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ABSTRACT

In this study (Part I), themid-twenty-first-century surface air temperature increase in the entireCMIP5 ensemble

is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical

technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the

computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied

to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built

relating the GCM input and the dynamically downscaled output. This statistical model is used to approximate the

warming patterns of the remaining GCMs, as if they had been dynamically downscaled. The full 32-member

ensemble allows for robust estimates of the most likely warming and uncertainty resulting from intermodel dif-

ferences. The warming averaged over the region has an ensemble mean of 2.38C, with a 95% confidence interval

ranging from 1.08 to 3.68C. Inland and high elevation areas warm more than coastal areas year round, and by as

much as 60% in the summermonths.A comparison to other common statistical downscaling techniques shows that

the hybrid method produces similar regional-mean warming outcomes but demonstrates considerable improve-

ment in capturing the spatial details. Additionally, this hybrid technique incorporates an understanding of the

physical mechanisms shaping the region’s warming patterns, enhancing the credibility of the final results.

1. Introduction

To make informed adaptation and mitigation decisions,

policymakers and other stakeholders need future climate

projections at the regional scale that provide robust in-

formation about most likely outcomes and uncertainty es-

timates (Mearns et al. 1999; Leung et al. 2003; Schiermeier

2010; Kerr 2011). The main tools available for such pro-

jections are ensembles of global climate models (GCMs).

However, GCMs have grid box scales from 18 to 2.58
(;100–200km), often too coarse to resolve important

topographical features and mesoscale processes that

govern local climate (Giorgi and Mearns 1991; Leung

et al. 2003; Caldwell et al. 2009;Arritt andRummukainen

2011). The inability of GCMs to provide robust pre-

dictions at scales small enough for stakeholder purposes

has motivated numerous efforts to regionalize GCM

climate change signals through a variety of downscaling

methods (e.g., Giorgi et al. 1994; Snyder et al. 2002;

Timbal et al. 2003; Hayhoe et al. 2004; Leung et al. 2004;

Tebaldi et al. 2005; Duffy et al. 2006; Cabré et al. 2010;

Salathé et al. 2010; Pierce et al. 2013). The aim of this

study is to develop downscaling techniques to recover the

full complement of warming signals in the greater Los

Angeles region associated with the multimodel ensemble

from phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012; Table 1) of theWorld

Climate Research Programme.

Regional downscaling attempts have been met with

significant criticism (e.g., Schiermeier 2010; Kerr 2011,

2013). One major critique is that the downscaled output

is constrained by the limitations of the GCM input. By

itself, any single GCM may give a misleading picture

of the true state of knowledge about climate change,

including in the region of interest. Results from down-

scaling this single GCM will likewise be misleading.

Furthermore, the high resolution and realistic appear-

ance of the downscaled results may give a false impres-

sion of accuracy. This perception of accuracy at the

regional scale is especially problematic if a very small
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number of GCMs are downscaled, since the uncertainty

is dramatically undersampled. In this case, the down-

scaled output may not reflect the most likely climate

outcomes in the region, and it certainly does not provide

information about how the uncertainty associated with

the GCM ensemble manifests itself at the regional scale.

Typically, previous studies have downscaled only two

global models (e.g., Hayhoe et al. 2004; Duffy et al. 2006;

Cayan et al. 2008; Salathé et al. 2010). This is too small

an ensemble to obtain meaningful statistics about the

most likely (ensemble mean) warming and uncertainty

(intermodel spread). Instead, information from a larger

ensemble is preferred (Giorgi and Mearns 2002; Kharin

and Zwiers 2002). The CMIP3 and CMIP5 ensembles

(Meehl et al. 2007; Taylor et al. 2012), with a few dozen

ensemble members, are usually seen as large enough to

compute a meaningful ensemble mean and span the

climate change uncertainty space.

While downscaling of a large ensemble is desirable to

compute most likely outcomes and fully characterize un-

certainty, this can be impractical because of the high

computational cost. Dynamical downscaling, in particular,

is an expensive technique, andmost studies that perform it

have only applied it to a few global models. For example,

Duffy et al. (2006) downscaled PCM and HadCM2

over the western United States, and Pierce et al. (2013)

downscaled GFDL CM2.1 and CCSM3 over California.

There are other examples of dynamical downscaling of

TABLE 1. Details of the WCRP CMIP5 global climate models used in this study. Check marks indicate which scenarios are used. Five

models were dynamically downscaled (shown in boldface). All available models are statistically downscaled using the hybrid method.

Expansions of model names are available online at http://www.ametsoc.org/PubsAcronymList.

Model Country Institute RCP2.6 RCP8.5

ACCESS1.0 Australia Commonwealth Scientific and Industrial Research Organisation U

ACCESS1.3 Australia Commonwealth Scientific and Industrial Research Organisation U

BCC_CSM1.1 China Beijing Climate Center, China Meteorological Administration U U

BNU-ESM China College of Global Change and Earth System Science, Beijing

Normal University

U U

CanESM2 Canada Canadian Centre for Climate Modelling and Analysis U U

CCSM4 United States National Center for Atmospheric Research U U

CESM1(BGC) United States National Science Foundation, U.S. Department of Energy, and

National Center for Atmospheric Research

U

CESM1(CAM5) United States National Science Foundation, U.S. Department of Energy, and

National Center for Atmospheric Research

U U

CESM1(WACCM) United States National Science Foundation, U.S. Department of Energy, and

National Center for Atmospheric Research

U

CMCC-CM Italy Centro Euro-Mediterraneo per I Cambiamenti Climatici U

CNRM-CM5 France Centre National de Recherches Météorologiques U U

CSIRO Mk3.6.0 Australia Commonwealth Scientific and Industrial Research Organisation U U

EC-EARTH Europe EC-Earth Consortium U U

FGOALS-s2 China LASG, Institute of Atmospheric Physics, Chinese Academy of

Sciences

U U

FIO-ESM China The First Institute of Oceanography U

GFDL CM3 United States NOAA/Geophysical Fluid Dynamics Laboratory U U

GFDL-ESM2M United States NOAA/Geophysical Fluid Dynamics Laboratory U U

GFDL-ESM2G United States NOAA/Geophysical Fluid Dynamics Laboratory U U

GISS-E2-H United States NASA Goddard Institute for Space Studies U U

GISS-E2-R United States NASA Goddard Institute for Space Studies U U

HadGEM2-AO United Kingdom Met Office Hadley Centre U U

HadGEM2-CC United Kingdom Met Office Hadley Centre U

HadGEM2-ES United Kingdom Met Office Hadley Centre U U

INM CM4 Russia Institute of Numerical Mathematics U

IPSL-CM5A-LR France L’Institut Pierre-Simon Laplace U U

IPSL-CM5A-MR France L’Institut Pierre-Simon Laplace U U

MIROC-ESM Japan AORI (University of Tokyo), NIES, and JAMESTEC U U

MIROC-ESM-CHEM Japan Atmosphere and Ocean Research Institute (AORI, University of
Tokyo), National Institute for Environmental Studies (NIES),

and JAMESTEC

U U

MIROC5 Japan AORI (University of Tokyo), NIES, and JAMESTEC U U

MPI-ESM-LR Germany Max Planck Institute for Meteorology U U

MRI-CGCM3 Japan Meteorological Research Institute U U

NorESM1-M Norway Norwegian Climate Centre U U
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multiple GCMs, such as the Coordinated Regional

