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ABSTRACT

Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a

baseline period (1981–2000) in the greater Los Angeles region are downscaled for two future time slices:

midcentury (2041–60) and end of century (2081–2100). Two representative concentration pathways (RCPs)

are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to

continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase

5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and un-

certainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges:

average temperatures will almost certainly be outside the interannual variability range seen in the baseline.

Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60–90

additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous

areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur.

According to a similaritymetric thatmeasures daily temperature variability and the climate change signal, the

RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury

under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable

though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent

climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the

twenty-first century.

1. Introduction

In Walton et al. (2015, hereinafter Part I), we

described a hybrid dynamical–statistical technique for

downscaling the global climate models (GCMs) from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) to a 2-km resolution over the greater Los

Angeles region. As an example of its capabilities, we

applied this technique to all available CMIP5 GCMs for

the RCP8.5 anthropogenic greenhouse gas emissions

scenario and projected the midcentury most likely (en-

semble mean) surface air warming and uncertainties

arising frommultipleGCMs. Part I was a proof-of-concept

study demonstrating that the hybrid dynamical–statistical

technique is capable of accurately capturing both

large-scale warming and the spatial gradients in

warming within the region because of its complex orog-

raphy and coastlines. In this study, we use the hybrid

dynamical–statistical technique to make a comprehen-

sive assessment of the effects of twenty-first-century

warming in the region as a function of time period and

forcing scenario.

CMIP5 provides a multimodel context for understand-

ing global climate and climate change and also provides

a range of multicentury climate responses across GCMs

under multiple anthropogenic forcing scenarios (Taylor

et al. 2012). The organizers of the CMIP5 archive have

adopted a set of forcing scenarios known as representa-

tive concentration pathways (RCPs; Moss et al. 2008;

Meinshausen et al. 2011; Taylor et al. 2012). Four RCPs

have been developed: RCP2.6, RCP4.5, RCP6, and

RCP8.5, corresponding to the approximate radiative

forcing they would produce at the end of the twenty-first

century (2.6, 4.5, 6.0, and 8.5Wm22, respectively). The

radiative forcing from 1850 to 2100 is shown in Fig. 1a

for each scenario, with the historical forcing also shown
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up to the year 2005. RCP2.6 is representative of a

‘‘mitigation’’ scenario, in which greenhouse gas emissions

peak within the next three decades. The resulting carbon

dioxide (CO2)-equivalent concentration, encompassing

the net effect of all anthropogenic forcing agents, reaches a

maximum level of approximately 460ppmv around 2050

and declines thereafter to approximately 420 ppmv by

2100 (Fig. 1b). Total radiative forcing relative to

preindustrial levels peaks at about 3Wm22 in the middle

of the twenty-first century and declines to 2.6Wm22 by

2100. In contrast toRCP2.6,RCP8.5 represents a ‘‘business

as usual’’ scenario, in which greenhouse gas emissions

continue to increase throughout the twenty-first century.

The result is a total radiative forcing of 8.5Wm22 and

CO2-equivalent concentrations greater than 1200ppmv

by 2100. Between the mitigation RCP2.6 scenario and

the most aggressive business-as-usual RCP8.5 scenario

are two ‘‘stabilization’’ scenarios, RCP4.5 and RCP6.

In this study, however, we focus on the climate re-

sponse to the two scenarios at either extreme (i.e.,

FIG. 1. (a) Total radiative forcing (anthropogenic plus natural) and (b) CO2-equivalent

concentrations for approximately the past century and four representative concentration

pathways: RCP8.5, RCP6, RCP4.5, and RCP2.6 (also called RCP3-PD). (c) Global-mean

surface air temperature departures from 1981–2000mean as simulated in CMIP5GCMs used in

this study for the historical forcing (black), RCP8.5 (red), and RCP2.6 (blue). Gray shaded

regions denote the baseline (1981–2000), midcentury (2041–60), and end-of-century (2081–

2100) periods used in this study.
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RCP8.5 and RCP2.6) to approximately sample the full

range of climate outcomes associated with potential

future emissions.

A sampling of the global-mean surface air tempera-

ture response to the RCP2.6 and RCP8.5 scenarios seen

in the CMIP5GCMs is shown in Fig. 1c. (Table 1 of Part I

summarizes the available global climate models used in

this study.) For both scenarios, there are clearly signifi-

cant model-to-model differences in the warming re-

sponse over the twenty-first century. For example, by

2100, for RCP2.6 scenario, surface air warming ranges

from about 0.58 to 2.58C, while for RCP8.5 scenario, the

warming is about 38–68C. The variations in warming

arise principally from differences in the GCM spatial

resolutions and physical parameterizations, represent-

ing subgrid processes (e.g., cloud and the atmospheric

boundary layer schemes). Thus, the various lines seen in

Fig. 1c approximately represent the range of warming

outcomes associated with different GCMs. For this rea-

son, we interpret the range of outcomes as the climate

change uncertainty associated with a given emissions

scenario.We also interpret the average response of all the

GCMs for a given emissions scenario (the ensemble

mean) as the most likely outcome for that scenario. This

assumes the GCMs randomly sample the true uncertainty

space associated with the simulated response to

anthropogenic forcing. This is the same approach to

likelihood and climate change uncertainty quantification

used in the Intergovernmental Panel on Climate Change

(IPCC) report (Stocker et al. 2013).

