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ABSTRACT

A new hybrid statistical–dynamical downscaling technique is described to project mid- and end-of-twenty-

first-century local precipitation changes associated with 36 global climate models (GCMs) in phase 5 of the

Coupled Model Intercomparison Project archive over the greater Los Angeles region. Land-averaged pre-

cipitation changes, ensemble-mean changes, and the spread of those changes for both time slices are pre-

sented. It is demonstrated that the results are similar to what would be produced if expensive dynamical

downscaling techniques were instead applied to all GCMs. Changes in land-averaged ensemble-mean pre-

cipitation are near zero for both time slices, reflecting the region’s typical position in themodels at the node of

oppositely signed large-scale precipitation changes. For both time slices, the intermodel spread of changes is

only about 0.2–0.4 times as large as natural interannual variability in the baseline period. A caveat to these

conclusions is that interannual variability in the tropical Pacific is generally regarded as a weakness of the

GCMs. As a result, there is some chance the GCM responses in the tropical Pacific to a changing climate and

associated impacts on Southern California precipitation are not credible. It is subjectively judged that this

GCMweakness increases the uncertainty of regional precipitation change, perhaps by as much as 25%. Thus,

it cannot be excluded that the possibility that significant regional adaptation challenges related to either a

precipitation increase or decrease would arise. However, the most likely downscaled outcome is a small change

in local mean precipitation compared to natural variability, with large uncertainty on the sign of the change.

1. Introduction

Freshwater in the Los Angeles region comes from lo-

cal storms, snowpack drainage, and groundwater. Identify-

ing how climate change may impact these sources is of

pressing concern for ecosystems and municipal, agricul-

tural, and recreational purposes. In this study, we only

aim to quantify twenty-first-century climate change im-

pacts to mean local sources of precipitation across the

greater Los Angeles region. Local sources contribute

approximately 10% to the water supply in the City of Los

Angeles (Villaraigosa 2008). However, in some areas,

such as the San Fernando Valley, it contributes a larger

portion (Sheng and Wilson 2008; Slade 2013). Further-

more, these local sources may come under increasing

pressure in the future (Erb et al. 2011).We do not address

potential changes to imported water sources (e.g., the

Colorado River) or extreme events (e.g., Das et al. 2013)

in this study. A separate study will examine responses of

local snowpack to climate change.

Projecting future precipitation changes over the Los

Angeles region is challenging for two reasons. First, in

GCM projections the region typically lies at the boundary

of two oppositely signed, large-scale zones of predicted

precipitation change (van Oldenborgh et al. 2014), as de-

scribed by the ‘‘rich get richer’’ or ‘‘wet regions get wetter

and dry regions drier’’ effect (Chou andNeelin 2004; Held

and Soden 2006; Trenberth 2011; Durack et al. 2012).

Northern, midlatitude areas are projected to get wetter,

while southern, subtropical areas are projected to become

drier. Second, the complex topography of Southern Cal-

ifornia creates variations in precipitation that cannot be
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represented by coarse-resolution GCM simulations. It is

particularly important to adequately represent the coastal

mountains over Southern California because they gener-

ally lead to significant orographic precipitation effects

(Hughes et al. 2009; Neiman et al. 2002).

To address the limitations of coarse-resolutionGCMs,

a common practice is to downscale global projections to

a much finer resolution. Dynamical and statistical

downscaling techniques are available to perform such

a task. Dynamical downscaling solves the equations of

motion and other atmospheric equations numerically,

using a regional model that is forced along the bound-

aries by GCM output. This may represent the most

physically consistent method to downscale climate data,

although systematic biases may still be present in the

downscaled simulation. The major trade-off for dy-

namical downscaling is the expense of huge computa-

tional costs. Dynamical downscaling of climate change

signals has been done for Southern California. For ex-

ample, Duffy et al. (2006) dynamically downscaled two

GCM projections, finding no statistically significant

change in precipitation over Southern California.

Statistical downscaling is computationally cheap

compared with dynamical downscaling but hinges on

currently existing relationships that may ormay not hold

true in the future. This technique has also been applied

in the region of interest. For example, Hayhoe et al.

(2004) statistically downscaled four GCMs using his-

torically derived empirical relationships and found small

decreases in future wintertime precipitation in Southern

California for three of the four simulations. A recent

study by Pierce et al. (2012) uses separate dynamical and

statistical downscaling techniques across 16 global cli-

mate models to examine future precipitation changes

over California. Like Hayhoe et al. (2004), the statistical

downscaling approaches used in Pierce et al. (2012) rely

only on historical relationships (i.e., they assume statio-

narity) between variables when calculating climate change

signals. After averaging across all downscaled projections,

the authors find wintertime precipitation decreases of

5% over Southern California. Maurer (2007) statistically

downscale future global precipitation and temperature

output to drive a hydrologic model and found slight in-

creases in wintertime precipitation over a basin in South-

ern California. Das et al. (2013) statistically downscaled 16

GCMs over the Sierra Nevada and found increased 3-day

flood discharges, even though models tended to disagree

on the sign of mean annual precipitation change. Pierce

et al. (2013) also examined possible changes to daily pre-

cipitation over California. Using both dynamical and sta-

tistical downscaling techniques, they found evidence of

increased wintertime precipitation over California, par-

ticularly over the northern part, because of an increase in

daily precipitation intensity. Note that these previous

studies relied on models from phase 3 of the Coupled

Model Intercomparison Project (CMIP3), while this study

only analyzes models from phase 5 of CMIP (CMIP5).

The two ensembles may exhibit different behavior in

some cases. For example, Neelin et al. (2013) found that

ensemble-mean drying in the CMIP3 archive was stronger

over Southern California than in the CMIP5 archive.

The present study uses a new blended dynamical–

statistical approach to project mid- and end-of-twenty-

first-centuryDecember–February (DJFM) precipitation

changes at a high resolution over the Los Angeles re-

gion. Whereas previous studies use only a dynamical or

empirical statistical downscaling technique, this study

develops statistical relationships directly from dynami-

cally downscaled output. Using this method we are able

to limit the assumption of stationarity that is often em-

ployed in statistical downscaling exercises (e.g., Hayhoe

et al. 2004; Maurer 2007; Pierce et al. 2012). This tech-

nique also allows for downscaling of 36 GCMs in the

CMIP5 archive (Table 1), providing analyses on inter-

model spread and ensemble-mean changes. In addition

to projecting twenty-first-century precipitation changes

over Southern California, another major aim of this

study is to place climate change signals in context of

the region’s significant hydroclimate variability. Huge

interannual variability in precipitation over Southern

California is largely attributed to its relationships with

large-scale natural climate variability patterns such as

the El Niño–Southern Oscillation and the Pacific–North

American pattern (Cayan and Roads 1984; Redmond

and Koch 1991; Dettinger et al. 1998; Cayan et al. 1999;

Leung et al. 2003; Berg et al. 2013).

The structure of the study is as follows: Section 2 de-

scribes the downscaling techniques and provides obser-

vational evaluation of the current climate simulation.

Section 3 shows future precipitation changes according

to 36 downscaled GCMs and explains the physical

mechanisms behind the changes. A discussion of the

relationship between climate change and interannual

variability patterns is presented in section 4, with

a summary of major findings in section 5.

