial pattern. Mode 1 physically represents 

the dominant orographic pattern of precipitation over Southern California (Hughes et al. 2008, 

Conil and Hall 2005, Neiman et al. 2002). Other precipitation patterns, such as “blocked events” 

(Hughes et al. 2008, Neiman et al. 2002), may be somewhat represented in modes 2 and 3. A 

corresponding 20-value (5 dynamically downscaled models x 4 months) series of mode 1 

loadings is also produced from the EOF analysis. These loadings represent the contribution of 

the spatial pattern of mode 1 to each model’s monthly precipitation change. Since this mode 

accounts for the majority of intermodel and intermonthly variability, it should be possible to 

“predict” the dynamically downscaled precipitation changes in Fig. 6 with reasonable accuracy 

simply by multiplying the spatial pattern of mode 1 by each model’s monthly mode 1 loading. 

(While modes 2 and 3 may represent a physical phenomenon associated with precipitation 

change, we ignore them due to the small variance that is captured in each mode, 7% and 5%, 

respectively.) Blending the statistical methods of an EOF analysis and dynamical downscaled 

simulations forms what we call a hybrid dynamical–statistical downscaling technique. For an 
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example of how this blended statistical–dynamical downscaling approach can be applied to 

regional warming patterns, the reader is referred to Walton et al. (2014). 

 

2) Predicting mode 1 loadings  

We have calculated mode 1 loadings for the five dynamically downscaled models, but we need a 

method for predicting the mode 1 loadings for the other GCMs if they were dynamically 

downscaled. The first step is to relate the known mode 1 loadings to a large-scale predictor 

variable available from the GCMs, in this case precipitation. In Figure 8a, we correlate mid-21st-

century monthly DJFM precipitation changes over the north Pacific in the five GCMs that were 

dynamically downscaled to the loading series associated with mode 1. Each GCM is regridded to 

a common horizontal resolution (1.5° x 1.5°) before performing the correlation. A dipole 

correlation pattern emerges. GCM precipitation change over the Gulf of Alaska shows 

anticorrelations to regional precipitation changes associated with mode 1, while the Pacific 

Ocean adjacent to California shows positive correlations. A physical interpretation of this 

correlation pattern is discussed in section 4b. We tried several statistical techniques to relate 

mode 1 loadings to GCM precipitation changes, including single and multivariable linear 

regression and a projection-based dot-product technique. The strongest (highest correlations) and 

most robust (across the downscaled GCMs) relationship was found using linear regression, 

where mode 1 loadings are predicted by two predictor variables: GCM precipitation changes 

averaged over the two regions spanning the dipole correlation pattern (black boxes, Fig. 8a). This 

yields a single equation to predict a given GCM’s mode 1 loading, if that GCM were 

dynamically downscaled, based only on its mid-21st-century precipitation change across the 

northeast Pacific Ocean. A caveat is that these predictive equations hinge on the training set of 
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dynamically downscaled models, in this case CCSM4, CNRM-CM5, GFDL-CM3, MIROC-

ESM-CHEM, and MPI-ESM-LR. A different set of models could give different relationships 

between GCM and local precipitation changes. However, some robustness is provided to the 

predictive relationships by developing them on a set of GCMs that span the dry-to-wet parameter 

space (Figs. 6 and 10).  

 

3) Validating statistical downscaling techniques 

The statistical model may capture dynamical model output imperfectly for two reasons: (1) mode 

1 is an imperfect representation of regional precipitation change, and (2) it is impossible to 

predict mode 1 loadings perfectly. Knowing the loadings associated with mode 1 from our EOF 

analysis of dynamically downscaled simulations, we can test how accurate DJFM-mean changes 

are based solely on mode 1, i.e. the first source of error. This comparison is shown in Figure 9. 

Recall that the EOF analysis is performed over monthly changes, so DJFM-mean values shown 

here are calculated by averaging individual monthly patterns to produce a seasonal mean. First 

we compare the spatial patterns between the dynamically downscaled changes (Fig. 9a) and 

those based on mode 1 (Fig. 9b). In general the spatial patterns are very well correlated, aside 

from modest discrepancies in the Mojave Desert regions. WRF (y-axis) versus mode 1-based (x-

axis) precipitation changes from Figs. 9a and 9b, now averaged over land, are scattered in Fig. 9c. 

Mode 1 captures the land-averaged precipitation change extremely well, with the mode 1 

changes and the WRF changes falling almost perfectly on the line y=x. These results confirm 

that if we have perfect knowledge of mode 1 loadings, then statistically downscaled ensemble-

mean changes and the spread in these changes are highly representative of the corresponding 
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dynamically downscaled changes. This is especially true when considering the change averaged 

over the region’s land areas.  