Downscaling Experiment (CORDEX; Giorgi et al. 2009),

but these are very large undertakings that require co-

ordination of multiple research groups. Furthermore, they

tend to span large geographic areas at lower resolutions

(roughly 50km) than needed for the region of interest

here. Areas of intense topography and complex coastlines

typically need a model resolution finer than 10–15km

(Mass et al. 2002). The greater Los Angeles region con-

tains minor mountain complexes, such as the Santa Mon-

ica mountains, that have a significant role in shaping local

climate gradients. These mountain complexes have spatial

scales of just a few kilometers, so even higher resolution,

with correspondingly higher computational costs, would

be needed here. Thus, for the purposes of this study, dy-

namical downscaling alone is an impractical answer to the

need for multimodel downscaling.

Because of its much lower computational cost, sta-

tistical downscaling is almost always used for multi-

model downscaling (e.g., Giorgi et al. 2001; Tebaldi et al.

2005; Pierce et al. 2013). Statistical downscaling relies

on empirical mathematical relationships to go from

large-scale predictors to finescale predictands. These

relationships are often much faster to apply than dy-

namical downscaling, which makes them ideal for

downscaling large ensembles of GCMs for multiple time

periods or scenarios. However, they are subject to the

stationarity assumption that the relationship between

the predictors and predictands continues to hold, even

in a changed climate (Wilby and Wigley 1997). Al-

though statistical models are valuable tools for down-

scaling multimodel ensembles, they do not produce a

full complement of variables like dynamical downscal-

ing. Dynamical downscaling allows for an investigation

of the physics that underlie the local climate response,

which leads to enhanced credibility. Furthermore, the

physical realism and the ability to explicitly simulate

complex local processes potentially allows dynamical

downscaling to capture important finescale changes in

climate that otherwise might not be included (e.g.,

Caldwell et al. 2009; Salathé et al. 2008, 2010; Arritt and

Rummukainen 2011; Pierce et al. 2013). For example,

Salathé et al. (2008) found that December–February

warming in the mountains of the Pacific Northwest

could be approximately twice the GCM value at loca-

tions experiencing snow–albedo feedback. Snow–

albedo feedback is also important in the Southern Cal-

ifornia domain considered, with the presence of a

number of mountain ranges with wintertime snow cov-

erage, including the San Gabriel and San Bernardino

Mountain ranges. Pierce et al. (2013) found that when a

pair of GCMs was dynamically downscaled, the average

difference in the annual warming between the Southern

California mountains and coast was twice that of two

common statistical downscaling techniques, bias cor-

rection with spatial disaggregation (BCSD) and bias

correction with constructed analogs (BCCA). This sug-

gests that statistical downscaling alone may be in-

sufficient in order to capture sharp gradients in

temperature change in our region of interest.

Here we provide a hybrid downscaling technique that

allows us to fully sample the GCM ensemble with the

physical credibility of dynamical downscaling but without

the heavy computational burden of dynamically down-

scaling every GCM. In this technique, dynamical down-

scaling is first performed on five GCMs. Then, the results

from dynamical downscaling are used to identify the

common finescale warming patterns and how they relate to

the major GCM-scale warming features. Based on these

relationships, a simple statisticalmodel is built tomimic the

warming patterns produced by the dynamicalmodel. In the

statistical model, the common finescale patterns are dialed

up or down to reflect the regional-scale warming found in

the particular GCM being downscaled. While scaling of

regional climate change patterns has been around since

Mitchell et al. (1990) and Santer et al. (1990), the scaling

has primarily been relative to the global-mean warming

and only for a single GCM (e.g., Cabré et al. 2010). The

statistical model described here is more versatile because

1) it works for any GCM, not just those dynamically

downscaled; 2) the downscaled warming is dependent on

the GCM’s regional-mean warming characteristics, not the

global-mean warming; and 3) this dependence is allowed

multiple degrees of freedom, based on the physical pro-

cesses at play in this particular region.

To build a statistical model that mimics dynamical

downscaling, the physical mechanisms underpinning the

regional climate change pattern must be understood.

This process-oriented approach addresses another con-

cern about regional downscaling, namely that it is diffi-

cult to determine if the regional climate change patterns

are credible even if they appear realistic and visually

appealing, because the dynamics underpinning them are

unclear, undiagnosed, or unknown.

After the statistical model undergoes a rigorous cross-

validation procedure and assessment of value added, it is

applied to generate the warming patterns for the

remaining GCMs in the CMIP5 ensemble. These sta-

tistically generated warming patterns represent our best

estimate of what the warming would be if dynamical

downscaling had been performed on these remaining

GCMs. The efficiency of the hybrid technique allows us

to downscale multiple emission scenarios and multiple

time periods. In this study (Part I), we downscale 32

GCMs for the midcentury period (2041–60) under rep-

resentative concentration pathway 8.5 (RCP8.5). In Sun
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et al. (2015, hereinafter Part II), we expand this analysis

by downscaling the full ensemble for RCP8.5 end of

century (2081–2100) and representative concentration

pathway 2.6 (RCP2.6) midcentury and end of century.

2. Dynamical downscaling

a. Model configuration

Dynamical downscaling was performed using the Ad-

vanced Research Weather Research and Forecasting

Model version 3.2 (hereinafter WRF; Skamarock et al.

2008).WRFhas been successfully applied to theCalifornia

region in previous work (e.g., Caldwell et al. 2009; Pierce

et al. 2013). For this study, we optimized it for the Cal-

ifornia region with sensitivity experiments using various

parameterizations, paying particular attention to the

model’s ability to simulate low cloud in the marine

boundary layer off the California coast. The following

parameterization choices were made: the Kain–Fritsch

(new Eta) cumulus scheme (Kain 2004), the Yonsei Uni-

versity boundary layer scheme (Hong and Lim 2006), the

Purdue–Lin microphysics scheme (Lin et al. 1983), the

Rapid Radiative Transfer Model longwave radiation

(Mlawer et al. 1997), and the Dudhia shortwave radiation

schemes (Dudhia 1989). The Noah land surface model

(Chen andDudhia 2001) was used to simulate land surface

processes including vegetation, soil, snowpack, and ex-

change of energy, momentum, and moisture between the

land and atmosphere.