2. Downscaling techniques and validation results

a. Dynamical downscaling

1) DYNAMICAL DOWNSCALING FRAMEWORK

A dynamical downscaling simulation over Southern

California was performed using the Weather Research

and Forecasting Model (WRF), version 3.2 (Skamarock

et al. 2008). We use three nested domains (18, 6, and

2 km) to reach a resolution high enough to represent the
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complex topography and coastlines of Southern Cal-

ifornia adequately. The three domains and the topog-

raphy associated with the outermost 18-km domain are

presented in Fig. 1a. The outermost domain encom-

passes all of California and the adjacent Pacific Ocean,

while the middle domain focuses on Southern Cal-

ifornia, including the southern Sierra Nevada. Finally,

the innermost, 2-km domain is centered over the greater

Los Angeles region. Topography associated with this

domain is seen in Fig. 1b.

Model sensitivity experiments were performed to find

an optimal WRF configuration. Specifically, this simula-

tion uses the Kain–Fritsch (new Eta) cumulus scheme

(Kain 2004), Yonsei University boundary layer scheme

(Hong et al. 2006), Purdue–Lin microphysics scheme

(Lin et al. 1983), Rapid Radiative Transfer Model long-

wave radiation (Mlawer et al. 1997), Dudhia shortwave

radiation schemes (Dudhia 1989), and Noah land sur-

face model (Chen and Dudhia 2001). Each domain has

43 sigma levels in the vertical and vertical resolution is

increased below 3km to better simulate surface and

boundary layer processes.

Two time periods are simulated to initially project

mid-twenty-first-century precipitation changes. We fo-

cus first on a ‘‘baseline’’ period spanning 1981–2000. In

this case, WRF is forced along the boundaries of the

outermost domain by the North American Regional

Reanalysis (NARR). Thenwe simulate a range of future

climates based onmodel output from five CMIP5GCMs

(CCSM4, CNRM-CM5, GFDL CM3, MIROC-ESM-

CHEM, andMPI-ESM-LR; see expanded model names

in Table 1), all under the representative concentration

pathway 8.5 (RCP8.5) emissions scenario. For each fu-

ture simulation, baseline (1981–2000) boundary condi-

tions from NARR are perturbed with future monthly

climatological changes (2041–60 average minus 1981–

2000 average) to atmospheric variables and imposed on

WRF. Three-dimensional atmospheric variables that

were perturbed include temperature, relative humidity,

zonal and meridional winds, and geopotential heights.

Surface temperature, relative humidity, winds, and pres-

sure were also perturbed. This technique has been used

previously (e.g., Schär et al. 1996; Hara et al. 2008;

Knutson et al. 2008; Kawase et al. 2009; Lauer et al. 2010;

Rasmussen et al. 2011; Seo and Xie 2011; Gutmann et al.

2012) and estimates future climates as perturbations to

the same baseline mean state, corresponding roughly to

the present day. A limitation to this technique is that

future interannual variability equals that of the baseline

period. Implications of this limitation when analyzing

downscaled changes are discussed further in sections 3c

and 5. For an application of this downscaling method

applied to future warming over the Los Angeles region,

the reader is referred to Sun et al. (2014, manuscript

submitted to J. Climate).

We first perform a 20-yr future simulation (2041–60),

downscaling climate change signals in CCSM4. Com-

putational expenses prevent full 20-yr simulations for

other models, so we performed a sensitivity test exam-

ining how long of a future period we needed to simulate

to capture the full 20-yr climate change signal. Figure 2

shows that by only simulating 3 future years (2058–60)

we are able to capture the full 20-yr signal to a high

degree of accuracy. (Other consecutive 3-yr periods

between 2041 and 2060 may also be highly representa-

tive of the full 20-yr time span, although computational

resources prevented this analysis.) Spatial structures

between the two signals are tightly correlated, with only

slight discrepancies seen in the coastal zone. Averaged

over the land, the 20- and 3-yr signals are 246.7 and

246.6mm per wet season, respectively. Relying on this

knowledge, we next dynamically downscaled the four

other GCMs (CNRM-CM5, GFDL CM3, MIROC-

ESM-CHEM, and MPI-ESM-LR) for 2058–60. In each

simulation, boundary conditions were created by adding

the 2041–60 minus 1981–2000 GCM changes to the

1998–2000 NARR values. Therefore, interannual vari-

ability over 2058–60 is the same as 1998–2000; however,

the perturbations imposed in the future runs represent

a climate change signal associated with much longer

averaging periods. Statistical downscaling techniques

are then developed based on these 2058–60 minus 1998–

2000 dynamically downscaled changes (section 2b). The

reader is directed to the supplementary material for

a discussion on possible biases in the statistical model

due to interannual variability differences between the 3-

and 20-yr-long changes. Namely, it is found that the

dynamical model underestimates the magnitude of av-

erage precipitation changes by around 20% because it is

based on 3-yr-long signals (2058–60 2 1998–2000)

compared to the 20-yr-long signals (2041–60 2 1981–

2000). Thus statistical estimates based on these changes

may be associated with a reduced spread by a compli-

mentary amount. The implications of this error are ex-

amined further in section 5.

2) MODEL EVALUATION: SPATIAL AND

TEMPORAL VARIABILITY IN THE BASELINE

Before presenting the results of the climate change

experiments, we compare simulated interannual pre-

cipitation variations in the baseline (1981–2000) 2-km

WRF output to observations.We use three observational

datasets: California IrrigationManagement Information

System (CIMIS; http://wwwcimis.water.ca.gov/Default.

aspx). National Oceanic and Atmospheric Admin-

istration (NOAA) Climate Prediction Center (CPC)
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TABLE 1. List of CMIP5 models and corresponding institutions used in this study.

Model acronym Model name Institute

ACCESS1.0 Australian Community Climate and Earth-System

Simulator, version 1.0

Commonwealth Scientific and Industrial Research

Organisation

ACCESS1.3 Australian Community Climate and Earth-System

Simulator, version 1.3

Commonwealth Scientific and Industrial Research

Organisation

BCC-CSM1.1 Beijing Climate Center, Climate System

Model, version 1.1

Beijing Climate Center, China Meteorological

Administration

BCC-CSM1.1(m) Beijing Climate Center, Climate System

Model, version 1.1 (moderate resolution)

Beijing Climate Center, China Meteorological

Administration

BNU-ESM Beijing Normal University–Earth System Model College of Global Change and Earth System Science,

Beijing Normal University

CanESM2 Second Generation Canadian Earth System

Model

Canadian Centre for Climate Modelling and Analysis

CCSM4 Community Climate System Model, version 4 National Center for Atmospheric Research

CESM1(BGC) Community Earth System Model, version

1–Biogeochemistry

National Science Foundation, U.S. Department of Energy,

National Center for Atmospheric Research

CESM1(CAM5) Community Earth System Model version 1 with

the Community Atmospheric Model, version 5

National Science Foundation, U.S. Department of

Energy, National Center for Atmospheric Research

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti

Climatici Carbon Cycle Earth System Model

Centro Euro-Mediterraneo per I Cambiamenti

Climatici

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti

Climatici Climate Model

Centro Euro-Mediterraneo per I Cambiamenti

Climatici

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti

Climatici Stratosphere-resolving Climate Model

Centro Euro-Mediterraneo per I Cambiamenti

Climatici

CNRM-CM5 Centre National de Recherches Météorologiques
Coupled Global Climate Model, version 5

