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Abstract
The area burned by SouthernCalifornia wildfires has increased in recent decades, with implications
for human health, infrastructure, and ecosystemmanagement.Meteorology and fuel structure are
universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of
abatement and suppression efforts, remains controversial. SouthernCalifornia’s wildfires can be
partitioned bymeteorology:fires typically occur either during Santa Anawinds (SAfires) inOctober
throughApril, or warm and dry periods in June through September (non-SA fires). Previouswork has
not quantitatively distinguished between these fire regimeswhen assessing economic impacts or
climate change influence.Herewe separatefive decades offire perimeters into those coinciding with
andwithout SAwinds. The twofire types contributed almost equally to burned area, yet SAfires were
responsible for 80%of cumulative 1990–2009 economic losses ($3.1 Billion). The damage disparity
was driven byfire characteristics: SA fires spread three times faster, occurred closer to urban areas, and
burned into areas with greater housing values. Non-SAfires were comparativelymore sensitive to age-
dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted
for 70%of total suppression costs. An improved distinction offire type has implications for future
projections andmanagement. The area burned in non-SA fires is projected to increase 77% (±43%)
by themid-21st centurywithwarmer and drier summers, and the SA area burned is projected to
increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of
suppression investments.

1. Introduction

Southern California’s Mediterranean climate, exten-
sive wildland-urban interface, rugged terrain, and
shrub-dominated landscape fosters frequent and
severe wildfire, and leads to deterrence, suppression,
and damage costs that are among the highest in the
United States (Keeley et al 2009, Moritz et al 2010).
The impact of wildfire on Southern California has
increased in recent decades, with extensive areas
burned in 2003, 2007, and 2009 (Jin et al 2014); this
impact is expected to increase further with climate

change, population growth, and expanding develop-
ment (Westerling et al 2006, 2011). Disagreement
remains regarding about the relative importance of
fuel accumulation versus meteorology in regulating
Southern California’s fire regime; this disagreement
contributes to uncertainty over the effectiveness of fuel
abatement and fire suppression (Minnich 1983, Con-
ard and Weise 1998, Keeley et al 1999, Batllori
et al 2013).

Southern California’s climate fosters two distinct
types of wildfire: rapidly expanding, wind-driven
Santa Ana (SA) fires that occur mostly in September
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through December (Hughes and Hall 2010, Moritz
et al 2010), and non-SAfires that coincidewith hot and
dry weather mostly in June through September (figure
S1). Analyses of controls on past fire and projections of
future fire have typically lumped these two types toge-
ther, or have emphasized just one (Minnich 1983, Kee-
ley et al 1999, Westerling and Bryant 2008, Westerling
et al 2011). We recently developed an approach that
uses spatially explicit fire records (California Depart-
ment of Foresty and Fire Protection 2013) and high
resolution meteorological information since 1959 to
classify fires into those coinciding with SA conditions
and those that do not (Jin et al 2014). We found that
the two types of fire contributed equally to regional
burned area but occurred in distinct locations (Jin
et al 2014). SA fires were concentrated in high-wind
corridors and coastal areas; many of these locations
burned repeatedly during the last 50 years (figure 1,
table S1). Non-SA fires typically occurred in more
remote inland areas, and the majority of these loca-
tions burned just once during the past 50 years, though
a few areas along heavy traffic corridors and with rela-
tively strong summer winds burned more frequently
(Jin et al 2014).

Southern California has a population of about 22
million people. The region includes the cities of Los
Angeles and San Diego, along with numerous sub-
urban communities, extensive undeveloped land, and
four National Forests (figure 1). Most people live at
lower elevations and near the coast, with communities
adjacent to fire-prone areas varying widely in housing
wealth (figure 1) and other economic indicators.
Developing effective mitigation and adaptation strate-
gies for wildfire requires detailed information about
the influence of climate change on local meteorology
and ecosystem processes. In this context, our parti-
tioning approach creates an opportunity to improve
several aspects of our understanding of regional fire
dynamics in Southern California. Our specific study
objectives are to (1) understand how interaction
between fuels and other environmental drivers con-
tribute to differences in fire behavior for SA and non-
SA fires, (2) assess how differences in fire behavior for
the two fire types influence economic damages and
suppression costs, and (3) predict how SA and non-SA
fires will change by the mid-21st century as a con-
sequence of climate change. Compared with earlier
work, explicit consideration of the different meteor-
ological controls on the two different fire types may
enable a more rigorous assessment of future change
and may provide a blueprint for the design of
improved fire projections in other areas.