In this study, we focus on three time periods: baseline

(1981–2000), midcentury (2041–60), and end of century

(2081–2100). These time periods are shaded in Fig. 1.

Climate change is quantified by comparing midcentury

and end-of-century climate states to that of the baseline.

Previously, the vast majority of regional climate change

studies have been performed for only 1–3 different

GCMs (e.g., Hayhoe et al. 2004; Duffy et al. 2006; Déqué
et al. 2007; Sato et al. 2007; Cayan et al. 2008; Salathé
et al. 2010; Cabré et al. 2010). This is partly because of

the computational expense of dynamically downscaling

each GCM. The hybrid dynamical–statistical technique

described in Part I allows us to perform downscaling of

the temperature change signal for each of these future

time periods and scenarios and for every available

CMIP5 model.

This hybrid dynamical–statistical technique combines

the ability of dynamical downscaling to capture finescale

dynamics with a computationally efficient statistical

model to downscale a large ensemble of GCMs. First,

theWeather Research and Forecasting (WRF)Model, a

regional-scale model, is used to perform two types of

simulations: 1) a baseline simulation using the North

American Regional Reanalysis (NARR) data as bound-

ary and initial conditions; and 2) multiple midcentury

future simulations under RCP8.5 emissions scenario by

applying a previously establishedmethod (e.g., Schär et al.
1996; Hara et al. 2008; Kawase et al. 2009) to five selected

GCMs, which adequately sample the range of warming

amplitudes across all GCMs. In this method, initial and

boundary conditions are given by adding a mean climate

change signal from a given GCM to the 3-hourly NARR

data. We did not downscale changes in GCM variability.

Thus, any future changes in variability in the regional

simulations are solely the result of WRF’s dynamical

response.We further discuss the caveats of this approach

in section 4. Guided by an understanding of the un-

derlying local dynamics, a simple statistical regression

model is constructed relating the GCM output and the

dynamically downscaled output. The statistical model

consists of mathematical relationships between key

aspects of the GCM warming and the warming patterns

produced by dynamically downscaling. This statistical

model is then used to approximate the warming patterns

of the remaining GCMs, as if they had been dynamically

downscaled. For more details on this hybrid approach,

refer to Part I. Because we downscale the entire

ensemble of GCMs, we can quantify both the ensemble-

mean warming and the intermodel spread. This allows us

to provide estimates of the most likely outcome and the

associated uncertainty.

A robust baseline simulation (validated for surface

air temperature in Part I) allows us to evaluate these

climate change signals in the context of the region’s

substantial natural variability (Wilkinson and Rounds

1998; Abatzoglou et al. 2009). Global-mean tempera-

tures have already increased beyond the envelope of

variability (Bindoff et al. 2013). However, elevated

levels of natural variability at the regional scale make

this a more difficult test for regional temperatures, de-

pending on location (Deser et al. 2012a,b, 2013; Wallace

et al. 2015). This is not just an abstract statistical ques-

tion. The envelope of natural variability maps out a

range of physical states to which the region’s inhabitants

and ecosystems are already adapted. Any perturbation

resulting from anthropogenic climate change therefore

must be assessed against this background. Here, we

present multiple analyses designed to reveal whether

changes in the region’s temperatures represent signifi-

cant departures from the baseline state for each scenario

and time slice. These include a comparison of the climate

change signal to interannual variability and the region’s

seasonal cycle, a ‘‘similarity’’ metric that quantifies the

degree of correspondence between the daily tempera-

ture variability of future climate and the baseline, and

quantification of changes in extremely hot and cold days.
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Such definitive assessments of most likely outcomes

and uncertainty estimates against the background of

natural variability allow us to address how choices re-

lating to greenhouse gas emissions affect climate out-

comes at the regional scale and when these outcomes

will emerge. This information is a foundation for efforts

to adapt to climate change and also reveals the climate

benefits of mitigation strategies.

The paper is organized as follows. The surface air

warming comparison for multiple time periods and sce-

narios is shown in section 2, followed by analyses of these

changes relative to the baseline seasonal cycle and in-

terannual variability. Changes in temperature distribution

and temperature extremes are assessed in section 3. In

section 4, we summarize themajor findings and discuss the

caveats and limitations of this hybrid dynamical–statistical

downscaling approach and the implications for interpret-

ing the downscaled changes.

2. Changes in mean temperature

a. Ensemble-mean change and spread

First, we examine the annual-mean, ensemble-mean

surface air warming (Fig. 2). In each scenario and time

slice, the coastal areas warm less than inland areas, with

the mountain peaks warming the most. These differ-

ences are most pronounced in RCP8.5. As discussed

in Part I, spatial variations in the warming are due to

1) generally lower warming over the ocean in response

to increasing greenhouse gases because of the ocean’s

relatively larger effective heat capacity and the more

FIG. 2. Ensemble mean of downscaled annual-mean surface warming (8C) for (a) midcentury (2041–60) under

RCP2.6, (b) midcentury under RCP8.5, (c) end of century (2081–2100) under RCP2.6, and (d) end of century under

RCP8.5. White contours are plotted at 1000-m elevation.
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efficient ventilation of the ocean surface through latent

heat fluxes, which allows enhanced downward infrared

radiation in the warmer climate to be balanced with a

smaller surface temperature increase over the ocean

compared to land; and 2) the land–sea breeze circula-

tion, which introduces a marine influence in the coastal

zone, in this case bringing the milder warming of the

ocean to the coastal zone. The annual-mean warming is

highest in mountain areas mainly because they experi-

ence strong snow–albedo feedback, which is strongest in

the spring months.