Centre National de Recherches Météorologiques

CSIRO Mk3.6.0 Commonwealth Scientific and Industrial

Research Organisation Mark 3.6.0

Commonwealth Scientific and Industrial Research

Organisation

EC-EARTH European Consortium Earth System Model EC-Earth Consortium

FGOALS-g2 Flexible Global Ocean–Atmosphere–Land

System Model, gridpoint version 2

State Key Laboratory of Numerical Modeling for

Atmospheric Sciences and Geophysical Fluid

Dynamics (LASG), Institute of Atmospheric Physics,

Chinese Academy of Sciences

GFDL CM3 Geophysical Fluid Dynamics Laboratory

Climate Model, version 3

NOAA/Geophysical Fluid Dynamics Laboratory

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth

System Model with Generalized Ocean Layer

Dynamics (GOLD) component

NOAA/Geophysical Fluid Dynamics Laboratory

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth

System Model with Modular Ocean Model,

version 4 (MOM4) component

NOAA/Geophysical Fluid Dynamics Laboratory

GISS-E2-H Goddard Institute for Space Studies Model E2,

coupled with Hybrid Coordinate Ocean

Model (HYCOM)

National Aeronautics and Space Administration (NASA)

Goddard Institute for Space Studies

GISS-E2-R Goddard Institute for Space Studies Model E2,

coupled with the Russell ocean model

NASA Goddard Institute for Space Studies

HadGEM2-AO Hadley Centre Global Environment Model,

version 2–Atmosphere and Ocean

Met Office Hadley Centre

HadGEM2-CC Hadley Centre Global Environment Model,

version 2–Carbon Cycle

Met Office Hadley Centre

HadGEM2-ES Hadley Centre Global Environment Model,

version 2–Earth System

Met Office Hadley Centre

INM-CM4 Institute of Numerical Mathematics Coupled

Model, version 4

Institute of Numerical Mathematics

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled

Model, version 5A, low resolution

L’Institut Pierre-Simon Laplace

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace Coupled

Model, version 5A, mid resolution

L’Institut Pierre-Simon Laplace

IPSL-CM5B-LR L’Institut Pierre-Simon Laplace Coupled

Model, version 5B, low resolution

L’Institut Pierre-Simon Laplace
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0.258 3 0.258 daily U.S. unified precipitation (http://

www.esrl.noaa.gov/psd/data/gridded/data.unified.html),

and the 0.58 3 0.58 gridded University of Delaware

(UDel) precipitation product (http://www.esrl.noaa.gov/

psd/data/gridded/data.UDel_AirT_Precip.html). Corre-

lations between these datasets and WRF output may be

less than 1.0 for multiple reasons, including WRF in-

accuracies, unresolved subgrid-scale topography (i.e.,

elevation mismatch between the location being sampled

and the WRF gridcell average), poor observational data

quality, and inaccuracies in the boundary conditions

(NARR) forcing WRF. Assuming the observational

products are perfect, themodel evaluation serves as a test

of WRF’s ability to reproduce precipitation variations

over the Los Angeles region when coarse-resolution

conditions (NARR) are imposed on it. If WRF is able

to transform this coarse-resolution data into regional

climate information that closely matches accurate ob-

servational products, we are confident WRF can re-

gionalize the GCM signal in a way that is consistent with

the real atmosphere’s dynamics.

In Fig. 3a, we correlate monthly DJFM precipitation

accumulations in the baseline period between each

CIMIS station and the nearest WRF grid point. Each

correlation in based on a maximum sample size of 80

(4 wet-season months3 20 baseline years5 80 values).

However, there are missing values in the observations,

leading to an average sample size of 45 values. Of the

TABLE 1. (Continued)

Model acronym Model name Institute

MIROC5 Model for Interdisciplinary Research on Climate,

version 5

Atmosphere and Ocean Research Institute (AORI;

University of Tokyo), National Institute for Environmental

Studies (NIES), Japan Agency for Marine-Earth Science

and Technology (JAMESTEC)

MIROC-ESM Model for Interdisciplinary Research on Climate,

Earth System Model

AORI (University of Tokyo), NIES, JAMESTEC

MIROC-ESM-

CHEM

Model for Interdisciplinary Research on Climate,

Earth System Model, Chemistry Coupled

AORI (University of Tokyo), NIES, JAMESTEC

MPI-ESM-LR Max Planck Institute Earth System Model,

low resolution

Max Planck Institute for Meteorology

MPI-ESM-MR Max Planck Institute Earth System Model,

medium resolution

Max Planck Institute for Meteorology

MRI-CGCM3 Meteorological Research Institute Coupled

Atmosphere–Ocean General Circulation

Model, version 3

Meteorological Research Institute

NorESM1-M Norwegian Earth System Model, version 1

(intermediate resolution)

Norwegian Climate Centre

NorESM1-ME Norwegian Earth System Model, version 1

(intermediate resolution) with carbon cycling

(and biogeochemistry)

Norwegian Climate Centre

FIG. 1. (a) The 18-, 6-, and 2-kmWRFdomains and 18-km topography and (b) 2-kmdomain and topography. Black

lines in (a),(b) show U.S. state boundaries and Los Angeles County for reference. Also seen in (b) are the Channel

Islands. Topography is color contoured every 200m in (a),(b).
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13 stations, 12 have correlations to WRF above 0.5 and

more than half have correlations above 0.7. Thus, WRF

generally simulates monthly precipitation variations at

rain gauges across the domain reasonably well. The

lone exception is Santa Barbara (r 5 0.37). We spec-

ulate that WRF simulates the complex interactions

between small-scale circulations and rainfall at this

location of intense coastal topography poorly. In Fig. 3b,

we correlate 1981–2000 DJFM-mean precipitation ac-

cumulations (20 values per grid point) between each

CPC grid point and the nearest corresponding WRF

grid point. Correlations greater than 0.6 are found

across nearly the entire domain, with very high values

(r . 0.9) found along much of the densely populated

coastal region. The domain-average correlation is 0.82.

Thus, the interannual variability simulated inWRF and

that recorded in the CPC gridded product are very

similar.

Additional validation of precipitation variability in

the baseline WRF simulation is presented in Fig. 4. This

figure compares interannual variability of monthly pre-

cipitation amounts in the three observational datasets

(CIMIS, CPC, and UDel) and WRF output at the scale

of the domain. Each white, gray, or black dot in Fig. 4

represents monthly precipitation accumulations for

each of the 20 baseline years that are simulated. The

large dots represent monthly climatologies for each

dataset. Two comparisons can be made in Fig. 4. The first

is between CIMIS station-averagedmonthly precipitation

accumulations (white dots; see Fig. 3a for station loca-

tions) and corresponding accumulations averaged over

the nearest grid points in the 2-km WRF domain (light

gray dots). The levels of interannual variability in CIMIS

and WRF station averages are very similar for each

month, and the two time series are highly correlated (r5
0.88). Climatological accumulations for each month are

FIG. 2. Dynamically downscaled CCSM4 climate change signals according to (a) 20-yr (2041–602 1981–2000) and (b) 3-yr (2058–602
1998–2000) changes. (c) Difference between the 20- and 3-yr signals. Topography is contoured every 750m with thin black lines. Unit is

millimeters per wet season.

FIG. 3. (a) Correlation coefficients of monthly 1981–2000 DJFM accumulated precipitation between CIMIS sta-

tions and the nearest grid point in the 2-kmWRF output. Topography is contoured every 750m with thin black lines.

(b) Correlation coefficients between 1981 and 2000 DJFM-mean accumulated precipitation amounts between CPC

grid cells and the nearest corresponding WRF grid cells.
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also very similar, with an average monthly climatology

difference between the two datasets of approximately

6mm, or 8%. Particularly noteworthy is the similarity

between the observed andmodeled bimodal structure of

the temporal precipitation distribution, seen most dra-

matically in January and February. Both datasets cap-

ture the extremely dry (,25mm) and wet (.250mm)

months within the baseline period.