The three one-way nested domains for the simulations

are shown in Fig. 1. The outermost domain covers the

entire state of California and the adjacent ocean at a

horizontal resolution of 18 km, the middle domain

covers roughly the southern half of the state at a hori-

zontal resolution of 6 km, and the innermost domain

encompasses Los Angeles County and surrounding re-

gions at a horizontal resolution of 2 km. In each domain,

all variables in grid cells closer than five cells from the

lateral boundary in the horizontal were relaxed toward

the corresponding values at the lateral boundaries. This

procedure ensures smooth transitions from one domain

to another. Each domain has 43 sigma levels in the

vertical. To provide a better representation of surface

and boundary layer processes, the model’s vertical res-

olution is enhanced near the surface, with 30 sigma

levels below 3km.

b. Baseline simulation and validation

We followed a previously established dynamical

downscaling method [see Rasmussen et al. (2011) and

references therein; see also Sato et al. (2007) and Kawase

et al. (2009)] in designing our baseline and future simu-

lations. Under this approach, only a single baseline sim-

ulation is performed. The purpose of this baseline

simulation is twofold: 1) to validate the model’s ability to

simulate regional climate and 2) to provide a baseline

climate state against which the future climate simulations

can be compared, to quantify climate change. This sim-

ulation is a dynamical downscaling of the National Cen-

ters for Environmental Prediction North American

Regional Reanalysis (NARR; Mesinger et al. 2006) over

the period from September 1981 to August 2001. This

dataset has 32-km resolution and provides lateral

boundary conditions at the outer boundaries of the out-

ermost domain (Fig. 1). It also provides surface boundary

FIG. 1. (a) Model setup with three nested WRF domains (D1, D2, and D3) at resolutions of 18, 6, and 2 km (area

sizes 11883 1566, 4863 612, and 2763 288 km2, respectively). Topography (m) is shown in color. (b) The innermost

domain (D3) of the regional simulation, with 2-km resolution. Black dots indicate the locations of the 24 stations used

for surface air temperature validation.
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conditions over the ocean (i.e., sea surface temperature)

in each of the three domains. The simulation is designed

to reconstruct the regional weather and climate varia-

tions that occurred in the innermost domain at a 2-km

resolution during this time period. The model was re-

initialized each year in August and run from September

to August. Because each year was initialized sepa-

rately, the time period could be divided into 1-yr runs

performed in parallel.

The regional model’s ability to reproduce climate

variations during the baseline period was assessed by

comparing the output from the baseline climate simula-

tion to two types of data: 1) point measurements from a

network of 24 weather stations and buoys and 2) a spa-

tially complete, observationally based gridded product.

The point measurements are quality-controlled, hourly,

near-surface meteorological observations obtained from

the National Climatic Data Center (NCDC; http://www.

ncdc.noaa.gov/). The stations are located in a variety of

elevations and distances from the coast, and are numer-

ous enough to provide a sampling of the range of

temperatures seen across the region (Fig. 1). However,

both the length and completeness of observational tem-

perature records vary by location. Most locations have

reasonably complete records after 1995, so validation is

performed over the 1995–2001 period.

First, we check the realism of the spatial patterns

seen in surface air temperature climatology against the

station measurements. Spatial patterns simulated by

the model are highly consistent with observations, as

indicated by high correlations between observed and

simulated temperatures within each season (Fig. 2a).

This confirms that for each season, the model simulates

spatial variations in climatological temperature rea-

sonably well. The spatial pattern is particularly well

represented in summer and winter (correlation of r .
0.9 in both seasons), although the model exhibits a

slight cold bias in the summer. During the transition

seasons, the model and observed spatial patterns are

still in broad agreement, with correlations greater than

0.7. In Fig. 2b, the model’s annual-mean bias relative to

observations is scattered versus elevation. Overall,

FIG. 2. Comparison of theWRF baseline simulation against a network of 24 stations, for the period 1995–2001.

(a) Simulated vs observed seasonal average climatological temperatures, for each station. Spatial correlations

reported for each season (colors). (b) WRF minus observed annual-mean temperature at each station, scattered

against elevation. (c) Correlations at each station between the time series of simulated and observed monthly

temperature anomalies. Anomalies are relative to themonthly climatology. Stations are listed in increasing order

of elevation.
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WRF tends to have a cold bias, averaging roughly 18C
over the 24 stations, and there is no clear trend in the

bias with height. We also assessed the model’s ability to

simulate temporal variability on monthly time scales

and longer. At each of the 24 locations, the correlation

was computed between the observed andmodeled time

series of monthly mean temperature anomalies, after

first removing a composite seasonal cycle (Fig. 2c).

Temporal variability is very well simulated by the

model, with high correlations at all locations.

The WRF baseline simulation was compared to an

observationally based gridded product in order to as-

certain its skill in reproducing temperatures in the rest of

the domain, where no station observations are available.

The gridded product used here is from Livneh et al.

(2013, hereinafter L13). The L13 dataset includes daily

maximum temperature (Tmax) and minimum temper-

ature (Tmin) that are averaged here to produce clima-

tological values (Tavg). L13 has a native resolution of

1/168 (about 6 km at this latitude), and it has been line-

arly interpolated down to the 2-km resolution WRF

domain for comparison purposes. This gridded product

also has the advantage of being available for the

whole baseline simulation. The 1981–2001L13 and

WRF baseline temperature climatologies (Figs. 3a,b)

both show large variations of up to 208C over the com-

plex topography in the domain. WRF simulates colder

temperatures in the mountain peaks, presumably be-

cause it has finer resolution (leading to higher and colder

peaks) and because it explicitly simulates snow at the

high elevations. The L13 dataset only incorporates a few

stations located in snow-covered areas in this domain.

Instead, it relies on temperatures at lower elevation lo-

cations and uses an assumed lapse rate to calculate the

temperatures at higher elevations. This, combined with

the elevation mismatch, could explain why WRF is

colder than L13 at elevations above about 1500m

(Fig. 3c). Overall, WRF captures the complex spatial

variations in the temperature climatology found in the

L13 data, which leads us to believe that it could also

capture the spatial variations found in the climate

change patterns.

Figure 2 demonstrates that the model gives approxi-

mately the right spatial and temporal variations in sur-

face air temperature at specific point locations where

station observations are available. Figure 3 shows that

the model is also producing the correct temperatures in

the rest of the region, where direct observations are

absent. When taken in combination, these figures give

high confidence that when it comes to surface air tem-

perature, the model can provide realistic downscaling of

the regional pattern implicit in the coarser-resolution

forcing dataset. Thus, the dynamically downscaled cli-

mate change patterns presented below are very likely a

true reflection of how the atmosphere’s dynamics would

distribute the warming across the region if climate

change signals seen in the global models occurred in the

real world.

c. Future simulations

Following the approach of Rasmussen et al. (2011),

we used the same model configuration as in the baseline

simulation to perform a second set of dynamical down-

scaling experiments designed to simulate the regional

climate state corresponding to the mid-twenty-first

century. Five global climate models in the CMIP5 en-

semble corresponding to this time period and the

RCP8.5 emissions scenario were downscaled (see Table

1). The approach we are using provides important ad-

vantages including 1) a single baseline run that can be

directly compared with observations to assess model

skill, 2) computational savings by requiring only a single

FIG. 3. Annual-mean temperature climatology (8C) for the 1981–2001 period for (a) the L13 observationally based gridded product,

linearly interpolated from its native 1/168 resolution to the 2-km resolution innermost WRF grid, and (b) the WRF baseline simulation.