Next we analyze the errors associated with imperfect predictions of mode 1 loadings, i.e., 

the second source of error in the statistical model, using cross-validation experiments. These 

experiments use differing subsets of the five dynamically downscaled output to develop a 

predictive equation for mode 1 loadings. We then predict mode 1 loadings for all dynamically 

downscaled models and compare them to the actual loadings. Specifically, we perform five 

experiments. The experiment number is equal to the number of dynamically downscaled models 

used to determine mode 1 loadings. Each experiment is performed for a varying number of trial 

runs, consistent with the number of ways it is possible to combine the models. For example, 

experiment 1 uses one model set of DJFM monthly precipitation changes to determine mode 1 

loadings (i.e. any one row in Fig. 6). It has five trials since there are five possible DJFM monthly 

change values that can be used to predict mode 1 loadings. Experiment 2 uses two model sets of 

DJFM monthly changes to predict mode 1 loadings for all models, yielding 10 unique 

combinations (i.e. any two rows in Fig. 6). Experiments 3 (i.e. any three rows in Fig. 6) and 4 (i.e. 

any four rows in Fig. 6) have 10 and five trials, respectively, and experiment 5 (all rows in Fig. 

6), has only one trial.  

In essence, we are testing the robustness of the statistical model as more and more 

dynamically downscaled information is included in its training. For each trial run in each 

experiment, we perform all analyses described in section 2b.2 for the dynamically downscaled 

models being used for mode 1 predictions. That is, we first perform an EOF analysis over the 

spatial patterns of monthly precipitation changes (e.g. 4 patterns per trial in experiment 1). The 

EOF analysis yields a series of mode 1 loadings, which are then correlated to the corresponding 
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GCM mid-21st-century precipitation changes across the Pacific Ocean. Finally, GCM mid-21st-

century precipitation changes over the regions of maximum positive and negative correlation 

(which varies according to each trial’s correlation map, but is similar to Fig. 8a for all trials) are 

regressed against that trial’s mode 1 loadings. This yields a predictive equation for mode 1 

loadings for each of the five dynamically downscaled models, which can be compared to the 

known mode 1 loadings. 

Table 2 summarizes the uncertainty of the statistical model due to errors in the 

predictions of mode 1 loadings. The error averaged over all models for all trials is shown in the 

right column. Errors decrease steadily as the number of models used in the EOF analysis 

increases. This makes sense, since more intermonthly, intermodel variability is included as more 

information is fed into the analyses. Specifically, average error is reduced from over 100% when 

using just one or two models, to just 13% when using five models. It can appear that using four 

models gives a smaller percent error (-2%) than when five models are used (-13%). However, 

this simply reflects an average over a very large range when four models are used (-483% to 

+466%) compared to a much smaller range using five models (-103% to +137%).  

 

4) Value added over bilinear interpolation 

Here we justify the development of our hybrid dynamical-statistical downscaling technique by 

comparing results to a simple bilinear regression of the raw GCM data down to 2 km. Figure 10 

provides evidence that the hybrid downscaling technique adds significant value in spatial 

patterns compared to bilinearly interpolating GCM data over Southern California. For each GCM 

in Fig. 10, spatial patterns that emerge in the interpolated results are broad in scale and have no 

way of capturing the leading spatial pattern seen in the dynamical downscaling associated with 
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orographic effects. Land-averaged changes between the interpolated and dynamically 

downscaled GCMs can be quite similar, and in some cases closer (likely fortuitous given the 

coarse GCM resolution) than the corresponding statistically downscaled changes. However, 

orographic influences on precipitation (e.g. Hughes et al. 2008) are simply not captured in either 

the raw or interpolated GCM data. Conversely, the hybrid dynamical-statistical downscaling 

technique is able to capture the orographic imprint on precipitation changes with reasonable 

accuracy. It should also be noted that the standard deviation between the statistically and 

dynamically downscaled land-averaged changes is 6.5 and 9.5 mm/wet season, respectively. 

Thus the statistical model may underestimate the spread of changes on the order of 30%. We will 

assess the implications of this potential error in Section 4a.  

 

3. Dynamical-statistical downscaling results 

Here we predict the regional precipitation projections for all 36 GCMs (Table 1), using the 

statistical model described in the previous section. 