The second comparison to make in Fig. 4 is between

the UDel, CPC, and WRF land-average monthly accu-

mulations (medium gray, dark gray, and black dots, re-

spectively). Like theCIMIS comparison,WRF variability

in monthly precipitation accumulations tightly matches

what is observed in theUDel (average r5 0.94) and CPC

(average r 5 0.96) datasets. Differences in monthly cli-

matologies between WRF and UDel are approximately

17mm (28%) and approximately 9mm (15%) between

WRF and CPC. Interestingly, for both WRF-based and

observation-based datasets, there are strong similarities

in magnitude between the station-averaged (white and

light gray dots) and land-averaged values (medium gray,

dark gray, and black dots). This indicates that the station-

averages adequately sample the land fraction of the do-

main. For example, the average monthly climatology

difference between CIMIS station-averaged (white dots)

and CPC land-averaged (dark gray dots) values is only

approximately 16mm.

Finally, we assess WRF’s ability to simulate spatial

variations in station-averaged (in the case of CIMIS rain

gauges) and land-averaged (in the case of UDel and

CPC gridded observations) precipitation totals over the

baseline period. Results are seen in Fig. 5, which shows

scatterplots between simulated and observed (CIMIS:

black circles; UDel: red circles; and CPC: cyan circles)

station or land-averaged wet-season total accumula-

tions. Note that CIMIS observations begin in 1989, so

only 12 wet seasons are included in this portion of the

plot. WRF reproduces the CIMIS observations (r 5
0.83; average bias of 115mm) better than UDel (r 5
0.59; bias of 1229mm) or CPC (r 5 0.55; bias of

1221mm). The large disagreement between WRF and

the two gridded products is likely due to the horizontal-

resolution differences between them. Coarse resolu-

tions in the gridded products (0.258 3 0.258 for CPC and

0.58 3 0.58 for UDel) may not resolve the full orographic

effects on precipitation, which are included in WRF and

of course the station measurements. As noted above,

discrepancies betweenWRFandCIMIS values or any data

FIG. 4. Monthly precipitation accumulations (mm month21)

averaged over CIMIS stations (white dots), WRF–NARR grid

points nearest to CIMIS stations (light gray dots), land averaged in

the UDel observational dataset (medium gray dots), land averaged

in the CPC observational dataset (dark gray dots), and land aver-

aged in the WRF–NARR output (black dots). Larger dots in each

case represent monthly climatologies. Also shown are monthly

mid- and end-of-twenty-first-century precipitation changes (mm

per wet season) relative to the base-period climate according to 36

statistically downscaled (red and blue dots, respectively) and in-

terpolated (pink and light blue dots, respectively) CMIP5 GCMs.

Larger red/blue and pink/light blue dots represent ensemble-mean

monthly changes.

FIG. 5. Scatterplots between simulated and observed wet-season

(DJFM) climatological precipitation over the baseline period

(1981–2000). Black-filled circles show CIMIS station-averaged

amounts vs averages over the nearest WRF–NARR grid points,

red-filled circles show land-averaged UDel vs WRF–NARR

values, and cyan-filled circles show land-averaged CPC vs WRF

values. The line y 5 x is shown as a solid black line. Unit is milli-

meters per wet season.

15 JANUARY 2015 BERG ET AL . 407



product may arise because of subgrid-scale topography

and poor observational data quality, in addition to

model deficiencies and inaccuracies in the boundary

conditions (NARR).

b. Hybrid dynamical–statistical downscaling
framework

1) EMPIRICAL ORTHOGONAL FUNCTION

ANALYSIS

Here we present the hybrid dynamical–statistical ap-

proach to generating future precipitation projections.We

begin by forming statistical relationships between pre-

cipitation changes in the five dynamically downscaled

GCMs to large-scale parameters in GCM output. The

first step is identifying common spatial patterns between

monthly wet-season precipitation changes (2058–60 mi-

nus 1998–2000) for all five downscaled models. Each

GCM’s dynamically downscaled monthly precipitation

changes over the course of the wet season (DJFM) can be

seen in Fig. 6. We make two remarks on the variations in

Fig. 6. First, there is variation in the sign andmagnitude of

mid-twenty-first-century precipitation changes in dy-

namically downscaled results. Some downscaled GCMs,

such as CCSM4 (Fig. 6, top), show future drying overmost

of the coastal zone and high elevations for all months,

while others, such as CNRM-CM5 (Fig. 6, second row

from top), project moistening for much of the domain

over most months. Other outcomes lie between these two

cases, and are not necessarily consistent in sign across the

domain. Second, we note that, although there is large

variation across downscaled models and months, there

appears to be a common area where most of the action

occurs: a pattern tied to orography, with enhanced loading

in the coastal zone and throughout the mountainous re-

gions. This suggests that performing an empirical or-

thogonal function (EOF) analysis on the aggregated set of

these monthly precipitation change patterns could yield

a single, robust spatial pattern of change.

Following this reasoning, an EOF analysis is performed

over the spatial patterns in Fig. 6. Since the EOF analysis

spans both models and months, the patterns it generates

maximize both intermodel and intermonthly variability.

The three leading modes are shown in Fig. 7. The first

accounts for 70% of the variability seen in Fig. 6, con-

firming our suspicion that the majority of the variance

can be accounted for with a single spatial pattern. Mode

1 physically represents the dominant orographic pattern

of precipitation over Southern California (Hughes et al.

2009; Conil and Hall 2006; Neiman et al. 2002). Other

precipitation patterns, such as ‘‘blocked events’’ (Hughes

et al. 2009; Neiman et al. 2002), may be somewhat rep-

resented in modes 2 and 3. A corresponding 20-value

(5 dynamically downscaled models3 4 months) series of

mode 1 loadings is also produced from the EOF analysis.

These loadings represent the contribution of the spatial

pattern of mode 1 to eachmodel’s monthly precipitation

change. Since this mode accounts for the majority of in-

termodel and intermonthly variability, it should be pos-

sible to predict the dynamically downscaled precipitation

changes in Fig. 6 with reasonable accuracy simply by

multiplying the spatial pattern of mode 1 by each

model’s monthly mode 1 loading. (While modes 2 and 3

may represent a physical phenomenon associated with

precipitation change, we ignore them because of the

small variance that is captured in each mode, 7% and

5%, respectively.) Blending the statistical methods of

an EOF analysis and dynamical downscaled simula-

tions forms what we call a hybrid dynamical–statistical

downscaling technique. For an example of how this

blended statistical–dynamical downscaling approach

can be applied to regional warming patterns, the reader

is referred toWalton et al. (2014, manuscript submitted

to J. Climate).

2) PREDICTING MODE 1 LOADINGS

We have calculated mode 1 loadings for the five dy-

namically downscaledmodels, but we need amethod for

predicting the mode 1 loadings for the other GCMs if

they were dynamically downscaled. The first step is to

relate the known mode 1 loadings to a large-scale pre-

dictor variable available from the GCMs, in this case

precipitation. In Fig. 8a, we correlate mid-twenty-first-

century monthly DJFM precipitation changes over the

North Pacific in the five GCMs that were dynamically

downscaled to the loading series associated withmode 1.