(c) Temperature averaged over each 500-m elevation band for L13 (red) and WRF (blue).
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baseline simulation, and 3) computational savings by

requiring only short future simulations, since the same

monthly perturbation is added to each year. Each future

simulation is a dynamical downscaling of the NARR

baseline reanalysis plus a perturbation: the difference in

GCM climatology between the baseline and future pe-

riods. The perturbation contains the GCM climate

change signals of interest, and is calculated by taking the

differences between future and baseline monthly cli-

matologies (2041–60 minus 1981–2000) for each GCM.

Allmodel variables are included in the calculation of the

climate change signal (i.e., three-dimensional atmo-

spheric variables such as temperature, relative humidity,

zonal and meridional winds, and geopotential height

and two-dimensional surface variables such as tem-

perature, relative humidity, winds, and pressure). The

monthly varying perturbations are linearly interpolated

in time to match the NARR temporal resolution and

then added to the NARR data corresponding to the

baseline period (September 1981–August 2001). Be-

cause we downscaled the mean climate change signal in

each GCM rather than the raw GCM data, we did not

downscale changes in GCM variability. Thus, any future

changes in variability in the regional simulations are

solely the result of WRF’s dynamical response to a

mean change at the boundaries. In addition to

imposing a mean climate change perturbation at the

boundaries, CO2 concentrations were also increased in

WRF to match CO2-equivalent radiative forcing in the

RCP8.5 scenario.

We first downscaled CCSM4 for a 20-yr period and

then performed sensitivity testing to see if it was nec-

essary to downscale such a long period to recover the

regional temperature change signal. (Using a shorter

period when downscaling the other GCMs conserves

scarce computational resources.) Because we perturbed

each year in the future period with the same monthly

varying change signal from CCSM4, we expected the

warming patterns for each year to be relatively similar.

In fact, the warming patterns were nearly identical each

year: We could have dynamically downscaled only three

years and recovered an average warming signal within

0.18C of the 20-yr value. Therefore, the remaining four

GCMs were only downscaled for three years. For each

of these GCMs, the boundary conditions for the future

run were created by adding the mean climate change

signal (2041–60 minus 1981–2000) from the GCM to the

3-yr period of NARR corresponding to September

1998–August 2001.

d. Warming patterns

The five future simulations were differenced with the

baseline simulation to determine the high-resolution

monthly mean temperature changes. Figure 4 shows

the warming averaged over the five dynamically down-

scaled GCMs. There are two prominent features in the

warming patterns that can be understood through un-

derlying physical processes. First, the warming is greater

over land than ocean. This is true for all months, but the

effect is particularly evident in the late spring, summer,

and early fall. Differences between warming over the

ocean and land surfaces have been well documented in

GCMs (Manabe et al. 1991; Cubasch et al. 2001;

Braganza et al. 2003, 2004; Sutton et al. 2007; Lambert

and Chiang 2007; Joshi et al. 2008; Dong et al. 2009;

Fasullo 2010) and the observational record (Sutton et al.

2007; Lambert and Chiang 2007; Drost et al. 2012).

Greater warming over land is evident on the continental

scale in both transient and equilibrium climate change

experiments (Sutton et al. 2007). In transient experi-

ments, the greater heat capacity of the ocean results in a

slower temperature increase, leading to a land–sea

contrast in the warming. A number of explanations—

primarily based on the difference inmoisture availability—

have been proposed for the existence of land–sea contrast

in equilibrium experiments (e.g., Sutton et al. 2007; Joshi

et al. 2008). Moisture availability is particularly low in arid

and semiarid regions, including a large swath of western

NorthAmerica adjacent to the greater LosAngeles region,

which explains the strong land–sea contrast present in the

warming signal.

Land–sea contrast in the warming is present on large

scales in each GCM’s climate change signal, but how is

this contrast expressed on the regional scale? Local to-

pography and the circulation simulated by WRF govern

which areas have warming that is more ocean-like or

land-like. The land–sea breeze brings marine air and its

characteristics to the coastal zone on a daily basis

(Hughes et al. 2007) which suppresses warming there,

keeping it at or near ocean levels. This suppression is

limited to the coastal zone because marine air masses

cannot easily penetrate the surrounding mountain

complexes. Meanwhile, the inland areas separated from

the coast by a mountain complex are not exposed to

marine air and have similar warming as interior land

areas in the GCMs.

The second prominent feature is the enhanced

warming at high elevations, which can be seen by com-

paring the warming to the domain topography shown in

Fig. 1. During winter and spring months, snow–albedo

feedback occurs in mountainous areas, a feature also

observed previously in regional simulations of Cal-

ifornia’s mountainous areas by Kim (2001). In a warmer

climate, reductions in snow cover result in an increase in

absorbed solar radiation, which are balanced, in part, by

increased surface temperatures (Giorgi et al. 1997).
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Early in the year, only snow near the snow line is warm

enough to be sensitive to an increase in temperature.

The reduction in snow cover results in a band of en-

hanced warming between the baseline and future snow

lines visible in the months of March and April. In May

and June, any small amount of remaining snow is sen-

sitive to temperature change, leading to warming even at

the mountain peaks.

3. Statistical downscaling

We constructed a statistical model to accurately and

efficiently approximate the warming patterns that would

have been produced had dynamical downscaling been

performed on the remaining GCMs. The statistical

model scales the dominant spatial pattern (identified

through principal component analysis of the dynamical

warming patterns) and the regional mean so they are

consistent with the regionally averaged warming over

the Los Angeles region as well as the land–sea contrast

in the warming.

a. Principal component analysis of spatial patterns

Principal component analysis (PCA) was performed

on the 60 monthly warming patterns (five models, each

with 12 monthly warming patterns) with their regional

means removed (Fig. 5). Here PCA involves eigenvalue

decomposition of the covariance matrix XTX, where

FIG. 4.Monthlymean surface air temperature change (8C) for themidcentury period (2041–60) relative to the baseline period (1981–2000)

averaged over the five dynamically downscaled GCMs.
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each column of X is a warming pattern for a month of a

dynamically downscaled GCM. The matrix X has size

19 8723 60, where 19 872 is the number of grid points in

the domain and 60 is the number of monthly dynami-

cally downscaled warming patterns. The columns of X

are centered to mean zero, corresponding to subtracting

the regional mean from each warming pattern. The re-

sulting principal components (PCs) are spatial patterns,

with associated loadings that are functions of month and

GCM. [Note that this differs from the way that PCA is

often performed on spatiotemporal data, in which the

matrix X has dimensions n 3 p, corresponding to p lo-

cations in space observed at n times. Usually X is cen-

tered so that the mean of each column is zero, which is

equivalent to subtracting the timemean (climatology) at

each location. The resulting principal components are

time series with associated loadings in space. The spatial

loadings are usually referred to as empirical orthogonal

functions.] The reason that we apply PCA in this fashion

is that it produces the spatial modes that explain the

largest fractions of the spatial variance (as opposed to

time series that explain the most temporal variance).