As shown in Figs. 2a,b and Fig. 3, the emissions sce-

nario has only a relatively small influence on the warming

at midcentury. Themidcentury warming under RCP2.6 is

70% of the warming under RCP8.5. By the end of cen-

tury, however, the gap between the scenarios has grown

much larger. Under RCP2.6, end-of-century warming

remains almost unchanged compared with midcentury

warming, whereas under RCP8.5, end-of-century

warming approximately doubles compared with mid-

century warming, shown in Figs. 2c,d and Fig. 3. This

indicates that, although the impact of global measures to

reduce greenhouse gas emissions would be modest in the

coming decades, it would be significant by the time the

twenty-first century draws to a close.

To examine intermodel spread, we look at the

annual-meanwarming for eachGCM, averaged over the

land areas within the region (Fig. 3). The intermodel

spread scales approximately with the ensemble-mean

warming, with the largest spread being associated with

end-of-century RCP8.5 (red dots). In this case, the

ensemble-mean warming is 4.38C, with the model pre-

dicting the most warming (MIROC-ESM-CHEM)

giving a 6.28C increase, and the model predicting the

least warming (INM-CM4.0) giving a 2.88C increase. In

contrast, under the RCP2.6 scenario, the ensemble-

mean warming at end of century is 1.68C, with a maxi-

mum of 2.78C and a minimum of 0.88C. Thus, by the end
of the century, even the model with the least warming

under RCP8.5 warms more than any model under

RCP2.6, despite the large intermodel spread.

b. Comparison of change signal to interannual
variability

To determine if these changes in temperature are

outside the variations the region is already adapted to,

FIG. 3. Land-averaged annual-mean surface warming (8C) downscaled from each GCM for midcentury (2041–60)

under RCP2.6 (green dots), midcentury under RCP8.5 (orange dots), end of century (2081–2100) under RCP2.6

(magenta dots), and end of century under RCP8.5 (red dots). Horizontal lines denote the corresponding ensemble

mean across all GCMs for each scenario. (Expanded GCM names can be found online at http://www.ametsoc.org/

PubsAcronymList.)
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we compare them to the region’s interannual variability.

Figure 4 shows, for each month of the calendar year, the

year-to-year variability in monthly mean temperatures

averaged over land areas in the baseline period and the

associated monthly mean warming and its intermodel

spread for each future scenario and time slice. First, we

note that the interannual variability for each month

itself varies considerably, with the least variability oc-

curring during the summer months, especially August,

and the most variability occurring during the spring and

fall months. Thus, the emergence of the climate change

signal from the noise of interannual variability would be a

function of time of year, even if the warming were the

same for all months.

Indeed, partly because of low variability in summer,

the summer warming signals are most distinct from the

background variability. For example, by midcentury

under RCP8.5, the most likely average future August

(predicted by the ensemble mean) is warmer than the

hottest August during the baseline period. Other months

also showmost likely future average temperatures that are

outside or near the upper edge of the variability envelope

for this scenario and time slice. By the end of century

under RCP8.5, the ensemble-mean warming puts

average temperatures well outside the baseline range for

every month, even during spring, when variability is

highest. Again, the effect is most dramatic in the summer

months. For June, July, August, September, andOctober,

even the model with the least warming predicts average

monthly temperatures that are warmer than the hottest

month within the baseline period. For the model with the

most warming, the average future warm-season temper-

ature is about 58C greater than the warmest of the warm

months in the baseline period. For the rest of the months,

there is little overlap between the model spread in the

average temperatures and the variability envelope. In

fact, December, January, and February will be most

similar to average baseline April. Future March is likely

to be warmer than average baseline April; future April is

likely to be warmer than average baseline May. Thus, the

end-of-century warming signals under RCP8.5 represent

a pronounced shift in climate compared to the baseline.

FIG. 4. Annual cycle of land-averaged surface air temperature (8C) for the baseline period (black), midcentury

under RCP2.6 (green), midcentury under RCP8.5 (orange), end of century under RCP2.6 (magenta), and end of

century under RCP8.5 (red). Black solid dots denote the 20-yr baseline climatology, and black open circles denote

monthly mean for each year during baseline period (1981–2000). Other solid dots denote the ensemble-mean

climatology for their respective scenario and time slice; bars denote the range across all the downscaled GCMs.
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Unlike the end-of-century temperatures under RCP8.5,

future temperatures under RCP2.6 are mostly within the

range of baseline variability for both time slices.

3. Changes in temperature distribution

In this section, we examine changes in daily temper-

ature distribution associated with overall warmer con-

ditions for midcentury and end-of-century time slices

under RCP2.6 and RCP8.5 emissions scenarios.

The statistical model presented in Part I was designed

only to calculate the change in the monthly climatolog-

ical mean temperatures for each GCM in the ensemble

and cannot be used directly to calculate changes in

temperature distribution. However, changes in daily

variability were examined for the five models that were

downscaled dynamically. The solid lines of Fig. 5 show

probability density functions (PDFs) of baseline and

future daily land-averaged temperatures generated

through dynamical downscaling for January and July.