Each GCM is regridded to a common horizontal reso-

lution (1.58 3 1.58) before performing the correlation. A

dipole correlation pattern emerges. GCM precipitation

change over the Gulf of Alaska shows anticorrelations

to regional precipitation changes associated with mode

1, while the Pacific Ocean adjacent to California shows

positive correlations. A physical interpretation of this

correlation pattern is discussed in section 4b. We tried

several statistical techniques to relate mode 1 loadings

to GCM precipitation changes, including single and

multivariable linear regression and a projection-based

dot product technique. The strongest (highest correla-

tions) and most robust (across the downscaled GCMs)

relationship was found using linear regression, where

mode 1 loadings are predicted by two predictor variables:

GCM precipitation changes averaged over the two re-

gions spanning the dipole correlation pattern (black boxes

in Fig. 8a). This yields a single equation to predict a given

GCM’s mode 1 loading, if that GCM were dynamically

downscaled, based only on its mid-twenty-first-century

408 JOURNAL OF CL IMATE VOLUME 28



FIG. 6. (left)–(right)DJFMmonthly precipitation changes (2058–60minus 1998–2000) (top)–(bottom) for each dynamically downscaled

GCM. Blue shading indicates moistening, and red shading indicates drying. Unit is millimeters per wet season. Topography is contoured

every 750m with thin black lines.
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precipitation change across the northeast Pacific Ocean.

A caveat is that these predictive equations hinge on the

training set of dynamically downscaled models: in this

case CCSM4, CNRM-CM5, GFDL CM3, MIROC-

ESM-CHEM, and MPI-ESM-LR. A different set of

models could give different relationships between GCM

and local precipitation changes. However, some ro-

bustness is provided to the predictive relationships by

developing them on a set of GCMs that span the dry-to-

wet parameter space (see Figs. 6 and 10).

FIG. 7. Leading three modes of variability based on EOF analysis of spatial patterns seen in Fig. 6. Mode 1 accounts for 70% of the

variability, mode 2 accounts for 7%, and mode 3 accounts for 5%.

FIG. 8. (a) Correlation coefficients between mid-twenty-first-century monthly DJFM precipitation changes (2041–60 minus 1981–2000)

according to the five dynamically downscaledGCMs and the time series associated with EOF1 (Fig. 7). Black squares represent averaging

area of GCM precipitation to predict EOF1 loadings. (b) Correlation coefficients between domain-averaged downscaled precipitation

changes (see Fig. 11) and corresponding mid-twenty-first-century 200-hPa zonal wind speed changes for all available models. (c) Cor-

relation coefficients betweenmonthly DJFM precipitation anomalies in the 1981–2000 NARR data and time series associated with EOF1

over that time period (see Fig. 12a). (d) Correlation coefficents between domain-averaged 1981–2000 precipitation anomalies and cor-

responding 200-hPa zonal wind speed anomalies in the NARR data.

410 JOURNAL OF CL IMATE VOLUME 28



3) VALIDATING STATISTICAL DOWNSCALING

TECHNIQUES

The statistical model may capture dynamical model

output imperfectly for two reasons: 1) mode 1 is an im-

perfect representation of regional precipitation change,

and 2) it is impossible to predictmode 1 loadings perfectly.

Knowing the loadings associated with mode 1 from our

EOF analysis of dynamically downscaled simulations, we

can test how accurate DJFM-mean changes are based

solely on mode 1: that is, the first source of error. This

comparison is shown inFig. 9.Recall that theEOFanalysis

is performed over monthly changes, so DJFM-mean

values shown here are calculated by averaging individual

monthly patterns to produce a seasonal mean. First we

compare the spatial patterns between the dynamically

downscaled changes (Fig. 9a) and those based on mode 1

(Fig. 9b). In general the spatial patterns are very well

correlated, aside from modest discrepancies in the Mo-

jave Desert regions. WRF (y axis) versus mode 1–based

(x axis) precipitation changes from Figs. 9a,b, now av-

eraged over land, are scattered in Fig. 9c. Mode 1 cap-

tures the land-averaged precipitation change extremely

well, with the mode 1 changes and the WRF changes

falling almost perfectly on the line y 5 x. These results

confirm that, if we have perfect knowledge of mode 1

loadings, then statistically downscaled ensemble-mean

changes and the spread in these changes are highly rep-

resentative of the corresponding dynamically downscaled

changes. This is especially true when considering the

change averaged over the region’s land areas.

Next we analyze the errors associated with imperfect

predictions of mode 1 loadings (i.e., the second source of

error in the statistical model) using cross-validation ex-

periments. These experiments use differing subsets of

the five dynamically downscaled output to develop

FIG. 9. (a) Dynamically downscaled DJFM-mean precipitation changes

for each model. (b) Mode 1–based DJFM-mean precipitation changes (top)–

(bottom) for each model. (c) Scatterplot comparing domain-averaged DJFM-

mean changes fromWRF (y axis) and mode 1 (x axis), with the line x5 y shown

as a solid black line. Unit in each plot is millimeters per wet season.
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a predictive equation for mode 1 loadings. We then pre-

dict mode 1 loadings for all dynamically downscaled

models and compare them to the actual loadings. Specif-

ically, we perform five experiments. The experiment

number is equal to the number of dynamically downscaled

models used to determine mode 1 loadings. Each exper-

iment is performed for a varying number of trial runs,

consistent with the number of ways it is possible to com-

bine the models. For example, experiment 1 uses one

model set of DJFM monthly precipitation changes to

determine mode 1 loadings (i.e., any one row in Fig. 6). It

has five trials since there are five possible DJFMmonthly

change values that can be used to predict mode 1 loadings.

Experiment 2 uses two model sets of DJFM monthly

changes to predictmode 1 loadings for allmodels, yielding

10 unique combinations (i.e., any two rows in Fig. 6).

Experiments 3 (i.e., any three rows in Fig. 6) and 4 (i.e.,

any four rows in Fig. 6) have 10 and 5 trials, respectively,

and experiment 5 (all rows in Fig. 6) has only 1 trial.

In essence, we are testing the robustness of the sta-

tistical model as more and more dynamically down-

scaled information is included in its training. For each

trial run in each experiment, we perform all analyses

described in section 2b(2) for the dynamically down-

scaled models being used for mode 1 predictions. That

is, we first perform an EOF analysis over the spatial

patterns of monthly precipitation changes (e.g., 4 pat-

terns per trial in experiment 1). The EOF analysis yields

a series of mode 1 loadings, which are then correlated to

the corresponding GCM mid-twenty-first-century pre-

cipitation changes across the Pacific Ocean. Finally,

GCM mid-twenty-first-century precipitation changes

over the regions of maximum positive and negative

correlation (which varies according to each trial’s cor-

relation map but is similar to Fig. 8a for all trials) are

regressed against that trial’s mode 1 loadings. This yields

a predictive equation for mode 1 loadings for each of the

five dynamically downscaled models, which can be

compared to the known mode 1 loadings.

Table 2 summarizes the uncertainty of the statistical

model due to errors in the predictions of mode 1 load-

ings. The error averaged over all models for all trials is

shown in the right column. Errors decrease steadily as

the number of models used in the EOF analysis in-

creases. This makes sense, since more intermonthly,

intermodel variability is included as more information is

fed into the analyses. Specifically, average error is re-

duced from over 100% when using just one or two

models, to just 13% when using five models. It can ap-

pear that using four models gives a smaller percent error

(22%) than when five models are used (213%). How-

ever, this simply reflects an average over a very large

range when four models are used (from 2483% to

1466%) compared to a much smaller range using five

models (from 2103% to 1137%).

4) VALUE ADDED OVER BILINEAR

INTERPOLATION

Herewe justify the development of our hybrid statistical–

dynamical downscaling technique by comparing results

to a simple bilinear regression of the raw GCM data

down to 2 km. Figure 10 provides evidence that the

hybrid downscaling technique adds significant value

in spatial patterns compared to bilinearly interpolating

GCM data over Southern California. For each GCM

in Fig. 10, spatial patterns that emerge in the inter-

polated results are broad in scale and have no way of

capturing the leading spatial pattern seen in the dy-

namical downscaling associated with orographic effects.