 

a. Mid-21st-century changes  

Mid-21st-century DJFM-mean precipitation changes from all 36 downscaled GCMs are shown in 

Figure 11. Recall that the downscaled projections in Fig. 11 are forced to have the same spatial 

pattern (that of mode 1, Fig. 7) and that the spatial pattern is dialed up or down based on the 

predicted loading for that GCM. Precipitation changes projected using full dynamical 

downscaling would have somewhat more spatial heterogeneity than those shown in Fig. 11. Thus 

we do not focus on the spatial patterns of change, but rather interpret results from a land-average 
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perspective. The land-average can be predicted by the statistical model with a high degree of 

accuracy once mode 1 loadings are known (see Section 2b).  

Fig. 11 shows an apparently large range of projected changes across models. 13 models 

project increased precipitation (average of +8.1 mm/wet season) and 23 models project 

decreased precipitation (average of -8.5 mm/wet season). The most extreme models are MIROC5 

and IPSL-CM5A-MR, which project changes of approximately +19 and -25 mm/wet season 

across the land, respectively. The ensemble-mean land-average change is -2.5 mm/wet season, 

reflecting a large degree of cancellation between moistening and drying tendencies. Note that the 

statistical model may underestimate the spread of changes up to 50% (section 2), so the true 

intermodel variability of changes may be 50% larger than described here.  

 

b. End-of-21st-century changes 

The statistical model can also be used to project end-of-century (2081-2100 – 1981-2000) 

precipitation changes. As seen by the dark blue dots in Figure 4, the ensemble-mean change is 

near zero for each month and the spread of those changes is smaller than current levels of 

variability, similar to the mid-century case. In addition to downscaled changes, we also present 

interpolated GCM changes in Fig. 4 (light blue dots). Like the mid-21st-century changes, the 

ensemble-mean change by the end of the 21st century is near zero for each month. Taken as a 

whole, Fig. 4 indicates that the model-average downscaled and interpolated GCM scenario for 

the Los Angeles region is very little precipitation change throughout the 21st century.  
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c. Physical mechanisms  

Recall that the dynamically downscaled future simulations are based on GCM perturbations to 

NARR climatologies along the lateral boundaries to 3-dimensional temperature, moisture, winds, 

and geopotential heights, and surface winds, moisture, and pressure. Interpreting the physical 

mechanisms behind precipitation changes are constrained to this methodology. While storms 

entering the outermost domain in WRF (Fig. 1a) are structurally identical between the baseline 

and future simulations (a limitation raised in Rasmussen et al. 2011), the perturbation method 

allows for storms to evolve differently as they propagate towards the innermost domain. For 

example, possible changes to large-scale circulations, such as the jet stream, can be captured in 

the 3-dimensional wind and geopotential height perturbations. Moisture content in future storms 

could also change due to perturbations in relative humidity. Future storm strength could also be 

modified by perturbations to surface pressure and 3-dimensional geopotential heights. Bearing 

this information in mind, we revisit Figure 8 to identify the physical mechanisms underpinning 

downscaled precipitation changes (Fig. 11).  

As described in section 2b.2, Fig. 8a shows that precipitation changes over Los Angeles 

are related to large-scale precipitation changes over extreme northern and north/central portions 

of the eastern Pacific Ocean. The patterns in Fig. 8a suggest that average jet stream position 

changes across the Pacific Ocean are largely controlling precipitation changes over Los Angeles. 

A recent study by Neelin et al. (2013) analyzed the relationship between end-of-century 

California December-January-February (DJF) precipitation changes and 200 mb zonal wind 

speed changes over the northeast Pacific Ocean in 15 CMIP5 GCMs [cf. Fig. 1, Neelin et al. 

(2013)]. Precipitation changes over the California land-ocean region are found to be significantly 

related to changes in the jet stream (i.e. 200 mb zonal winds) and associated storm tracks. GCMs 
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projecting increased jet stream wind speeds, associated with an eastward and poleward jet 

extension, tend to steer more storms toward the coast and lead to overall precipitation increases 

in this region. GCMs that show weak eastward jet extension and/or wind speed enhancement are 

associated with minimal precipitation changes. Specifically, the authors find a correlation of 0.76 

between end-of-century DJF precipitation changes over California and 200 mb zonal wind speed 

over a certain region of the northwest Pacific.  