The shape of future PDF is clearly very similar to that of

the baseline for every GCM and for both months. In

fact, the future PDF is nearly perfectly approximated by

simply shifting the baseline PDF by the mean temper-

ature difference (black dashed lines). This approxima-

tion holds equally well for the other 10 months (not

shown). We took advantage of this finding to generate

future PDFs for all statistically downscaled GCMs,

starting with the baseline PDF and then shifting the

mean by the temperature change given by the statistical

model. To create the ensemble-mean future PDF, we

started with the baseline PDF and shifted the mean by

the ensemble-mean temperature change. All of the re-

sults in this section are based on this technique.

a. Daily average temperature distributions

Ensemble-mean land-averaged daily temperature

distributions are shown for selected months corre-

sponding to the four phases of the annual cycle in

Figs. 6a–d. The most likely warming involves noticeable

shifts of the temperature distribution toward higher

values. The PDFs themselves are widest in the spring

months, such asApril, and narrowest in summermonths,

such as July. (This is consistent with the smaller levels in

interannual variability in summer compared with spring

seen in Fig. 4.)

To assess the degree to which daily average future

temperatures will be similar to the baseline, we use a

metric that quantifies how similar the current and future

temperature distributions are: the fractional overlap

between the two PDFs (an example shown in Fig. 6d).

FIG. 5. PDFs of daily mean, land-averaged surface air temperature during (top) January and (bottom) July, during the baseline period

(black) and at midcentury under RCP8.5 (orange) for five dynamically downscaled GCMs. The baseline distribution shifted by the

statistically downscaled mean temperature change (dashed black) is shown for comparison.
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The interpretation of this similarity metric is the fraction

of days in the future experiencing similar temperatures

to the baseline period. The similarity metric is shown in

Fig. 6e for each month and for both time slices and

scenarios. In general, it is highest in the spring months

and lowest in the late summer and early fall. This can be

traced partly to the differences in variability between

these two seasons noted above and also to the greater

warming in late summer/early fall. Both of the time

slices associated with the RCP2.6 emissions scenario

give similarity scores of about 80%, indicating a pro-

nounced but modest change in climate. The similarity

scores for RCP8.5 midcentury are typically about 5%

lower than those associated with the RCP2.6 cases. The

RCP8.5 end-of-century case involves a dramatic re-

duction in the similarity scores, which hover around

45%–70%. Thus, under RCP8.5 only 1/2–2/3 of the end-

of-century days will experience similar temperatures to

FIG. 6. PDFs of ensemble-mean, daily mean land-averaged surface air temperature (8C)
during (a) January, (b) April, (c) July, and (d) October, representing each season in the

baseline period (black) and at midcentury under RCP2.6 (green), midcentury under RCP8.5

(orange), end of century under RCP2.6 (magenta), and end of century under RCP8.5 (red).

(e) Similarity score for each future scenario and time slice, defined as the percentage of area

overlapping between future PDF and baseline PDF.
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the baseline period. This is a strong indicator of a future

climate state that is qualitatively different from the

baseline.

b. Comparison of future and baseline percentiles

We also provide a complete mapping of the corre-

spondences between baseline and future days. The per-

centile rank of each day in the baseline is paired with the

percentile rank a day with the same temperature would

have in a future period. Curves mapping these corre-

spondences between percentiles of daily averaged tem-

perature in the baseline (x axis) and future (y axis) for

each time slice and scenario and for each calendar month

are presented in Fig. 7. The corresponding percentiles in a

future period to the baseline 50th percentile are shown at

the intersections with the vertical lines. The y 5 x gray

lines show what the result would be if there were no

changes in the distributions. For example, for July the

50th percentile in the baseline corresponds to the 7th

percentile under RCP8.5 at end of century (intersection

of red curve and vertical gray line). Therefore, 93% of

future July days in this time slice and scenario will be

warmer than the baseline median temperature. In the

case of RCP2.6 at end of the century, 71% of future July

days will be warmer than the baseline median tempera-

ture (intersection of magenta curve and vertical gray

line), again indicating a noticeable but relatively smaller

change in climate. Intersections of curves and horizontal

lines show the corresponding baseline percentile to the

50th percentile temperature in a given future period

under a certain scenario. For example, the 50th percentile

for January under RCP8.5 at end of century corresponds

to the 90th percentile in the baseline; while in the case of

RCP2.6 at end of century the 50th percentile for January

corresponds to the 66th percentile in the baseline. In

general, the shape of each curve indicates the similarity of

the future state to the baseline, with higher concavity

corresponding to a more dramatic shift. The concavity is

largest in RCP8.5 at end of century, with each percentile

in the baseline typically corresponding to a future per-

centile that ranks tens of percentage points lower in the

distribution. The concavity is least under RCP2.6, with

RCP8.5 at midcentury being somewhat less similar to the

baseline than the two RCP2.6 time slices.

c. Heat extremes

In this study, an extremely hot day is defined as one in

which the daily maximum temperature (Tmax) exceeds

358C (958F). See the appendix for how daily maximum

surface air temperature is calculated in this case. Our

dynamically downscaled simulation generates temper-

ature snapshots every three hours, and we selected a

1600 local time (LT) snapshot because it is the closest to

the time that the observed maximum temperature typi-

cally occurs. The model-calculated daily maximum tem-

peratures from the baseline still validate well against a

network of 21 weather stations (see the appendix). This

gives us confidence that modeled extremely hot days

correspond to actual hot days experienced throughout

the region.