Land-averaged changes between the interpolated and

dynamically downscaled GCMs can be quite similar and

in some cases closer (likely fortuitous given the coarse

GCM resolution) than the corresponding statistically

downscaled changes. However, orographic influences

on precipitation (e.g., Hughes et al. 2009) are simply

not captured in either the raw or interpolated GCM

data. Conversely, the hybrid dynamical–statistical down-

scaling technique is able to capture the orographic

imprint on precipitation changes with reasonable

accuracy. It should also be noted that the standard

deviation between the statistically and dynamically

downscaled land-averaged changes is 6.5 and 9.5mm

per wet season, respectively. Thus, the statistical model

may underestimate the spread of changes on the order

of 30%.We will assess the implications of this potential

error in section 4a.

3. Statistical–dynamical downscaling results

Here we predict the regional precipitation projections

for all 36 GCMs (Table 1), using the statistical model

described in the previous section.

TABLE 2. Quantifying the error associated with imperfect pre-

dictions of mode 1 loadings in the statistical model using a cross-

validation exercise. Number of models used and the number of

unique combinations (trials) of thosemodels (i.e., any row in Fig. 6)

are presented in the left column. The average, maximum, and

minimum percent error averaged over all models for all trials are

seen in the right column.

No. of models

(No. of trials)

Avg, min, max percent error between actual

and predicted mode 1 loadings (%)

1 (5) 2160, 21831, 1981

2 (10) 2139, 21366, 473

3 (10) 272, 21048, 558

4 (5) 22, 2483, 466

5 (1) 213, 2103, 137
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a. Mid-twenty-first-century changes

Mid-twenty-first-century DJFM-mean precipitation

changes from all 36 downscaled GCMs are shown in

Fig. 11. Recall that the downscaled projections in Fig. 11

are forced to have the same spatial pattern (that of

mode 1; Fig. 7) and that the spatial pattern is dialed up or

down based on the predicted loading for that GCM.

FIG. 10. Comparison of mid-twenty-first-century precipitation changes for the downscaled models according to the respective (left) raw

GCMdata, (left center) bilinearly interpolatedGCMdata to 2 km, (right center) hybrid statistical–dynamical downscaling technique, and

(right) dynamical downscaling. Land-averaged changes (mm per wet season) are reported in the top right of each panel.
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Precipitation changes projected using full dynamical

downscaling would have somewhat more spatial het-

erogeneity than those shown in Fig. 11. Thus, we do not

focus on the spatial patterns of change, but rather in-

terpret results from a land-average perspective. The

land average can be predicted by the statistical model

with a high degree of accuracy once mode 1 loadings are

known (see section 2b).

Figure 11 shows an apparently large range of pro-

jected changes across models: 13 models project

increased precipitation (average of 18.1mm per wet

season) and 23 models project decreased precipitation

(average of28.5mmper wet season). Themost extreme

models are MIROC5 and IPSL-CM5A-MR, which

project changes of approximately 119 and 225mm per

wet season across the land, respectively. The ensemble-

mean land-average change is 22.5mm per wet season,

reflecting a large degree of cancellation between

moistening and drying tendencies. Note that the statis-

tical model may underestimate the spread of changes up

FIG. 11. Downscaled mid-twenty-first-century precipitation changes according to 36 GCMs. Blue shading indicates future moistening,

while brown shading indicates future drying. Unit is millimeters per wet season.
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to 50% (see section 2 of supplementary material), so the

true intermodel variability of changes may be 50%

larger than described here.

b. End-of-twenty-first-century changes

The statistical model can also be used to project end-of-

century (2081–2100 2 1981–2000) precipitation changes.

As seen by the dark blue dots in Fig. 4, the ensemble-

mean change is near zero for each month and the spread

of those changes is smaller than current levels of vari-

ability, similar to the midcentury case. In addition to

downscaled changes, we also present interpolated GCM

changes in Fig. 4 (light blue dots). Like the mid-twenty-

first-century changes, the ensemble-mean change by the

end of the twenty-first century is near zero for each

month. Taken as a whole, Fig. 4 indicates that the model-

average downscaled and interpolated GCM scenario for

the Los Angeles region is very little precipitation change

throughout the twenty-first century.

c. Physical mechanisms

Recall that the dynamically downscaled future simula-

tions are based on GCM perturbations to NARR clima-

tologies along the lateral boundaries for three-dimensional

temperature, moisture, winds, and geopotential heights

and for surface winds, moisture, and pressure. Interpret-

ing the physical mechanisms behind precipitation changes

are constrained to this methodology. While storms en-

tering the outermost domain in WRF (Fig. 1a) are struc-

turally identical between the baseline and future simulations

[a limitation raised in Rasmussen et al. (2011)], the per-

turbation method allow for storms to evolve differently as

they propagate toward the innermost domain. For ex-

ample, possible changes to large-scale circulations, such as

the jet stream, can be captured in the three-dimensional

wind and geopotential height perturbations. Moisture

content in future storms could also change because of

perturbations in relative humidity. Future storm strength

could also be modified by perturbations to surface pres-

sure and three-dimensional geopotential heights. Bearing

this information in mind, we revisit Fig. 8 to identify the

physical mechanisms underpinning downscaled precipi-

tation changes (Fig. 11).

As described in section 2b(2), Fig. 8a shows that

precipitation changes over Los Angeles are related to

large-scale precipitation changes over extreme northern

and north-central portions of the eastern Pacific Ocean.

The patterns in Fig. 8a suggest that average jet stream

position changes across the Pacific Ocean are largely

controlling precipitation changes over Los Angeles. A

recent study by Neelin et al. (2013) analyzed the re-

lationship between end-of-century California December–

February (DJF) precipitation changes and 200-hPa zonal

wind speed changes over the northeast Pacific Ocean in

15 CMIP5 GCMs (cf. Fig. 1 of Neelin et al. 2013). Pre-

cipitation changes over the California land–ocean re-

gion are found to be significantly related to changes in

the jet stream (i.e., 200-hPa zonal winds) and associated

storm tracks. GCMs projecting increased jet stream

wind speeds, associated with an eastward and poleward

jet extension, tend to steer more storms toward the coast

and lead to overall precipitation increases in this region.

GCMs that show weak eastward jet extension and/or

wind speed enhancement are associated with minimal

precipitation changes. Specifically, the authors find a cor-

relation of 0.76 between end-of-centuryDJF precipitation

changes over California and 200-hPa zonal wind speed

over a certain region of the northwest Pacific.

Although our domain of interest is the Los Angeles

region rather than thewhole state ofCalifornia, we follow

the arguments presented in Neelin et al. (2013) and per-

form an analysis relating GCM 200-hPa zonal wind

speed changes to downscaled precipitation changes. The

200-hPa zonal wind speed changes (2041–60 minus 1981–

2000) for the 36 downscaledmodels are correlated at each

grid point in the GCM domain to the domain-averaged

downscaled precipitation changes. Each GCM is re-

gridded to a common horizontal resolution (1.58 3 1.58)
before performing the correlation. The results are shown

in Fig. 8b. Strong negative correlations are seen across

most of the Gulf of Alaska and into western Canada.

Conversely, strong positive correlations are seen across

the entire north-central Pacific Ocean, centered on Ha-

waii. This dipole pattern echoes the results found in

Neelin et al. (2013) and indicates how jet stream posi-

tioning and strength influence future precipitation over

the Los Angeles region. Specifically, GCMs that project

regional increases (decreases) in jet stream strength off

the coast of Southern California lead to increased (de-

creased) precipitation over Los Angeles.