The leading principal component (PC1) explains 74%

of the spatial variance. It is referred to as the coastal–

inland pattern (CIP) henceforth because of its strong

positive loadings inland and negative loadings over the

coastal zone and ocean. The second and third PCs (13%

and 5% variance explained) may also represent impor-

tant physical phenomena, but their roles in shaping the

warming patterns are much smaller, and we ignore them

for the remainder of this paper.

The CIP arises from local dynamics modulating the

basic contrast in climate between the land and ocean.

These dynamics are apparent in other basic variables

shaping the region’s climate. For example, there is a very

strong negative correlation (r520.97) between the CIP

and the baseline period annual-mean specific humidity

(Fig. 6), a climate variable that also exhibits a significant

land–sea contrast in this region. This relationship arises

because the ocean is by far the most consistent source of

water for evaporation in this region. Air masses over the

ocean are rapidly and continuously resupplied with

water vapor as necessary to maintain high relative hu-

midity levels. Meanwhile, dry air masses over the desert

interior remain cut off from moisture sources. In the

coastal zone, land–sea breezes and synoptically driven

alternations of the onshore and offshore flow pattern

(Conil and Hall 2006) generally lead to intermediate

moisture levels. Very similar dynamics mediate the

warming distribution, as described in section 2d, with

relatively small warming over the ocean, intermediate

warming over the coastal zone, and larger warming in-

land. Thus the CIP is an expression of local atmospheric

circulation patterns endemic to the region. Because the

mechanisms that create the CIP are independent of the

particular GCMs we have chosen, we are confident that

the CIP can be used to downscale other GCMs.

For each month and GCM, the dynamically down-

scaled warming patterns can be closely approximated as

the sum of the dynamically downscaled regional-mean

warming and the CIP scaled by the loadings derived

from principal component analysis. The average of the

root-mean-square error (RMSE) between the resulting

approximate warming patterns and their dynamically

downscaled counterparts is 0.198C. (When this calcula-

tion was repeated omitting the contribution of the CIP,

the average RMSE more than doubled to 0.398C, in-
dicating the importance of including spatial variations.)

Furthermore, at each location in the domain, the ap-

proximate warming was correlated with the dynamically

FIG. 5. The three largest principal components, in descending order of size. PCAwas performed on the monthly warming patterns from

the five dynamically downscaled models, with the monthly domain averages removed. PC1 accounts for 74% of the variance. This PC is

referred to as theCIP because of its negative loadings over the coastal land areas and positive loadings inland. PCs 2 and 3 account for 13%

and 5% of the variance, respectively.
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downscaled warming. The domain average of these cor-

relations is 0.98. This confirms that nearly all variations in

the dynamically downscaled warming can be captured by

combining the regional mean and the scaled CIP. There-

fore, these two factors are used as the basis for the statis-

tical model. In section 3b, we determine the optimal

locations in the GCM warming patterns to use as pre-

dictors of the dynamically downscaled regional-mean

warming and of the appropriate scaling for the CIP.

b. Finding large-scale predictors

To statistically downscale each of the remaining GCMs

in the CMIP5 ensemble, we need to identify large-scale

predictors of the dynamically downscaled regional mean

and land–sea contrast. To do this, we identified the loca-

tions where the GCM warming is best correlated with

the dynamically downscaled regional mean and land–sea

contrast. Since the GCMs have different resolutions, we

first linearly interpolated the GCM monthly warming

patterns to a common grid (our outermostWRFgrid, with

18-km resolution; Fig. 1). The highest correlations be-

tween the interpolated GCM warming and the dynami-

cally downscaled regional mean are found over the

adjacent ocean and along the coast (Fig. 7a). Since these

correlations were calculated using the monthly warming

patterns from each of the five GCMs, they indicate the

degree to which sampling at that location would capture

both intermonthly and intermodel variations in the dy-

namically downscaled regional mean. If this exercise

could be undertaken for all 32 GCMs in the ensemble, the

location of the optimal sampling point might be slightly

different, because of variations in resolution and grid

placement between the GCMs. To build in a tolerance

for such ensemble-size effects, we sampled over a region

encompassing the highest correlated points, rather

than just the best-correlated point. The predictor of the

dynamically downscaled regional mean, RgMean(gcm,

month), is the average warming over all the points a

rectangular region with longitude bounds 120.58–117.58W
and latitude bounds 328–34.58N shown in Fig. 7a (black

and white dashed box).

A similar procedure was used to find the optimal loca-

tions to sample the land and the ocean warming for cal-

culation of the GCM land–sea contrast. First, the exact

values of the land–sea contrast from the dynamically

downscaled warming patterns were calculated by taking

the dot product of the monthly mean warming patterns

with the CIP. These values were then correlated with the

GCM warming interpolated to the common 18-km grid

(Fig. 7b). The correlations are highest over the high desert

of Southern California and southern Nevada, northeast of

our 2-km domain. The predictor of the dynamically

downscaled inland warming is calculated as the average

warming over the rectangular area with longitude bounds

1188–1138W and latitude bounds 348–37.58N. To find the

location to sample the ocean warming, we repeated this

procedure, but using partial correlations with the effect of

inlandwarming predictor removed (Fig. 7c). These partial

correlations identify the optimal ocean sampling location

to use in conjunction with our previously selected inland

location. The GCM ocean warming is calculated as the

warming averaged over a rectangular area with longitude

FIG. 6. (left) Coastal–inland pattern and (right) surface specific humidity climatology (g kg21)

of the baseline period. The two spatial patterns are highly correlated (r 5 20.97).
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bounds 120.58–117.58W and latitude bounds 328–348N.

The predictor of the dynamically downscaled land–sea

contrast, LandSeaContrast(gcm, month), is calculated

as the inland warming predictor minus the GCM ocean

warming predictor. If the procedure is reversed, and

the optimal ocean location is selected before the

optimal inland location, they still end up in nearly

identical spots.

c. The prediction equation

The statistical model approximates the dynamically

downscaled warming as a linear combination of the scaled

regional-mean warming in the GCM and the product of

the GCM’s land–sea contrast with the coastal–inland pat-

tern. The prediction equation for the statistically down-

scaled warming is

DT(gcm,month, i, j)5a1b3RgMean(gcm,month)

1 g3LandSeaContrast(gcm,month)3CIP(i, j) ,

where (i, j) are coordinates in the 2-km grid and a, b, and

g are coefficients determined by linear regression of the

dynamically downscaled values of the regional-mean

warming and land–sea contrast onto their large-scale

predictors, RgMean and LandSeaContrast (Fig. 8). The

values of these coefficients are a5 0.148C, b5 1.10, and

g 5 1.03. Since a . 0, and b is slightly larger than one,

the sampled GCM warming must be shifted up and in-

flated to match the dynamically downscaled regional-

mean warming. This reflects the fact that the predictor

(the warming over the coast and adjacent ocean in the

GCMs) must be shifted to a slightly greater value to

match the dynamically downscaled regional mean,

which encompasses inland areas as well. The dynami-

cally downscaled and GCM-sampled land–sea contrasts

are nearly the same, as their ratio is approximately one

(g 5 1.03).

d. Validation of the statistical model

Cross-validation was performed to assess how accu-

rately the statistical model replicates the warming pat-

terns produced by the dynamical model. The entire

statistical model was rebuilt using only four of the five

GCMs, and then used to predict the warming of the

remainingGCM. This involved first redoing the principal

component analysis to find the CIP. (These alternative

patterns are nearly identical no matter which model is

left out: the correlation between any two is greater than

0.98. This is additional evidence for the robustness of

this pattern in regional warming.) Next, the optimal

sampling locations were recalculated. They were simi-

larly located in each case. Finally, linear regression was

performed to recalculate the parameters a, b, and g.