2.Data andmethods

Our study domain encompassed seven counties in
Southern California: Santa Barbara, Ventura, Los
Angeles, San Bernardino, Orange, Riverside, and San

Diego (figures 1 and S1). We assembled an array of
datasets to analyze the location, timing, and behavior
of fires, associated structural loss and direct fire-
fighting costs, possible environmental drivers includ-
ing weather, vegetation, topography, and human
variables, and to predict future changes from climate
warming.

2.1. Fire, environmental, and economic data
We used fire perimeter data from the California
Department of Forestry and Fire Protection’s Fire and
Resource Assessment Program (FRAP) (California
Department of Foresty and Fire Protection, 2013) to
identify the timing and location of wildfires during
1959–2009; data back to 1900 were also used to
estimate stand age. Fires were classified into SA and
non-SA fires, based on their coincidence with SA and
non-SA periods, following the approach described in
previous work (Hughes and Hall 2010, Jin et al 2014).
The SA occurrence and the associated meteorological
characteristics were quantified with a 6 km resolution
climate dataset during 1959–2009 (Jin et al 2014),
generated from a dynamical downscaling of the
European Centre for Medium-Range Weather Fore-
casts reanalysis data (ERA-40) from 1959 to 2001
(Uppala et al 2005) using theMesoscaleModel version
5 (MM5). The North American Regional Reanalysis
(NARR) (Mesinger et al 2006) was used to extend the
time series through 2009. For each individual fire
polygon, weather during the first two days of the fire
was extracted from the downscaled climate data as well
as monthly mean temperature, precipitation and
relative humidity (RH) from the Parameter-elevation
Regressions on Independent Slopes Mode project
(Daly et al 2008) for the month spanning each fire
event, alongwith biophysical and human variables.

We examined fire behavior, including fire inten-
sity, progression and duration, for fires that occurred
during 2002–2009 using NASA’s MODerate resolu-
tion Imaging Spectroradiometer (MODIS) satellite
data from Terra and Aqua satellites. Active fire pixels
(based on the thermal anomalies) were detected four
times daily by MODIS on Terra at 10:30 am and
10:30 pm, and on Aqua at 1:30 pm and 1:30 am (local
time) with a nadir resolution of approximately 1 km.
We used the Global Monthly Fire Location Product
(MCD14ML) in our analysis, selecting only high qual-
ity detections for our analysis (Giglio et al 2003, 2013).
The association of active fires to individual FRAP fires
was based on the location and time of each fire detec-
tion. We also used MCD14ML fire radiative power
(FRP), as ameasure of intensity (Giglio et al 2013).

We compiled property loss data from California
Fire Incident information and other sources. These
data included the number of structures destroyed,
structures damaged, and fatalities. Fire suppression
costs were obtained for federal lands (1995–2009)
from the USFS and for other lands from FRAP (Gebert
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et al 2007). The USFS Rocky Mountain Research
Station created and maintains a fire suppression cost
database for large fires reported in the Forest Service’s
fire occurrence database and the National Interagency
Fire Management Integrated Database (Gebert
et al 2007). Population, housing units, and median
housing value statistics were obtained from the US

Census Bureau’s block and block-group data for
2000 to calculate the population and structures at
risk within each individual fire polygon during
1990–2009. Roads information, including highways,
local roads and vehicle trails, were extracted from
the Census Bureau’s TIGER road data (US Cen-
sus 2000).

Figure 1.Patterns of structure loss during 1990–2009. Santa Ana (SA) and non-Santa Anafire perimeters during 1959–2009
superimposed on housing value. Fires with structure loss are shaded, with colors showing total number of structures destroyed during
1990–2009. Light purple polygons represent fires occurring prior to 1990, and dark purple after 1990. Fire perimeters were obtained
fromCaliforniaDepartment of Forestry and Fire Protection’s Fire andResource Assessment Program, and separated in to SA and
non-SA fire types using the approach described in themethods.Housing valuewas estimated fromCensus 2000 housing density and
median house prices.
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We obtained the 3 arc-second digital elevation
model from the United States Geological Survey
National Elevation Dataset to calculate the slope and
aspect of individual fires and the location of ridgelines.
Land cover types from the CalFire Multisource Land
Cover dataset (California Department of Foresty and
Fire Protection 2013) were used to identify possible
land cover barriers for fire spread, including agri-
culture, urban, water, desert, and barren.