Though our domain of interest is the Los Angeles region rather than the whole state of 

California, we follow the arguments presented in Neelin et al. (2013), and perform an analysis 

relating GCM 200 mb zonal wind speed changes to downscaled precipitation changes. 200 mb 

zonal wind speed changes (2041–2060 minus 1981–2000) for the 36 downscaled models are 

correlated at each grid point in the GCM domain to the domain-averaged downscaled 

precipitation changes. Each GCM is regridded to a common horizontal resolution (1.5° x 1.5°) 

before performing the correlation. The results are shown in Fig. 8b. Strong negative correlations 

are seen across most of the Gulf of Alaska and into western Canada. Conversely, strong positive 

correlations are seen across the entire north central Pacific Ocean, centered on Hawaii. This 

dipole pattern echoes the results found in Neelin et al. (2013) and indicates how jet stream 

positioning and strength influence future precipitation over the Los Angeles region. Specifically, 

GCMs that project regional increases/decreases in jet stream strength off the coast of Southern 

California lead to increased/decreased precipitation over Los Angeles. 
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4. Connection to interannual variability  
 

a. Context of current interannual variability  

Here we place the intermodel spread of future precipitation changes in the context of the region’s 

natural precipitation variability. Examining Fig. 4, we compare the variability across statistically 

downscaled model projections of future changes (red dots) and levels of interannual variability 

for the wet-season (black dots). Averaged across each month, the standard deviations for the 

downscaled mid-century precipitation changes are 15, 15, 12, and 14 mm/wet season, 

respectively. (The standard deviations of end-of-century values are very similar.) The standard 

deviation of baseline interannual variability of WRF land-averaged, monthly-averaged 

accumulations (black dots, Fig. 4) is 61 mm/wet season. Thus, the intermodel variations of 

downscaled future changes in average precipitation are roughly 25% of the current interannual 

variability. As noted in Section 2, the statistical model may underestimate the standard deviation 

of the precipitation changes, due to imperfect knowledge of mode 1 loadings, probably by about 

30%. So potentially the true standard deviation of precipitation changes is roughly 40% of the 

variability. But even after factoring in this possible bias, it is clear that the interannual 

precipitation variability is large compared to potential changes in the mean. Of course, the mean 

changes would be sustained on time scales much longer than a year, potentially leading to 

adaptation challenges. For example, the downscaled models with the most extreme drying and 

moistening tendencies are associated with mean precipitation changes on the order of 10%. 

However, such challenges would only materialize if the more extreme models are correct; the 

average downscaled and interpolated GCM outcome is virtually no precipitation change for the 

entire century. 
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b. Relationship between future climate changes and interannual variability 

So far we have argued that GCM placement of jet stream and storm tracks in the north Pacific 

Ocean is the main driver of intermodel variability in future precipitation changes over Los 

Angeles. Previous studies have also shown jet stream placement, strength, and storm track 

steering over the Pacific Ocean can shift due to natural climate variability patterns (Chen and van 

den Dool 1997, Straus and Shukla 1997, Held et al. 1989). These jet stream and storm track 

shifts impact the amount of precipitation over Southern California (Berg et al. 2013, 

Athanasiadis et al. 2010). The importance of the jet stream for future precipitation change 

suggests a tight link between the physical underpinnings of interannual variability and simulated 

climate change.  

We begin addressing the relationship between interannual and intermodel variability by 

analyzing baseline DJFM precipitation from the 1981–2000 WRF simulation forced by NARR. 

An EOF analysis is performed over 20 spatial patterns of DJFM-averaged precipitation 

anomalies corresponding to each year of the baseline simulation. The patterns are calculated as 

anomalies relative to the 1981–2000 DJFM climatology. The leading mode accounts for 86% of 

the variability, and the corresponding spatial pattern is very similar to the first mode of 

intermodel variability determined from the climate change experiments (Fig. 12). The leading 

modes of variability in both the baseline and future cases reflect the strong orographic 

enhancement of precipitation and the influence of blocking in the coastal zone across the greater 

Los Angeles region (Hughes et al. 2008). After performing the EOF analysis over the baseline 

precipitation fields, we then correlate the time series associated with mode 1 (Fig. 12a) to 1981–

2000 precipitation anomalies at each grid point in the NARR data. These correlation coefficients 

are plotted in Figure 8c, and can be compared to the future case (Fig. 8a, section 3). Both cases 
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show a tongue of positive correlations that extend from the coast of California westward into the 

Pacific Ocean. This tongue is then flanked on the north and south by large swaths of 

anticorrelations. We also perform a correlation between baseline precipitation and 200 mb zonal 

wind anomalies in the NARR data (Fig. 8d) and compare it to the corresponding case associated 

with future changes in the GCMs (Fig. 8b, section 3c). Both cases show a dipole pattern of large 

positive correlations across the southern half of the eastern Pacific Ocean and large negative 

correlations in the northern half.  