Once the model was rebuilt, it was applied to the re-

maining GCM. This procedure was performed five times

in all, with each GCM taking a turn being omitted from

calibration and used for testing. This cross-validation

technique gives us five sets of predicted warming pat-

terns that are compared to their dynamical counterparts.

These warming patterns are also used later to assess

value added (section 3e).

FIG. 7. Correlations between GCM warming (interpolated to an 18-km grid) and the dynamically downscaled (a) regional-mean

warming and (b) land–sea contrast in the warming. The sampled regional-mean warming and inland warming are calculated as averages

over the warming in the black and white dashed boxes in (a) and (b), respectively. (c) Partial correlations between the interpolated GCM

warming and the dynamically downscaled land–sea contrast with the effect of the sampled inlandwarming removed. The oceanwarming is

calculated as the average over the black and white dashed box in (c).
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The statistical model consistently reproduces the dy-

namically downscaled warming pattern for the omitted

GCM with a reasonable degree of accuracy (Fig. 9,

leftmost columns). When the ocean is excluded, the av-

erage spatial correlation between the dynamically and

statistically generated annual-mean patterns is 0.88. The

average mean absolute error in the annual-mean warm-

ing patterns is 0.278C over the land areas in the five

models. This error has to be viewed in the context of the

variations the statisticalmodel is intended to capture. The

range of the five annual means averaged over the land

areas is 2.18C, about an order of magnitude larger than

the error. This error is small enough that substituting the

statistical model output for that of the dynamical model

does not significantly affect the mean or spread of the

ensemble, two of the most important outcomes of a

multimodel climate change study like this one. The sta-

tistical model is slightly less accurate at reproducing the

monthly warming patterns (average RMSE is 0.358C)
resulting from greater variety in the monthly patterns.

Still, the error is an order of magnitude smaller than the

range of the monthly mean land-mean warming (3.98C).
This gives additional confidence that the statistical model

can capture even the monthly warming patterns to a

reasonable level of accuracy.

e. Comparison with other statistical downscaling
techniques

A reasonable question is whether other statistical

downscaling methods would produce warming patterns

that are equally close to the dynamically downscaled

patterns as the hybrid method. We compare the hybrid

method to four other methods: BCCA (Hidalgo et al.

2008; Maurer and Hidalgo 2008; Maurer et al. 2010),

BCSD (Wood et al. 2002, 2004; Maurer 2007), linear in-

terpolation of the GCM warming pattern, and the

warming at the nearest GCM grid point, which gives an

idea of the result if raw GCM data are used, with no

downscaling whatsoever. TheBCCAandBCSDdata can

be found online (http://gdo-dcp.ucllnl.org/downscaled_

cmip_projections; Reclamation 2013) and have been

linearly interpolated from their native 1/88 resolution to

the 2-km resolution innermost WRF grid.

The hybrid warming patterns are most visually similar

to the dynamically generated warming patterns. How-

ever, it is important to verify this observation using ob-

jective measures of model skill. We used two metrics:

spatial correlation and mean absolute error (further di-

vided into errors in the regional mean and errors in the

spatial pattern), shown in Table 2. Comparisons were

made over the land areas only, because BCCA and

BCSD do not generate values over the ocean. In-

terestingly, BCSD produces nearly the same warming

pattern as linear interpolation, so the results of all of

these comparisons are nearly identical for the two

methods. The average spatial correlation between the

hybrid statistically downscaled annual-mean warming

patterns and their dynamically downscaled counterparts

is 0.88, compared to 0.61, 0.61, 0.61, and 0.35 for BCCA,

BCSD, the linear interpolated, and the raw GCM

warming patterns, respectively. This demonstrates that

the hybrid method is superior to any other method at

FIG. 8. Scatterplots of (left) dynamically downscaled regional-mean warming vs GCM-sampled regional-mean

warming and (right) dynamically downscaled land–sea contrast vs the GCM-sampled land–sea contrast. For each

GCM (colors), the 12 monthly mean warming values are shown. Approximations used by the statistical model are

shown as black dashed lines.
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accurately predicting the locations of the spatial features

in the warming. For the monthly average patterns, the

hybrid model also has higher correlations. The correla-

tions are somewhat lower because the statistical model

dials up or down only one spatially varying pattern (the

CIP), whereas each month has a slightly different char-

acteristic spatial pattern (Fig. 4).

The second metric is mean absolute error (MAE),

taken over the land areas. The hybrid method and

BCCA have the same MAE (0.278C), while the other

methods have slightly higher errors in the 0.298–0.328C
range (Table 2). So the statistical downscaling methods

are all somewhat close to the dynamically downscaled

results according to this metric. The fact that the purely

statistical techniques approximate these warming pat-

terns fairly accurately suggests that the stationarity as-

sumption holds in this situation. When we split each

annual pattern into its regional mean and spatial pat-

tern, we found that all methods did comparably in cap-

turing the regional mean (MAE range 0.248–0.278C), but

FIG. 9. Annual-mean warming projections (8C) for five GCMs produced by six different methods: (left)–(right) dynamical downscaling,

statistical downscaling with the hybrid technique, statistical downscaling with BCCA, statistical downscaling with BCSD, linear in-

terpolation of GCM, and nearest GCM grid box. Projections are for midcentury (2041–60) relative to the baseline period (1981–2000)

under the RCP8.5 scenario. Note that the hybrid downscaled patterns presented in the column labeled ‘‘Hybrid’’ are the results of the

cross-validation exercise.
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the hybrid method does considerably better at capturing

the spatial patternMAEwith 0.148C versus 0.218–0.298C
for the other methods. Thus the hybrid method’s

strength is its ability to capture the spatial details, not

the regional mean. The hybrid method also outperforms

the other methods for the monthly patterns. The

monthly mean errors are larger than in the annual-mean

case, which is likely due to the simplicity of using a single

spatial pattern for all calendar months. Although we

experimented with using different spatial patterns for

each month, the gains in accuracy were offset by prob-

lems arising from small sample sizes. (We had only five

dynamically downscaled warming patterns each month

to calibrate eachmonthly varyingmodel, rather than the

60 patterns used for the original model.)