In the baseline period, most of the coastal and

mountain areas have fewer than 10 extremely hot days

per year (Fig. 8a). In contrast, inland regions such as the

Mojave Desert, Coachella Valley, and Central Valley all

contain areas exceeding 100 extremely hot days per year.

While frequent extreme temperatures are mostly limited

to inland regions, parts of the coastal zone have more

than 60 extremely hot days per year. These regions are

valleys that are somewhat removed from the moderating

effects of the sea breeze, despite lying on the coastal side

of themajormountain complexes. Strong gradients in the

number of extremely hot days—such as those within the

coastal zone—are an important reason to perform dy-

namical downscaling to such high resolution. With lower

resolution, it could be difficult to distinguish important

differences in extreme temperature behavior between

these locations.

To quantify future extremely hot days, we started by

examining the dynamically downscaled simulations. We

found that the distributions of future daily maximum

temperatures could be approximated almost perfectly

by the baseline distribution shifted by the change in

average temperature. (These results are not shown, but

they are very similar to the daily mean results shown in

Fig. 5.) Taking advantage of this finding, we created

future distributions of daily maximum temperatures by

shifting the baseline distributions by the temperature

changes provided by the statistical model. These future

distributions, generated based on the ensemble-mean

warming, were used in the analysis that follows.

The number of extremely hot days increases most

under the RCP8.5 scenario at end of century. With the

exception of the highest elevations and a narrow swath

very near the coast, where the increases are confined to a

few days, land locations see 60–90 additional extremely

hot days per year by the end of century (Fig. 8e). Thus,

most land areas will effectively experience a new season

of extreme heat. Downtown Los Angeles will see a rise

from 6 to 54 extremely hot days, while at Riverside the

number will roughly double, from 58 to 128 (Table 1).

For midcentury under RCP8.5, and under RCP2.6 for

both time slices, the spatial pattern is similar to RCP8.5

at end of century, but the increases are smaller. Most

land areas see increases of roughly 20–40 additional

extremely hot days per year. Downtown Los Angeles

will experience a dozen or so more extremely hot days,
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FIG. 7. Correspondence between percentiles of daily averaged temperature in the baseline (x axis) and future period (y axis) for each

calendar month and for midcentury and end of century for RCP8.5 and RCP2.6 scenarios. The corresponding percentile in the future

(baseline) to the baseline (future) 50th percentile is shown at the intersection with the vertical (horizontal) gray line.
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FIG. 8. (a) The number of extremely hot days per year (Tmax. 358C) for the baseline; and the
change of number of extremely hot days per year for the (b) midcentury under RCP2.6,

(c) midcentury under RCP8.5, (d) end of century under RCP2.6, and (e) end of century under

RCP8.5. The 1000-m elevation contour is shown in white. SGV denotes the San Gabriel valley.
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roughly a tripling, while Riverside will see approximately

a 50% increase (Table 1). The highest elevations and lo-

cations very near the coast see almost no change in this

quantity.

Although areas with more extremely hot days during

the baseline period generally also see larger increases,

the largest increase actually occurs in the San Gabriel

valley, a part of the coastal zone. This phenomenon can

be understood by examining the baseline and future

distributions shown in Fig. 9. (Future distributions

shown are for RCP8.5 at end of century.) At the San

Gabriel valley location (Fig. 9a), where the largest in-

crease in extremely hot days occurs (Fig. 8e), the peak in

the baseline maximum temperature distribution occurs

at about 32.58C. Thus, a warming of 48C pushes the peak

of the distribution well past the 358C threshold, resulting

in nearly a quadrupling of the number of extremely hot

days per year, from 32 in the baseline to 117 at the end of

the century. In contrast, at a location in the Mojave

Desert farther inland (Fig. 9c), the increase is smaller

(from 90 to 141), even though the baseline number of

extremely hot days is larger. Despite the fact that the

warming is about 0.78C (17%) larger here than in the

coastal zone, the increase in extremely hot days is

smaller because the baseline distribution is broader and

its peak already lies above the 358C threshold. In much

cooler coastal locations closer to the ocean, such as

Santa Monica (Fig. 9d), few baseline days are close to

the threshold so that a warming of 48C only results in an

increase from 0 to 3 extremely hot days per year.