Such similarities in Figure 8 confirm that the dynamics of baseline interannual variability 

are nearly identical to those underpinning future intermodel uncertainty. That is, the region’s 

precipitation currently vacillates between wet and dry periods with a pattern heavily modulated 

by orography. The vacillations are largely due to natural variations in the position and strength of 

the jet stream and subsequent storm track steering. Models that tend to deflect the jet stream and 

storms away from Southern California yield drier climates in the future, while models showing a 

tendency toward jet stream strengthening and increased storm activity over Southern California 

project a wetter climate. Thus the collection of moistening and drying tendencies in the CMIP5 

ensemble can likely be understood as an “excitation” of a natural mode of variability. 
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5. Concluding remarks  

This study uses a hybrid dynamical-statistical downscaling technique to examine mid- and end-

of-21st-century precipitation changes over the greater Los Angeles region under the RCP8.5 

emissions scenario. Modeling dynamically downscaled precipitation changes with statistical 

methods, we downscale 36 GCMs in the CMIP5 archive based on changes in each model’s large-

scale precipitation fields. There are three major findings of this study. First, the ensemble-mean 

change for both time slices is essentially zero. Second, while downscaled CMIP5 models 

disagree on both the sign and magnitude of future precipitation changes over Los Angeles, the 

spread of possible changes is modest compared to current levels of variability. For both time 

slices, the statistical model estimates that the standard deviation of land-averaged precipitation 

change is about 0.2 to 0.25 of the standard deviation of the interannual variability. As shown in 

section 2, the statistical model may underestimate the intermodel spread by as much as 30% due 

to imperfect knowledge of mode 1 loadings. So the true standard deviation of the precipitation 

change, if all GCMs were downscaled dynamically, could be closer to 0.4 of the interannual 

variability standard deviation. Thus even after allowing for potential error in the statistical model, 

current shifts between wet and dry years are greater than average changes in even the most 

extreme model projections. However, the sustained moistening or drying seen in the most 

extreme statistically downscaled models could lead to adaptation challenges. Though these 

changes are unlikely, they amount to roughly 10% changes in mean precipitation for both time 

slices. Finally, robust similarities are found between the intermodel variability of future changes 

and interannual variability of baseline precipitation anomalies. Jet stream placement and strength 

currently dictates winter precipitation amounts, and also dictates the sign and magnitude of 

future precipitation changes. To the degree there is uncertainty in future precipitation change 
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over the Los Angeles region, it is due to differences in the simulated response of this 

phenomenon to anthropogenic forcing. 

While there is a great opportunity to assign probabilities of future changes based on an 

ensemble of projection outcomes, no single method perfectly accomplishes this task. Ensemble-

mean forecasts have proven skillful in producing most likely outcomes for climate variations on 

the seasonal time scale (e.g. Doblas-Reyes et al. 2003, Palmer et a. 2005b), along with hurricane 

paths and other weather patterns (e.g. Zhang and Krishnamurti 1998, Krishnamurti et al. 2000). 

Interpreting an ensemble-mean projection as the most likely outcome for 21st-century 

precipitation, however, is complicated due in part to the fact that the range of outcomes in the 

ensemble spans positive and negative changes (van Oldenborgh et al. 2014, their Fig. A1.6). Our 

result of near-zero ensemble-mean change simply reflects offsetting tendencies of moistening 

and drying in the GCMs. It could be misleading not to acknowledge that some change, either 

positive or negative, is likely to occur. At the same time, for nearly all projections, the magnitude 

of the change is small compared to natural variability. In this sense we interpret the most likely 

scenario as a small change in precipitation compared to natural variability, with large uncertainty 

on the sign of the change.  

A critique to this probabilistic estimate is that we are weighting each projection equally in 

the ensemble, assuming the quality of each model is the same (Tebaldi and Knutti 2007, Knutti 

2010, Shepherd 2014). One way to address this issue is to weight each model based on its ability 

to simulate historical precipitation or the large-scale circulations controlling precipitation over 

California. Swain et al. (2014) identified 12 CMIP5 GCMs that best simulate historical 500 mb 

geopotential height over the northeastern Pacific Ocean according to reanalysis distributions. 

Geopotential height in this region strongly influences California’s precipitation (Fig. 8). By 
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examining downscaled projections from these 12 “good” models in Fig. 11, we again find that 

precipitation changes are modest compared to natural variability, and that the sign of the change 

is uncertain. Specifically, 8 models project increased precipitation, 4 project decreased 

precipitation, and the ensemble-mean change is +2.2 mm/wet season. (Similar results between 

the 12- and 36-model ensembles is perhaps not too surprising as Langford et al. (2014) found 

that most CMIP5 models have reasonable skill in simulating California precipitation.) This 

simple analysis indicates that the major conclusions of this study are not sensitive to which 

models are included in the ensemble. 