The biggest advantage of the hybrid method comes

when we consider the ensemble-mean annual-mean

warming.Aswehave seen, nomethod approximates each

GCM’s dynamically downscaled annual-mean warming

pattern perfectly. However, when we aggregate each

method’s approximate warming patterns into a five-

model ensemble mean, the hybrid method’s errors

cancel out, while those from the other methods do not

(Fig. 10). By construction, the hybrid statistically

downscaled ensemble mean is nearly an unbiased es-

timator of the dynamically downscaled ensemble

mean. The only reason it is not completely unbiased is

that the CIP is not identical to the ensemble-mean

annual-mean spatial pattern in the warming (although

they are similar). In contrast, the other methods have

systematic biases as large as 18C in magnitude. BCCA

shows amplified warming over the middle of the do-

main, but in a way that does not match the topography

and circulation of this area, and completely misses

amplified warming in the mountainous western part of

the domain. In contrast, the other methods give overly

smoothed land–sea contrasts that fail to resolve the

sharp gradients in the warming over the mountains,

along the coastline, and in the western part of the

domain. Based on this comparison there are large

swathes of the region where the hybrid statistical

model is valuable in providing an accurate charac-

terization of the most likely warming outcome.

We note that the error estimates in Table 2 and the

patterns in Figs. 8 and 9 are based on the statistical

model built on only four GCMs and their associated

TABLE 2. Average spatial correlation and MAE between the dynamically downscaled annual and monthly warming patterns and those

generated by the raw GCM, linear interpolation, BCSD, BCCA, and the hybrid method.

Annual Monthly

Spatial

correlation

Spatial

MAE (8C)
Regional

MAE (8C)
Total

MAE (8C)
Spatial

correlation

Spatial

MAE (8C)
Regional

MAE (8C)
Total

MAE (8C)

Raw GCM 0.35 0.29 0.26 0.32 0.27 0.27 0.31 0.42

Linear interpolation 0.61 0.21 0.27 0.29 0.42 0.22 0.31 0.38

BCSD 0.61 0.21 0.27 0.29 0.41 0.23 0.33 0.40

BCCA 0.61 0.24 0.24 0.27 0.36 0.26 0.36 0.44

Hybrid 0.88 0.14 0.27 0.27 0.53 0.19 0.29 0.35

FIG. 10. Annual-mean warming (8C) averaged over five GCMs downscaled using four different methods: (a) dynamical downscaling,

(b) statistical downscaling with the hybrid technique, (c) statistical downscaling with BCCA, (d) statistical downscaling with BCSD,

(e) linear interpolation of GCM, and (f) nearest GCM grid box. (g)–(k) Bias of methods relative to dynamical downscaling (8C).
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regional warming patterns. Since each GCM has a

unique combination of regional mean and land–sea

contrast (Fig. 11), when one is left out there is a large

region of the parameter space that goes unrepresented

in the calibration of the statistical model. Thus the final

statistical model, calibrated using all five GCMs as de-

scribed in section 3c, produces results of even higher

quality. The final statistical model is used to generate the

results discussed from section 4 onward.

4. Ensemble-mean warming and uncertainty

The final statistical model (calibrated using all five

GCMs) was applied to all 32 CMIP5 GCMs with output

available for the RCP8.5 scenario. The GCMs have

widely varying values of the regional mean and land–sea

contrast (Fig. 11). The regional mean values range from

1.48 to 3.38C, and land–sea contrast ranges from 0.38 to
1.38C. Notably, these two parameters are also un-

correlated, so pattern scaling using only a single of de-

gree of freedom would be misleading here. The

dynamically downscaled GCMs (Fig. 11, highlighted in

green) approximately span the range of both parame-

ters, confirming that the statistical model has been val-

idated in the same parameter range in which it is

applied. The annual-mean warming patterns that result

from plugging these parameters into the statistical

model are shown in Fig. 12. There is considerable vari-

ation among these warming patterns, underscoring the

importance of considering multiple GCMs when doing

regional downscaling.

The ensemble-mean annual-mean warming pattern,

as well as upper and lower bounds of the 95% confidence

interval, are shown in Fig. 13. The regional-mean

warming is 2.38C, with a lower bound of 1.08C and an

upper bound of 3.68C. This large intermodel spread in-

dicates that the models disagree considerably on the

magnitude of warming, even when using the same sce-

nario. However, the global models share the character-

istic of more warming inland than over the ocean. The

difference in ensemble-mean warming between coastal

and inland areas is especially dramatic in the summer-

time (Fig. 13). The average August difference between

the inland and coastal areas is 0.68C, with certain loca-

tions showing warming elevated above the coastal

values by as much as 1.28C (162%).

The winter and spring warming that would occur in

the mountains would likely be somewhat larger if we

had done dynamical downscaling for all the global

models (cf. Figs. 3 and 14), because the statistical model

underestimates some warming resulting from snow–

albedo feedback. Based on comparisons between the

FIG. 11. Annual-mean values of regional-mean warming and land–sea contrast (8C) for each
GCM (blue dots) with the ensemble mean (red dot). The five GCMs that are also dynamically

downscaled are highlighted in green.
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dynamically and statistically downscaled warming pat-

terns for spring (March–May), the springtime ensemble-

mean warming would be as much as 0.58C or larger in the

San Bernardino and SanGabriel Mountain ranges. This is

also consistent with the larger errors in the statistical

model seen at the highest elevations in Fig. 10g.

5. Discussion

In this hybrid method, statistical downscaling is

employed a unique way. First, while statistical models

typically relate large-scale GCMoutput to observations,

ours relates GCM output to dynamically downscaled

output. This is because our hybrid statistical model is

designed to be an approximate dynamical model. The

second difference is that the hybrid statistical model was

built to directly predict the temperature change, as op-

posed to predicting the future period temperatures and

then differencing them with baseline temperatures, as is

typically done. Normally, the empirical relationship

employed by a statistical model is derived from the

historical time period and then applied to a future time

period. This leads to concerns about violating the sta-

tionarity assumption because the relationship between

predictor and predictand may not hold in the future

period. In contrast, our statistical model uses a mathe-

matical relationship between the temperature change in

the GCM and the temperature change produced by

dynamically downscaling. Therefore, we have a differ-

ent stationarity assumption—one that is easier to

satisfy—namely, that the remaining GCMs have values

of midcentury regional-mean warming and land–sea

contrast within the range of the five we dynamically

downscaled. Since this condition is satisfied, we have

confidence that the statistical relationships hold for all

the GCMs that we downscale.

One potential weakness of using the method of

Rasmussen et al. (2011) to produce the baseline and fu-

ture dynamically downscaled simulations is that only a

mean perturbation was added to the future boundary

conditions, so the weather patterns exhibited in the future

simulation are very similar to those in the baseline simu-

lation, and changes to variability are difficult to assess.

However, mean changes are investigated here, and if

the weather patterns change in the GCM in some

mean fashion, that mean change is factored into the

boundary conditions when the GCM climate change

signal is added. Therefore, it is likely that changes in

the mean climate presented here are not substantially

affected by this particular choice of methodology.

FIG. 12. Annual-mean warming patterns (8C) generated by applying the statistical model to all 32 GCMs.Warming patterns are shown for

the midcentury period (2041–60) relative to the baseline period (1981–2000), under the RCP8.5 scenario.