The generally greater warming in the interior could

be a factor behind the larger increases in the numbers of

extremely hot days in these locations. However, the re-

sults discussed above suggest that given an approximation

of the overall warming in the region, the relationship

between the baseline temperature distribution and the

358C threshold may be more important in determining

the increase in the number of extremely hot days at any

particular location. A sensitivity test was performed to

see if differences in warming throughout the domain

were, in fact, important factors: The baseline distribution

at each of our selected locations was shifted to reflect the

same warming (Fig. 9, red dashed lines). In this case, we

chose the warming that occurs at the coast. To assess the

impact of spatial variations in the warming, the resulting

number of future extremely hot days can be compared to

the number that takes into account the local warming

(Fig. 9, solid red lines). For the San Gabriel valley and

Mojave Desert locations (Figs. 9a,c), the increase is

nearly identical. A somewhat contrasting situation is seen

in the San Gabriel Mountains (Fig. 9b), where a signifi-

cant fraction (;50%) of the increase can be attributed to

the enhanced warming occurring in themountains. These

findings suggest that even in this area of complex topog-

raphy, there is only a modest benefit to dynamical

downscaling in projecting future changes in extremely hot

days. However, a credible downscaling approach is re-

quired to reproduce the baseline climate accurately.

d. Cold extremes

For the purposes of this study, we define an extremely

cold day as one in which the daily minimum surface air

temperature (Tmin) drops below 08C. This particular

measure of cold extremes has significance to the

hydrological cycle because surface air temperature rel-

ative to the freezing line is tightly linked to the parti-

tioning between rain and snow during a precipitation

event, the freezing and thawing of the snowpack, and

frost formation. This measure of cold extremes also has

ecological significance, since freezing temperatures can

eliminate plant and animal pathogens (e.g., Chakraborty

2013; Raffa et al. 2013). Note that a blend of the surface

skin temperature and 2-m temperature is used to cal-

culate the surface air temperature (see the appendix).

In the baseline climate simulation, many parts of the

region experience virtually no extremely cold days

per year (Fig. 10a). However, extremely cold days

occur frequently in the region’s mountainous areas,

TABLE 1. Average number of extremely hot days (daily Tmax . 358C) per year for selected sites in the Los Angeles region. Results are

shown for the baseline, midcentury, and end-of-century projections for both RCP8.5 and RCP2.6 emission scenarios.

Baseline RCP2.6 midcentury RCP8.5 midcentury RCP2.6 end of century RCP8.5 end of century

Bakersfield 111 127 134 127 154

Long Beach 4 11 16 11 37

Los Angeles 6 16 22 15 54

Mojave Desert 90 110 120 109 141

Palm Springs 135 149 158 149 179

Palmdale 36 59 71 58 104

Riverside 58 86 98 86 128

San Gabriel valley 32 62 74 61 117

San Gabriel Mountain 0 0 1 0 8

Santa Monica 0 1 1 1 3
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with some high-elevation locations experiencing as

many as 200 days yr21. Here we focus on changes in the

mountainous areas where freezing temperatures occur.

Figures 10b–e show that in future time slices large re-

ductions in cold days occur at high elevations. Under

RCP8.5, end-of-century changes are especially dramatic,

with some portions of the southern Sierra Nevada, San

Gabriel Mountains, and San Bernardino Mountains

seeing a decrease of roughly 50–90days yr21. This rep-

resents nearly a full quarter of the year reduction in the

number of days below freezing. In most cases, the re-

duction represents amajority of the baseline number. For

example, at Big Bear Lake the number goes down from

142 to 55days yr21 and at Lake Arrowhead from 54 to

17 (Table 2). At Victorville and Palmdale, freezing tem-

peratures practically disappear. The total area of the re-

gion experiencing at least 1dayperyr21 with freezing

temperatures decreases to less than half its value in the

baseline. Under RCP2.6 for both time slices and under

RCP8.5 midcentury, the reductions in the numbers of

days per year are generally smaller, usually limited to

20–30 days (Fig. 10 and Table 2), and the total area of the

region experiencing at least 1dayyr21 with freezing

temperatures decreases to roughly 80% of its value in the

baseline.

Though both emissions scenarios and time slices show

fewer extremely cold days overall, in none of these four

future cases do extremely cold days disappear com-

pletely throughout the region. The future occurrence of

weather events involving freezing temperatures in the

greater Los Angeles region therefore cannot be inter-

preted as an absence of climate change.

4. Discussion and conclusions

Using a dynamical–statistical technique, we down-

scale temperature change relative to a baseline period

(1981–2000) in the greater Los Angeles region for two

FIG. 9. PDFs of daily maximum temperature at selected sites during warm months (June–October) for baseline

period (solid black), end of century under RCP8.5 (solid red), and baseline shifted by warming at Santa Monica

location (dashed red). Vertical line indicates the 358C threshold.
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FIG. 10. (a) The number of extremely cold days per year (Tmin , 08C) for the baseline; and

the change of number of extremely cold days per year for the (b) midcentury under RCP2.6,

(c) midcentury under RCP8.5, (d) end of century under RCP2.6, and (e) end of century under

RCP8.5. The 1000-m elevation contour is shown in white.
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future time slices: midcentury (2041–60) and end of

century (2081–2100). We focus on two representative

concentration pathways, corresponding to greenhouse

gas emission reductions over coming decades (RCP2.6)

and to continued twenty-first-century emission increases

(RCP8.5). We downscale all available global climate

models in the CMIP5 ensemble to provide likelihood

and uncertainty estimates.

By the end of century under RCP8.5, a distinctly new

regional climate state emerges against a background of

considerable natural variability. This can be seen in

more than one measure of change. First, average

temperatures will almost certainly be outside the in-

terannual variability range seen in the baseline. This

statement is most applicable during the summer and fall,

when the average future temperature in the model with

the least warming is greater than even the very warmest

year of the baseline. Second, the number of extremely

hot days, defined as days when the daily maximum

temperature exceeds 358C, will increase significantly.