Our result of near-zero ensemble-mean precipitation change over Los Angeles can be 

interpreted in terms of the well-accepted understanding of global precipitation change whereby 

patterns of precipitation become enhanced, such that wet regions become wetter and dry regions 

become drier (Chou and Neelin 2004, Neelin et al. 2006, Held and Soden 2006). This leads to 

increased precipitation over convection zones and drying outside of the convection zones. On 

average, Southern California is positioned between areas dominated by these competing 

tendencies: increased precipitation to its north in the mid-latitudes and decreased precipitation to 

the south within the subtropics. However, in some GCMs the region is north of the boundary 

between the two zones, while in others it is south of it. As such, precipitation projections over 

this region tend to negate one another and yield small ensemble-mean projections.  

One interesting finding from this study is that intermodel variability between the 

statistically downscaled (red dots, Fig. 4) changes is approximately half the size of the variability 

according to the GCM-interpolated changes (pink dots). We attribute this spread suppression in 

the statistical model to two sources. First, inaccurate mode 1 predictions by the statistical model 

(section 2) can underestimate the intermodel spread by at least 30%. Second, statistical 
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relationships are derived from 3-year-long dynamically downscaled changes (2058–2060 minus 

1998–2000). On average, 1998–2000 was found to have somewhat lower precipitation than 

1981–2000. This has the effect of reducing the magnitude of statistically-estimated climate 

change signals, and the spread associated with them, likely about 20% (Figure S1, Table S1). If 

these two error sources were eliminated, the spread would probably increase by about 50%—

therefore approximately accounting for the difference between statistically downscaled and 

GCM-interpolated inter-model variability seen in Fig. 4. We also note that the results in this 

study are limited to our choice of WRF as the regional model. Unlike larger regional modeling 

efforts such as CORDEX (e.g., Nikulin et al. 2012) and NARCCAP (e.g., Wang et al. 2009), 

computational costs prevented an examination of how sensitive this study’s results are to 

multiple regional model simulations. However, we found strong agreement between our results 

and those from an independent study that statistically downscaled precipitation changes over the 

greater Los Angeles region (personal communication with Lee Alexanderson, 2014, Los Angeles 

County Department of Public Works).  

Differences between the regional model outcomes and those of the GCMs may also stem 

from our method of perturbing baseline boundary conditions using future climatological changes. 

For example, one could instead directly downscale raw historical and future GCM data to 

calculate changes, as opposed to perturbing baseline conditions derived from reanalysis. We are 

currently conducting research to test whether this direct method gives different results from 

downscaling changes in the climatology through a perturbation to reanalysis-based boundary 

conditions.  
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Given the agreement between the GCMs and the downscaled information in the 

ensemble-mean outcome, it seems unlikely that a different dynamical downscaling technique 

would generate a systemically different answer. The hybrid dynamical-statistical downscaling 

technique could be applied beyond the Los Angeles region. It may be especially appropriate in 

areas that share these two characteristics with the domain of interest in our study: (1) changes in 

the large-scale circulation govern precipitation change, allowing for development of credible 

GCM scaling factors, and (2) local precipitation changes are heavily influenced by orography, 

leading to diagnosed local response patterns, as encapsulated by the leading EOF patterns. Thus 

it would be applicable for any mid-to-high latitude location with significant topography. 

An important caveat relating to the El Niño–Southern Oscillation (ENSO) 

phenomenon applies to the conclusions of this study. In the current climate, ENSO influences the 

position of the Northern Hemisphere jet stream and storm tracks across the eastern Pacific Ocean 

through atmospheric teleconnections (Held et al. 1989, Chen and van den Dool 1997, Straus and 

Shukla 1997). These shifts have a statistically-detectable effect on precipitation over Southern 

California. During La Niña events, the jet tends to move northward towards the Gulf of Alaska, 

leading to drier than average conditions across Southern California. Under El Niño conditions, 

the jet tends to extend south and eastward, steering storms more directly across southern regions 

of US, including Southern California (Redmond and Koch 1991, Dettinger et al. 1998, Cayan et 

al. 1999, Leung et al. 2003, Berg et al. 2013). The CMIP5 ensemble of GCMs has shown 

improvements in the simulation of ENSO compared to the CMIP3 ensemble, particularly in the 

amplitude and time scale of the phenomenon. However, the CMIP5 models still exhibit 

significant errors, especially in the irregularity of the phenomenon and its spatial pattern (Flato et 

al. 2013). A detailed examination of the implications of these tropical Pacific errors for 
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precipitation change over Southern California is beyond the scope of this study. However, it 

seems possible that the GCM projections of future ENSO behavior may be affected by them.  