4. Connection to interannual variability

a. Context of current interannual variability

Here we place the intermodel spread of future pre-

cipitation changes in the context of the region’s natural

precipitation variability. Examining Fig. 4, we compare

the variability across statistically downscaled model

projections of future changes (red dots) and levels of

interannual variability for the wet season (black dots).

Averaged across each month, the standard deviations

for the downscaled midcentury precipitation changes

are 15, 15, 12, and 14mm per wet season, respectively.

(The standard deviations of end-of-century values are

very similar.) The standard deviation of baseline
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interannual variability of WRF land-averaged monthly

averaged accumulations (black dots in Fig. 4) is 61mm

per wet season. Thus, the intermodel variations of

downscaled future changes in average precipitation are

roughly 25% of the current interannual variability. As

noted in section 2, the statistical model may un-

derestimate the standard deviation of the precipitation

changes, because of imperfect knowledge of mode 1

loadings, probably by about 30%. So potentially the true

standard deviation of precipitation changes is roughly

40% of the variability. However, even after factoring in

this possible bias, it is clear that the interannual pre-

cipitation variability is large compared to potential

changes in the mean. Of course, the mean changes would

be sustained on time scales much longer than 1 yr, po-

tentially leading to adaptation challenges. For example,

the downscaledmodels with themost extreme drying and

moistening tendencies are associated with mean pre-

cipitation changes on the order of 10%. However, such

challenges would only materialize if the more extreme

models are correct; the average downscaled and in-

terpolated GCM outcome is virtually no precipitation

change for the entire century.

b. Relationship between future climate changes and
interannual variability

So far we have argued that GCM placement of jet

stream and storm tracks in theNorth PacificOcean is the

main driver of intermodel variability in future pre-

cipitation changes over Los Angeles. Previous studies

have also shown jet stream placement, strength, and

storm-track steering over the Pacific Ocean can shift

because of natural climate variability patterns (Chen

and van den Dool 1997; Straus and Shukla 1997; Held

et al. 1989). These jet stream and storm-track shifts

impact the amount of precipitation over Southern Cal-

ifornia (Berg et al. 2013; Athanasiadis et al. 2010). The

importance of the jet stream for future precipitation

change suggests a tight link between the physical un-

derpinnings of interannual variability and simulated

climate change.

We begin addressing the relationship between in-

terannual and intermodel variability by analyzing

baseline DJFM precipitation from the 1981–2000 WRF

simulation forced by NARR. An EOF analysis is per-

formed over 20 spatial patterns of DJFM-averaged

precipitation anomalies corresponding to each year of

the baseline simulation. The patterns are calculated as

anomalies relative to the 1981–2000 DJFM climatology.

The leading mode accounts for 86% of the variability,

and the corresponding spatial pattern is very similar to

the first mode of intermodel variability determined from

the climate change experiments (Fig. 12). The leading

modes of variability in both the baseline and future cases

reflect the strong orographic enhancement of pre-

cipitation and the influence of blocking in the coastal

zone across the greater Los Angeles region (Hughes

et al. 2009). After performing the EOF analysis over the

baseline precipitation fields, we then correlate the time

series associated with mode 1 (Fig. 12a) to 1981–2000

precipitation anomalies at each grid point in the NARR

data. These correlation coefficients are plotted in

Fig. 8c and can be compared to the future case (Fig. 8a;

section 3). Both cases show a tongue of positive corre-

lations that extend from the coast of California west-

ward into the Pacific Ocean. This tongue is then flanked

on the north and south by large swaths of anticorrelations.

We also perform a correlation between baseline precip-

itation and 200-hPa zonal wind anomalies in the NARR

data (Fig. 8d) and compare it to the corresponding case

FIG. 12. Leading modes of precipitation variability over the (a) baseline and (b) future, as in EOF1 of Fig. 7.

Baseline precipitation anomalies are calculated relative to the 1981–2000 climatology. Future changes are calculated

as 2058–60 2 1998–2000. See text for details.
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associated with future changes in the GCMs (Fig. 8b;

section 3c). Both cases show a dipole pattern of large

positive correlations across the southern half of the

eastern Pacific Ocean and large negative correlations in

the northern half.

Such similarities in Fig. 8 confirm that the dynamics of

baseline interannual variability are nearly identical to

those underpinning future intermodel uncertainty. That

is, the region’s precipitation currently vacillates between

wet and dry periods with a pattern heavily modulated by

orography. The vacillations are largely due to natural

variations in the position and strength of the jet stream

and subsequent storm-track steering. Models that tend

to deflect the jet stream and storms away from Southern

California yield drier climates in the future, while models

showing a tendency toward jet stream strengthening and

increased storm activity over Southern California project

a wetter climate. Thus the collection of moistening and

drying tendencies in the CMIP5 ensemble can likely

be understood as an ‘‘excitation’’ of a natural mode of

variability.

5. Concluding remarks

This study uses a hybrid dynamical–statistical down-

scaling technique to examine mid- and end-of-twenty-

first-century precipitation changes over the greater Los

Angeles region under the RCP8.5 emissions scenario.

Modeling dynamically downscaled precipitation changes

with statistical methods, we downscale 36 GCMs in the

CMIP5 archive based on changes in each model’s large-

scale precipitation fields. There are three major findings

of this study. First, the ensemble-mean change for both

time slices is essentially zero. Second, while downscaled

CMIP5 models disagree on both the sign and magnitude

of future precipitation changes over Los Angeles, the

spread of possible changes is modest compared to cur-

rent levels of variability. For both time slices, the sta-

tistical model estimates that the standard deviation of

land-averaged precipitation change is about 0.2–0.25 of

the standard deviation of the interannual variability. As

shown in section 2, the statistical model may un-

derestimate the intermodel spread by as much as 30%

because of imperfect knowledge of mode 1 loadings. So

the true standard deviation of the precipitation change,

if all GCMs were downscaled dynamically, could be

closer to 0.4 of the interannual variability standard de-

viation. Thus, even after allowing for potential error in

the statistical model, current shifts between wet and dry

years are greater than average changes in even the most

extreme model projections. However, the sustained

moistening or drying seen in the most extreme statisti-

cally downscaled models could lead to adaptation

challenges. Although these changes are unlikely, they

amount to roughly 10% changes in mean precipitation

for both time slices. Finally, robust similarities are found

between the intermodel variability of future changes

and interannual variability of baseline precipitation

anomalies. Jet stream placement and strength currently

dictates winter precipitation amounts, and also dictates

the sign and magnitude of future precipitation changes.

To the degree there is uncertainty in future precipitation

change over the Los Angeles region, it is because of

differences in the simulated response of this phenome-

non to anthropogenic forcing.

While there is a great opportunity to assign probabili-

ties of future changes based on an ensemble of projection

outcomes, no single method perfectly accomplishes this

task. Ensemble-mean forecasts have proven skillful in

producing most likely outcomes for climate variations on

the seasonal time scale (e.g., Doblas-Reyes et al. 2003;

Palmer et al. 2005), along with hurricane paths and other

weather patterns (e.g., Zhang and Krishnamurti 1999;

Krishnamurti et al. 2000). Interpreting an ensemble-

mean projection as the most likely outcome for twenty-

first-century precipitation, however, is complicated due

in part to the fact that the range of outcomes in the

ensemble spans positive and negative changes (van

Oldenborgh et al. 2014, their Fig. A1.6). Our result of

near-zero ensemble-mean change simply reflects off-

setting tendencies ofmoistening and drying in theGCMs.