Except for the highest elevations and a narrow swath

very near the coast, land locations will likely see 60–90

additional extremely hot days per year, effectively

adding an entirely new season of extreme heat. Third,

days when minimum temperatures dip below freezing

will decrease. In the baseline, there are typically dozens

of days per year in mountainous areas when this occurs,

but under RCP8.5 their number typically decreases by

more than half. Finally, according to a similarity metric

that quantifies the degree of correspondence between

baseline and future distributions of daily temperature

variability, the RCP8.5 end-of-century climate will most

likely be only about 50% similar to the baseline.

Under RCP2.6 for midcentury and end-of-century

time slices, these same measures indicate a climate

shift that is less pronounced but still substantial. Future

ensemble-mean average temperatures increase but lie

just within the range of baseline interannual variability

for all months except August. Therefore, future average

monthly temperatures will likely be as warm as the

hottest months in the baseline. Extremely hot days will

occur more frequently, with roughly 20–40 additional

extremely hot days per year over much of the land areas,

though this is noticeably less than the 60–90 additional

hot days experienced at the end of century under

RCP8.5. Freezing days occur less frequently under

RCP2.6 at midcentury and end of century, but again the

reductions under RCP8.5 at end of century are twice as

large. Similarity scores for the RCP2.6 scenario indicate

that future daily temperatures will be roughly 80%

similar to those experienced during the baseline period.

Adaptation to this level of climate change should be

easier, because future temperatures are mostly still

within the envelope of variability to which human in-

habitants and ecosystems are accustomed.

At midcentury, warming under RCP2.6 is nearly as

large as that under RCP8.5, indicating that global

emissions reductions would not prevent climate change

in the region in the first half of the twenty-first century.

At midcentury, warming under RCP2.6 is still 70% of

the warming under RCP8.5. Similarity scores for the two

cases are within roughly 5% of one another, and the

changes in extremely hot and cold days are similar. Thus,

some climatic changes would occur by midcentury re-

gardless of choices regarding emission reductions.

However, the impact of global emissions reductions

becomes dramatic as the twenty-first century draws to a

close. As we have detailed, they are necessary to prevent a

dramatic shift in the regional climate state.

This downscaling approach used in this study allows us

to quantify how the GCM climate change signals are

expressed at the regional scale without the GCM future

simulation being subject to the very large biases often

found in the historical simulations of GCMs. A caveat of

this work is that we only downscale the effects of a change

in mean climate. In the dynamical downscaling experi-

ments at the core of our methodology, we add the mean

changes between future and baseline 20-yr climatologies

for each calendar month to the baseline reanalysis

boundary and initial conditions. Therefore, our simula-

tions tell us how the baseline period would have been

different if themonthlymean climatologieswere altered to

reflect the GCM climate change signals. This approach is

independently developed and is similar to previously

TABLE 2. Average number of extremely cold days (daily Tmin , 08C) per year for selected sites in the Los Angeles region. Results are

shown for the baseline, midcentury, and end-of-century projections for both RCP8.5 and RCP2.6 emission scenarios.

Baseline RCP2.6 midcentury RCP8.5 midcentury RCP2.6 end of century RCP8.5 end of century

Big Bear Lake 142 99 83 98 55

Idyllwild 77 47 38 46 21

Lake Arrowhead 54 34 28 33 17

Palmdale 26 8 4 7 1

Tehachapi 38 18 12 17 5

Victorville 44 15 9 15 2
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developed procedures in recent regional climate down-

scaling studies (e.g., Schär et al. 1996; Hara et al. 2008;

Knutson et al. 2008; Kawase et al. 2009; Lauer et al. 2010;

Rasmussen et al. 2011; Seo and Xie 2011; Gutmann et al.

2012). It assumes that the weather and transient signals

(e.g., frequency and intensity) applied on the model do-

main’s boundaries remain structurally the same in the

future simulation as in the baseline. Accordingly, we do

not incorporate the changes in variability from daily to

interannual scales in the boundary forcing (e.g., Knutson

et al. 2008;Rasmussen et al. 2011). Therefore, the potential

changes in GCM variability are not downscaled. This

could be a limitation of our downscaling technique, espe-

cially when it comes to projecting changes in extremes.

One way to shed light on this issue is to investigate

variability changes in the rawGCMoutput.We examine

the daily PDF distributions within each calendar month

for the five dynamically downscaled GCM projections

for the baseline period and the midcentury period under

RCP8.5 emissions scenario. Figure 11 compares the

distribution of daily area-mean (338–368N, 1178–1208W)

surface air temperature in January and July in the two

periods. The solid lines show the distribution of baseline

(black) and midcentury (red) separately. While the

shapes of the distributions are not identical between

baseline and midcentury for each GCM, they are very

similar for both months. Therefore, the midcentury

distribution for each month can be approximated by

shifting the baseline distribution by the mean tempera-

ture change (red dashed lines). Examination of PDFs for

the other calendar months reveals that this approxima-

tion still holds well (not shown). These results suggest

that in the domain of interest (i.e., the Los Angeles re-

gion) the GCM-derived changes in daily temperature

variability are rather small and secondary to the shift of

the mean. It seems unlikely the weather activities would

substantially change in GCMs from the baseline to fu-

ture in the domain of interest. If these changes in GCM

temperature variability were downscaled, it is likely that

they would be equally subtle in the downscaled data.