If these errors were corrected, modestly different outcomes for Southern California 

precipitation might result, owing to the link between ENSO variability and Southern California 

precipitation. When an ENSO event occurs, it accounts for roughly 2/3 of the variance in 

Southern California precipitation. However, only about 40% of wet seasons can be considered 

strong ENSO events (Schonher and Nicholson, 1989). Thus roughly one quarter of the variance 

of Southern California precipitation can be traced to ENSO. The remaining three-quarters of the 

variance is linked to shifts of the jet stream unrelated to tropical Pacific variability, similar to 

those portrayed in Fig. 8d, and which are also the mechanism generating intermodal spread in the 

CMIP5 ensemble. While ENSO is a mechanism generating regional precipitation variability, it is 

not the most important. ENSO errors in the GCMs may introduce somewhat more uncertainty in 

our regional precipitation projections than what is implied by the downscaled intermodel spread 

alone. It is impossible to quantify this effect precisely with present knowledge, but the role 

ENSO currently plays in Southern California precipitation does at least offer a useful guide. We 

estimate that ENSO GCM errors increase the uncertainty by an amount approximately 

proportional to the fraction of the variance ENSO accounts for in current climate—by about 25%. 

This additional uncertainty underscores the need for regional planning that allows for a variety of 

future precipitation change outcomes.  
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FIG. 1. (a) 18 km – 6 km – 2 km WRF domains and 18 km topography; (b) 2 km domain and 
topography.  Black lines in (a) and (b) show US state boundaries and Los Angeles County for 
reference.  Also seen in (b) are the Channel Islands.  Topography is color contoured every 200 m 
in both (a) and (b).   
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FIG. 2. Dynamically downscaled CCSM4 climate change signals according (a) 20-year (2041-
2060 – 1981-2000) and (b) 3-year (2058-2060 – 1998-2000) changes. Difference between the 
20-year and 3-year signals is shown in (c).  Topography is contoured every 750 m in thin black 
lines.  Unit is mm/wet season.  
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FIG. 3.  (a) Correlation coefficients of monthly 1981-2000 DJFM accumulated precipitation 
between CIMIS stations and the nearest grid point in the 2 km WRF output. Topography is 
contoured every 750 m in thin black lines.  (b) Correlation coefficients between 1981-2000 
DJFM-mean accumulated precipitation amounts between CPC grid cells and nearest 
corresponding WRF grid cells.  
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FIG. 4. Monthly precipitation accumulations (mm/month) averaged over CIMIS stations (white 
dots), WRF-NARR grid points nearest to CIMIS stations (light great dots), land-averaged in the 
UDel observational dataset (medium grey dots), land-averaged in the CPC observational dataset 
(dark grey dots), and land-averaged in the WRF-NARR output (black dots). Larger dots in each 
case represent monthly climatologies.  Also shown are monthly mid- and end-of-21st century 
precipitation changes (mm/wet season) relative to the base-period climate according to 36 
statistically downscaled (red/blue) and interpolated (pink/light blue) CMIP5 GCMs.  Larger 
red/blue and pink/light blue dots represent ensemble-mean monthly changes.  
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FIG 5. Scatter plots between simulated and observed wet-season (DJFM) climatological 
precipitation over the baseline period (1981-2000).  Black circles show CIMIS station-averaged 
amounts vs. averages over the nearest WRF-NARR grid points, red circles show land-averaged 
UDel vs. WRF-NARR values, and cyan circles show land-averaged CPC vs. WRF values.  The 
line y=x is shown as a solid black line. Unit is mm/wet season. 
 
 



38

 
 