It could be misleading not to acknowledge that some

change, either positive or negative, is likely to occur. At

the same time, for nearly all projections, themagnitude of

the change is small compared to natural variability. In this

sense, we interpret the most likely scenario as a small

change in precipitation compared to natural variability,

with large uncertainty on the sign of the change.

A critique to this probabilistic estimate is that we are

weighting each projection equally in the ensemble, as-

suming the quality of each model is the same (Tebaldi

and Knutti 2007; Knutti 2010; Shepherd 2014). One way

to address this issue is to weight each model based on its

ability to simulate historical precipitation or the large-

scale circulations controlling precipitation over Cal-

ifornia. Swain et al. (2015) identified 12 CMIP5 GCMs

that best simulate historical 500-hPa geopotential height

over the northeastern Pacific Ocean according to re-

analysis distributions. Geopotential height in this region

strongly influences California’s precipitation (Fig. 8). By

examining downscaled projections from these 12 ‘‘good’’

models in Fig. 11, we again find that precipitation changes

are modest compared to natural variability and that the

sign of the change is uncertain: specifically, 8 models

project increased precipitation, 4 models project de-

creased precipitation, and the ensemble-mean change is
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12.2mm per wet season. [Similar results between the

12- and 36-model ensembles are perhaps not too sur-

prising as Langford et al. (2014) found that most CMIP5

models have reasonable skill in simulating California

precipitation.] This simple analysis indicates that the

major conclusions of this study are not sensitive to which

models are included in the ensemble.

Our result of near-zero ensemble-mean precipitation

change over Los Angeles can be interpreted in terms of

the well-accepted understanding of global precipitation

change whereby patterns of precipitation become en-

hanced, such that wet regions become wetter and dry

regions become drier (Chou and Neelin 2004; Neelin

et al. 2006; Held and Soden 2006). This leads to in-

creased precipitation over convection zones and drying

outside of the convection zones. On average, Southern

California is positioned between areas dominated by

these competing tendencies: increased precipitation to

its north in the midlatitudes and decreased precipitation

to the south within the subtropics. However, in some

GCMs the region is north of the boundary between the

two zones, while in others it is south of it. As such,

precipitation projections over this region tend to negate

one another and yield small ensemble-mean projections.

One interesting finding from this study is that inter-

model variability between the statistically downscaled

(red dots in Fig. 4) changes is approximately half the size

of the variability according to the GCM-interpolated

changes (pink dots). We attribute this spread suppres-

sion in the statistical model to two sources. First, in-

accurate mode 1 predictions by the statistical model

(section 2) can underestimate the intermodel spread

by at least 30%. Second, statistical relationships are

derived from 3-yr-long dynamically downscaled changes

(2058–60 2 1998–2000). On average, 1998–2000 was

found to have somewhat lower precipitation than 1981–

2000. This has the effect of reducing the magnitude of

statistically estimated climate change signals, and the

spread associated with them, likely about 20% (see

Fig. S1 and Table S1 of the supplementary material). If

these two error sources were eliminated, the spread

would probably increase by about 50%: therefore, ap-

proximately accounting for the difference between sta-

tistically downscaled andGCM-interpolated intermodel

variability seen in Fig. 4. We also note that the results in

this study are limited to our choice of WRF as the re-

gional model. Unlike larger regional modeling efforts

such as the Coordinated Regional Climate Downscaling

Experiment (CORDEX; e.g., Nikulin et al. 2012) and

North American Regional Climate Change Assessment

Program (NARCCAP; e.g., Wang et al. 2009), compu-

tational costs prevented an examination of how sensitive

this study’s results are to multiple regional model

simulations. However, we found strong agreement be-

tween our results and those from an independent study

that statistically downscaled precipitation changes over

the greater Los Angeles region (L. Alexanderson, Los

Angeles County Department of Public Works, 2014,

personal communication).

Differences between the regional model outcomes

and those of the GCMs may also stem from our method

of perturbing baseline boundary conditions using future

climatological changes. For example, one could instead

directly downscale raw historical and future GCM data

to calculate changes, as opposed to perturbing baseline

conditions derived from reanalysis. We are currently

conducting research to test whether this direct method

gives different results from downscaling changes in the

climatology through a perturbation to reanalysis-based

boundary conditions.

Given the agreement between the GCMs and the

downscaled information in the ensemble-mean out-

come, it seems unlikely that a different dynamical

downscaling technique would generate a systemically

different answer. The hybrid statistical–dynamical

downscaling technique could be applied beyond the Los

Angeles region. It may be especially appropriate in

areas that share these two characteristics with the do-

main of interest in our study: 1) changes in the large-

scale circulation govern precipitation change, allowing

for development of credible GCM scaling factors, and

2) local precipitation changes are heavily influenced by

orography, leading to diagnosed local response patterns,

as encapsulated by the leading EOF patterns. Thus, it

would be applicable for any mid-to-high-latitude loca-

tion with significant topography.

An important caveat relating to the El Niño–Southern
Oscillation (ENSO) phenomenon applies to the con-

clusions of this study. In the current climate, ENSO in-

fluences the position of the Northern Hemisphere jet

stream and storm tracks across the eastern PacificOcean

through atmospheric teleconnections (Held et al. 1989;

Chen and van den Dool 1997; Straus and Shukla 1997).

These shifts have a statistically detectable effect on

precipitation over Southern California. During La Niña
events, the jet tends to move northward toward the Gulf
of Alaska, leading to drier than average conditions
across Southern California. Under El Niño conditions,
the jet tends to extend south and eastward, steering
storms more directly across southern regions of the
United States, including Southern California (Redmond

and Koch 1991; Dettinger et al. 1998; Cayan et al. 1999;

Leung et al. 2003; Berg et al. 2013). The CMIP5 en-

semble of GCMs has shown improvements in the sim-

ulation of ENSO compared to the CMIP3 ensemble,

particularly in the amplitude and time scale of the
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phenomenon. However, the CMIP5 models still exhibit

significant errors, especially in the irregularity of the

phenomenon and its spatial pattern (Flato et al. 2014). A

detailed examination of the implications of these tropi-

cal Pacific errors for precipitation change over Southern

California is beyond the scope of this study. However, it

seems possible that the GCM projections of future

ENSO behavior may be affected by them.

If these errors were corrected, modestly different

outcomes for Southern California precipitation might

result, because of the link between ENSO variability

and Southern California precipitation. When an ENSO

event occurs, it accounts for roughly two-thirds of the

variance in Southern California precipitation. However,

only about 40% of wet seasons can be considered strong

ENSO events (Schonher and Nicholson 1989). Thus,

roughly one-quarter of the variance of Southern Cal-

ifornia precipitation can be traced to ENSO. The re-

maining three-quarters of the variance is linked to shifts

of the jet stream unrelated to tropical Pacific variability,

similar to those portrayed in Fig. 8d, which are also the

mechanism generating intermodal spread in the CMIP5

ensemble. While ENSO is a mechanism generating re-

gional precipitation variability, it is not the most im-

portant. ENSO errors in the GCMs may introduce

somewhat more uncertainty in our regional pre-

cipitation projections than what is implied by the

downscaled intermodel spread alone. It is impossible to

quantify this effect precisely with present knowledge,

but the role ENSO currently plays in Southern Cal-

ifornia precipitation does at least offer a useful guide.

We estimate that ENSO GCM errors increase the un-

certainty by an amount approximately proportional to

the fraction of the variance ENSO accounts for in cur-

rent climate: by about 25%. This additional uncertainty

underscores the need for regional planning that allows

for a variety of future precipitation change outcomes.
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