2.2. Fire behavior analysis
We estimated the fire spread rate and direction for
each individual large fire based on the timing and
location of MODIS active fires (Giglio et al 2013) The
first set of detected active fire points (more than 3
counts) within the FRAP fire polygon was used to
estimate a convex hull, including parameters describ-
ing the length ofmajor andminor axis and the location
of the centroid. Similarly, the convex hulls and the
associated geometrical properties were derived for
each fire progression time step. The mean fire spread
rate was calculated as the difference between the first
and final major axis divided by the time difference
between the first detection time and the detection time
for the 95% percentile of all fire counts within the final
fire polygon. The prevailing fire progression direction
was derived from the vector connecting the first to the
final centroid. The spread rate with units of area was
separately calculated as the area difference divided by
the time difference. This estimate of fire spread rate is
likely conservative given the relatively long time
interval between successive Aqua and Terra over-
passes, although the presence of unburned islands
within some fire perimeters may contribute to addi-
tional uncertainties. To test the assumption that
unburned islands (or regions with very low severity
burns) did not considerably influence our spread rate
calculation, we overlaid the FRAP fire perimeters on
MODIS burned area product at 500 m resolution
(MCD64A1) (Giglio et al 2009) during 2003–2009 for
all fires greater than 500 acres (Figure S2). We found
that unburned islands or very low severity burns
accounted for a small fraction (12.6%) of the total area
within the FRAPfire polygons.

Statistics were then summarized for the SA and
non-SA fires, for different overpass time intervals, and
stand age groups, separately. Fires smaller than
2500 ha were not included for fire behavior analysis.
Fires with less than a total of 6 active fire counts detec-
ted by MODIS Terra and Aqua also were excluded
because of the difficultly in deriving meaningful fire
spread rates. 30 SA fires and 26 non-SA fires met these
selection criteria during 2002–2009.

The FRP in the Level 2 active fire data (MCD14)
was converted to fire intensity in units of W m−2 of
ground area, by adjusting the pixel area calculated as
the product of the along-scan and along-track pixel
dimensions (Giglio et al 2013). Day- and night-time

FRPs were aggregated and averaged for all pixels
within the each perimeter during a given time interval,
and subsequently averaged for the two different fire
types.

2.3. Analysis of fuel control onfire probability and
growth
We used year since fire from the FRAP fire history
database as a proxy for stand age to analyze the
association between fire probability and stand age for
SA and non-SA fires, since the majority of wildfires in
southern California are crown fires and only 1.2% of
the area burned occurred within urban land cover
classes. Fire probability was calculated as the percent
area burned for each set of 20 year age intervals,
divided by total available area within the same age
interval. Only areas with at least one fire since 1959
were included in our analysis.

We also quantified the role of various barriers such
as non-flammable land cover, recent burns, roads, and
ridgelines in limiting the fire spread by analyzing the
spatial correspondence between final burn perimeter
and the position of barriers. Urban, agriculture,
ocean/lake, deserts, and barren classes were con-
sidered as potential barriers and were treated equally
in this study. For each 100 m pixel along the fire peri-
meter, a 1.1×1.1 km window area centered on the
segment was searched to identify the majority land
cover type, both within and outside of the fire peri-
meter. The segment was labeled as being potentially
influenced by this barrier if the majority of land cover
outside a perimeter segment was one of these barrier
types, and was assigned to be limited by this barrier
only when there was a switch from another non-bar-
rier type inside the adjacent burned area, i.e., when the
percentage of the land cover barrier was less than 30%
within the inside buffer and greater than 50% outside
perimeter. The buffer was 500 m in width along each
segment on both sides. For each individual fire, the
total number of edge segments along the fire perimeter
influenced by a particular barrier was divided by the
total fire perimeter length to derive the percentage of
fire edge affected.

The fire edge affected by fuels younger than 20
years old was analyzed using a similar approach as
described above. An important criterion was that the
percentage of young fuels outside the perimeter was
greater by 30% than the percentage of young fuels
inside the perimeter. Edge segments were considered
influenced by roads or ridgelines if there were more
than 500 m of road length within a 1.1×1.1 km win-
dow area centered on the segment.

In the case of overlapping categories of barriers,
the attribution was assigned according to this order:
non-flammable land cover, young stands, roads, and
ridgelines. This was done to ensure mutually exclusive
attribution. Fire growth along perimeter segments that
were not associated with any of the above categories
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(about 10–11%) was probably limited by weather,
other existing fuel breaks, fire lines, and other factors
not captured by the datasets used in our analysis. We
calculated the effectiveness of each type of barrier as
the percentage of their presence in the 1 km buffered
area outside of the fire perimeter over their totals
withinfire affected and buffer areas.