FIG. 6. DJFM monthly precipitation changes (2058-2060 minus 1998-2000) for each 
dynamically downscaled GCM.  Blue shading indicates moistening, red shading indicates drying.  
Unit is mm/wet season. Topography is contoured every 750 m in thin black lines. 
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FIG 7. Leading three modes of variability based on EOF analysis of spatial patterns seen in Fig. 
6.  Mode 1 accounts for 70% of the variability, mode 2 accounts for 7%, and mode 3 accounts 
for 5%. 
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FIG. 8. Correlation coefficients between (a) mid-21st century monthly DJFM precipitation 
changes (2041-2060 minus 1981-2000) according to the five dynamically downscaled GCMs 
and the time series associated with EOF 1 (Fig. 7). Black squares represent averaging area of 
GCM precipitation to predict EOF 1 loadings. (b) domain-averaged downscaled precipitation 
changes (Fig. 11) and corresponding mid-21st century 200 mb zonal wind speed changes for all 
available models, (c) monthly DJFM precipitation anomalies in the 1981-2000 NARR data and 
time series associated with EOF 1 over that time period  (Fig. 12a), and (d) domain-averaged 
1981-2000 precipitation anomalies and corresponding 200 mb zonal wind speed anomalies in the 
NARR data.  
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FIG. 9.  (a) Dynamically-downscaled DJFM-mean precipitation changes for each model. (b) 
Mode 1-based DJFM-mean precipitation changes for each model. (c) Scatter plot comparing 
domain-averaged DJFM-mean changes from WRF (y-axis) and mode-1 (x-axis), with the line 
x=y shown as a solid black line.  Unit in each plot is mm/wet season.  
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FIG. 10.  Comparison of mid-21st century precipitation changes for the downscaled models 
according to the respective raw GCM data (first column), bilinearly interpolated GCM data to 2 
km (second column), the hybrid statistical-dynamical downscaling technique (third column), and 
the dynamical downscaling (fourth column).  Land-averaged changes (mm/wet season) are 
reported in the top right of each panel.   
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FIG. 11. Downscaled mid-21st century precipitation changes according to 36 GCMs.  Blue 
shading indicates future moistening, while brown shading indicates future drying. Unit is 
mm/wet season.  
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FIG. 12. Leading modes of precipitation variability over the baseline (a) and future (b),same as 
Fig. 7a).  Baseline precipitation anomalies are calculated relative to the 1981-2000 climatology. 
Future changes are calculated as 2058-2060 – 1998-2000.  See text for details.  
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Model Institute 
ACCESS1-0 Commonwealth Scientific and Industrial Research Organization 
ACCESS1-3 Commonwealth Scientific and Industrial Research Organization 
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 

CCSM4 National Center for Atmospheric Research 
CESM1-BGC National Science Foundation, Department of Energy, National Center for 

Atmospheric Research 
CESM1-CAM5 National Science Foundation, Department of Energy, National Center for 

Atmospheric Research 
CMCC-CESM Euro-Mediterranean Center of Climate Change 

CMCC-CM Euro-Mediterranean Center of Climate Change 
CMCC-CMS Euro-Mediterranean Center of Climate Change 
CNRM-CM5 Centre National de Recherches Meteorologiques 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization 
CanESM2 Canadian Centre for Climate Modeling and Analysis 

EC-EARTH EC-Earth Consortium 
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 

GISS-E2-H NASA Goddard Institute for Space Studies 
GISS-E2-R NASA Goddard Institute for Space Studies 

HadGEM2-AO Met Office Hadley Centre 
HadGEM2-CC Met Office Hadley Centre 
HadGEM2-ES Met Office Hadley Centre 

IPSL-CM5A-LR Institut Pierre Simon Laplace 
IPSL-CM5A-MR Institut Pierre Simon Laplace 
IPSL-CM5B-LR Institut Pierre Simon Laplace 

MIROC-ESM AORI (U. Tokyo), NIES, JAMESTEC 
MIROC-ESM-CHEM AORI (U. Tokyo), NIES, JAMESTEC 

MIROC5 AORI (U. Tokyo), NIES, JAMESTEC 
MPI-ESM-LR Max Planck Institute for Meteorology 
MPI-ESM-MR Max Planck Institute for Meteorology 
MRI-CGCM3 Meteorological Research Institute 
NorESM1-M Norwegian Climate Center 

NorESM1-ME Norwegian Climate Center 
bcc-csm1-1 Beijing Climate Center, China Meteorological Administration 

bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration 
inmcm4 Institute for Numerical Mathematics 

 
TABLE 1. List of CMIP5 models and corresponding institutions used in this study.  
 
 
 
 

Tables
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Number of models  
(number of trials) 

Average/min/max percent error between  
actual and predicted mode 1 loadings (%) 

1 (5) -160 / -1831 / 1981 
2 (10) -139 / -1366 / 473 
3 (10) -72 / -1048 / 558 
4 (5) -2 / -483 / 466 
5 (1) -13 / -103 / 137 

 
TABLE 2.  Quantifying the error associated with imperfect predictions of mode 1 loadings in the 
statistical model using a cross-validation exercise.  Number of models used and the number of 
unique combinations (“trials”) of those models (i.e. any row in Fig. 6) are presented in the left 
column.  The average, maximum and minimum percent error averaged over all models for all 
trials and is seen in the right column. 
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