4612 JOURNAL OF CL IMATE VOLUME 28



An important advantage of our hybrid method is that

it reflects our understanding of regional climate dy-

namics. Some types of statistical models, like those

based on artificial neural networks, have the effect of

being ‘‘black boxes,’’ where the mathematical relation-

ships have no clear physical interpretation. Unlike those

techniques, the hybrid method first performs dynamical

downscaling, which allows us to identify that land–sea

warming contrast and the snow–albedo feedback are

the two important physical mechanisms controlling the

warming. This knowledge is incorporated into the hybrid

statistical model, which scales the characteristic spatial

pattern (containing signatures of both mechanisms) to fit

with the large-scale land–sea contrast and regional-mean

warming. Because the warming patterns produced by the

hybrid approach reflect physical understanding of the re-

gion’s climate, they have an extra layer of credibility.

Suppose, for instance, that the real climate does warm

more over the interior of westernNorthAmerica than over

the northeastern PacificOcean over the coming decades, as

is likely if GCM projections are correct. Given the realistic

behavior ofWRF in distributing humidity and temperature

across the landscape, it seems very likely that the associated

warming pattern in the greater Los Angeles region would

be characterized by sharp gradients separating the desert

interior and coastal ocean, and that these gradients would

be distributed across the landscape in a way very similar to

the regional warming patterns we present here.

Since the strength of the hybrid method is capturing

the spatial differences produced by dynamical down-

scaling, we expect that the hybrid method will be most

applicable to other regions with strong spatial structure

in the mean warming. This includes most coastal do-

mains, since land–sea contrast is a global phenomenon.

Coastal domains in the subtropics may be especially

appropriate, because the land–sea contrast is strongest

at these latitudes as a result of the large difference in

moisture between the land surface and the ocean. Other

factors could cause important gradients in the warming,

such as contrasts in elevation or surface properties. This

method may also be particularly valuable in high ele-

vation regions, since snow–albedo feedback can create

important, sharp gradients in the warming. In the Los

Angeles region considered here, snow–albedo feedback

plays an important role, but only over a tiny fraction of

the domain. On the other hand, the land–sea warming

contrast affects the entire Los Angeles region, which

is why it was explicitly factored into the hybrid statisti-

cal model. The effect of snow–albedo feedback was

still included, but only as part of PC1, which is pre-

dominantly an expression of the land–sea contrast. If the

domain considered were limited only to high-elevation

areas, then it is likely that the first principal component

would primarily feature the warming enhancement sig-

nature of snow–albedo feedback. Thus the processes

included in the hybrid statistical model will depend on

the region of interest. In fact, the method used to iden-

tify and characterize the process may also vary. Al-

though principal component analysis was valuable here

to capture the pattern associated with land–sea contrast,

future users of the hybrid methodology need not be

limited to using principal component analysis as per-

formed here. Rotating the components, applying clus-

tering, or even just using simple parameterizations may

FIG. 13. Ensemble-mean annual-mean warming and upper and lower bounds (8C), based on a 95% confidence interval, for 32 statistically

downscaled GCMs run with the RCP8.5 scenario.
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all be appropriate depending on the process considered.

The hybrid methodology is defined not by the use of

principal components, but by the identification of the

most salient processes creating the regional climate

change signal from dynamical downscaling, and the use

of the dynamical output in formulating a process-

oriented statistical model.

6. Conclusions

In this paper, we present a hybrid dynamical–statistical

approach for downscaling the climate change signal from

an entire ensemble ofGCMs. Themethod is applied here

to downscale themidcentury warming signal over the Los

Angeles region in 32 CMIP5GCMs. This approach starts

with the use of dynamical downscaling following a pre-

viously used method of Rasmussen et al. (2011). Under

this method, a single baseline simulation is performed

with WRF that represents the region’s historical climate

for the 1981–2000 period. The baseline simulation is

compared both to station measurements and to the

Livneh et al. (2013) spatially complete, observationally

based gridded product. These comparisons reveal strong

correlations between simulated and observed spatial

patterns and time series, leading us to believe that WRF

can do a reasonable job of approximating temporal and

spatial variations in climate. Then, five future simulations

are performed with WRF forced by the same boundary

conditions from the baseline simulation, but with the

monthly mean climate shifted according to the GCMs’

FIG. 14. Ensemble-meanmonthly mean warming (8C) computed by averaging themonthly statistically downscaled warming patterns over

32 CMIP5 GCMs.
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climate change signals. These five future simulations are

differenced with the baseline simulation to produce the

regionalized climate change signals corresponding to

each GCM. Next, to save computational resources, a

statistical model is built that scales the characteristic

patterns derived from dynamical downscaling according

to the regional warming sampled from the GCM. This

statistical model is used to approximate the warming that

would result if the remaining global models were dy-

namically downscaled. The ensemble-mean regional-

mean warming is projected to be approximately 2.38C,
with 95% confidence that the warming is between 1.08
and 3.68C. Thus, the intermodel differences in the GCM

outcomes create significant uncertainty in projections of

warming over the Los Angeles region.

One of the chief advantages of the hybrid method is its

ability to capture the important finescale spatial varia-

tions in the warming. Based on the dynamically down-

scaled simulations with WRF, inland and mountain

locations are expected to warm up considerably more

than coastal areas, primarily during the summer months.

The hybrid statisticalmodel is the best able to capture the

spatial variations found in WRF, based on a comparison

with several other commonly used statistical downscaling

techniques. Whether WRF’s patterns are the most accu-

rate representation of how the true future climate would

change is difficult to assess, since there is no ground truth

for the future. However, WRF’s ability to accurately

capture climate variations in the baseline period and

produce realistic, physically consistent features in the

climate change patterns gives us confidence in the ve-

racity of its output. A further advantage of the hybrid

method is that, when we average over the five simulated

annual-mean warming patterns, the errors in the hybrid

patterns nearly cancel out, revealing only minor biases.

In contrast, the other statistical downscaling methods

produce warming patterns with large systematic biases

relative to WRF, especially along the coastline and in

topographically complex regions that are not resolved

well in the GCMs. The hybrid method has similar accu-

racy in approximating the regional-mean warming com-

pared to the other techniques, likely because all methods

have access to the GCM warming averaged over the re-

gion, which is already a good predictor of the dynamically

downscaled regional mean. The fact that the hybrid

method approximates WRF more accurately than the

other statisticalmethods is likely due to the training of the

hybrid statistical model on the climate change signal it-

self, not just on the baseline period, as is done typically

with statistical methods, including the others used here.

Were these other methods to be trained upon WRF cli-

mate change output, or even just the WRF baseline

output instead of baseline gridded observation, they

would likely improve their ability to approximate the

WRF climate change patterns.

In Part II of this study, we apply the hybrid technique

developed here to other scenarios and time periods. We

examine the differences between midcentury (2041–60)

and end-of-century (2081–2100) warming and demon-

strate how emission scenario has a much larger effect at

the end of the century. We also explore how warming

effects the diurnal cycle and the number of extreme heat

days. In a separate study, Berg et al. (2015) modify this

hybrid dynamical–statistical approach to downscale the

CMIP5 ensemble’s midcentury precipitation projections

to the greater Los Angeles region.
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