Therefore, we conclude the local changes in extremely

hot and cold days projected in this study are reasonably

accurate and are not subject to the limitation of the

methodology.
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APPENDIX

Improving Model Estimates of Extremes

When we used the dynamically downscaled 2-m air

temperature output from the Weather Research and

Forecasting Model, a regional model, the number of

simulated extremely hot days (Tmax . 358C) during the

baseline period was too low in comparison with obser-

vational point measurements (Table A1). Here we ex-

plain the potential causes of the underestimation and

then come up with a new formula that better quantifies

FIG. 11. PDFs of daily mean, area-mean (338–368N, 1178–1208W) surface air temperature in (top) January and (bottom) July during the

baseline (black) and at midcentury under RCP8.5 emissions scenario (red) for five raw GCMs. The baseline distribution shifted by the

mean temperature change (red dashed) for each GCM is shown for comparison.
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number of the extremely hot days. This new formula

also improves estimates for extremely cold days.

The observational dataset used is a set of quality-

controlled, daily maximum near-surface temperature

observations taken during the baseline period

(1981–2000) from 21 weather stations. These data were

obtained from the National Climatic Data Center

(NCDC; http://www.ncdc.noaa.gov/oa/ncdc/html). Unlike

this observational dataset, where the temperatures were

recorded every 10min, in our simulations, we only saved a

snapshot of the air temperature output every 3h (at 1000,

1300, 1600, 1900 LT, etc.) Since the temperature is not

recorded at the exact time the true daily maximum (min-

imum) is achieved, our modeled maximum (minimum)

temperatures will be an underestimation (overestimation)

of what WRF actually produced. This leads to

an underestimation (overestimation) of the number of

extremely hot (cold) days.

Another source of discrepancy may come from the

height at which the temperature measurements are taken.

To measure surface air temperature in WRF, we use the

air temperature at a reference height of 2m. While WRF

interpolates the temperature to two meters height from

the temperature of its atmospheric layer closest to the

surface, the thermometer at the weather stations is set

between 1 and 2m above the ground. Because the ground

is the source of heat during the day, the closer the ther-

mometer is to the ground, the warmer the observed tem-

perature. Therefore, the mismatch between the modeled

reference height and true observed height may partially

account for the model’s bias of the observed surface air

temperature. The particular technique used by WRF to

interpolate 2-m temperatures from the temperature of the

surface layer may also lead to a bias, compared with the

observed surface air temperature.

To better diagnose the simulated extremes in the base-

line simulation and the future changes, we developed a

formula to describe the daily maximum surface air tem-

perature more realistically. We tested a series of different

combinations of model-simulated surface skin tempera-

ture (TSK) and 2-m air temperature (T2m) and found

that a combination of two-thirds TSK and one-third T2m

gives the most realistic estimation (smallest root-mean-

square error) of the observed extremes (Fig.A1). The daily

maximum surface air temperature is taken to be this blend

of surface and surface air temperatures, taken at 1600 LT.

This new method validates well against the point mea-

surements in the observational network and provides a

significant improvement over using T2m alone (Table A1).

For example, for the city of Lancaster, the new method

produces 53 extremely hot days per year, while the ob-

served number of extremely hot days is 566 8daysyr21, a

significant improvement over the 14daysyr21 predicted

byT2m alone. Because of these improvements, this method

is used for the calculations of extremely hot days.

The particular blend of two-thirds surface skin temper-

ature plus one-third 2-m temperature was also found to

produce the best results for modeling daily minimum

TABLEA1. Average number of extremely hot days per year for 21 sites in the greater Los Angeles area. An extremely hot day is defined

as a day in which the daily maximum surface air temperature is greater than 358C (958F). Results are shown for station observations, T2m,

and weighted average of modeled T2m and TSK.

Station name Observed T2m
1/3T2m 1 2/3TSK

Palmdale 75 6 8 10 47

Lancaster 56 6 8 14 53

Palm Springs 148 6 7 96 144

Van Nuys 35 6 4 8 49

Downtown Los Angeles 10 6 3 1 6

Bakersfield 69 6 8 50 103

Long Beach 7 6 2 1 6

Los Angeles International Airport (LAX) 2 6 0.4 0 0

Big Bear Lake 0.1 6 0.03 0 0.2

Riverside 60 6 8 10 59

Burbank 27 6 5 4 31

Pasadena 31 6 6 3 29

Pomona 20 6 5 4 30

Santa Barbara 1 6 0.3 1 5

Oxnard 0.7 6 0.2 0.2 0.1

Santa Ana 7 6 2 1 5

Santa Monica pier 0.2 6 0.03 0 0

Dry Canyon Reservoir 66 6 7 8 37

San Bernardino 59 6 8 22 83

Torrance 2 6 0.8 0.2 1

Redlands 61 6 8 19 68
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surface air temperatures (not shown). As with the maxi-

mum temperature, theminimum temperature can occur at

any time. The closest time to the average observed mini-

mum when a WRF snapshot is taken is 0400 LT. Thus,

daily minimum temperatures are calculated as a weighted

average of 2-m and surface skin temperatures at 0400 LT.
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