2.4. Controls and regressionmodels for
structure loss
We examined the controls of human, biophysical, and
meteorological variables on the spatial and temporal
variability of both the probability and number of
structures destroyed for the two types of fire. A total of
23 explanatory variables for individual fires equal to or
greater than 40 ha (100 acres) during 1990–2009 were
examined, including (a) fire size (FS) (log trans-
formed); (b) 8meteorology variables averaged over the
fire perimeter area: RH, wind speed (log), Fosberg fire
weather index (FFWI) (log) during the first two days of
fire, preceding March–May precipitation, and two
cumulative precipitation indices from the previous
three winters and from the previous three water years,
monthly RH and monthly vapor pressure deficit; (c) 3
topographical variables: mean slope, slope variance,
and mean elevation within the fire perimeter; (d) 7
human variables: population, number and value of
housing units (log transformed), mean road density
within the fire perimeter, and distances to major,
minor roads and housing; and (e) 4 vegetation
variables: mean stand age and percent of stands less
than 30 years within fire perimeter, as well as mean
stand age and percent of stands equal to or less than 10
years at the edge of the 1 km buffer area outside of the
fire perimeter.

We built empirical models to assess the probability
of structure loss for individual fires using the sequen-
tial logistic regressionmethod (sequentialfs) inMatlab.
Stepwise regression was used to model and examine
the controls on the number of structures destroyed for
SA and non-SA fires. A similar stepwise regression was
performed for the suppression cost per unit burned
area and per fire perimeter length.We used the regres-
sion model for suppression cost to estimate suppres-
sion costs for fires during 1990–1994 when the record
of suppression costs was not available from the USFS
data record.

2.5. Futurefire dynamics from climate change
We predicted how SA and non-SA fires will change in
future climate, using the previously developed statis-
tical meteorology-fire models that were optimized
separately for the number and size of SA and non-SA
fires at a monthly time scale during the historical
period (Jin et al 2014). These separate regression
models captured the influence of weather on fuel
flammability, fuel drying, andwind-driven fire spread,
and also the influence of previous cumulative

precipitation as a proxy of fuel load and connectivity
on the number of fires (figure S3). The 6 km resolution
regional climate change signals were generated by
downscaling ‘present-day’ (1981–2000) climate from
NARR and ‘future’ (2041–2060) climate change sig-
nals, which were then added to the 1981–2000 NARR
boundary forcing (Sun et al 2015, Walton et al 2015).
The climate change signals were simulated by 5 global
climate models under the RCP8.5 ‘business as usual’
emission scenario and as reported in the Coupled
Model Intercomparison Project Phase 5 archive on the
Earth System Grid (Meinshausen et al 2011): CCSM4,
CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM,
and MPI-ESM-LR (Taylor et al 2012). The dynamical
downscaling was performed with the Weather
Research and Forecasting (WRF) model, version 3.2
(Skamarock et al 2011).

We also estimated the change in the number of
structures destroyed by future SA and non-SA fires as a
consequence of climate change, assuming thewildland
urban interface remained unchanged. The probability
of future structures destroyed was calculated with our
regression models; the number of future properties
destroyed was then calculated for those fires with a
probability greater than 0.5, and then summarized
over each month and for each fire type. Finally, the
monthly probability-adjusted number of structure
destroyed was scaled by the relative increase of num-
ber of fires to derive the future structure loss. We
assumed that the spatial distribution and density of
housing and population remained constant, and our
analysis focused on the impact of future climate
change. To account for the impact of FS increase on
the number of structures or population at risk (Hrisk),
we built separate regression models, following the
form ln(Hrisk)=a·ln2(FS)+b·ln(FS)+c, to
relate the contemporary risk (Hrisk)with the quadratic
terms of log-transformed FS for SA and non-SA fires,
respectively.

3. Results

3.1. Contrasting patterns offire behavior
We used sequences of satellite images collected by
NASA’s MODIS during 2002–2009 (Giglio et al 2003)
to determine the spread rate, duration, and intensity of
SA and non-SA fires that were greater than 2500 ha
and with 6 or more active fire counts detected. SA fires
typically expanded to the west and northwest at high
rates, as expected with strong offshore winds, whereas
non-SA fires had slower spread rates and typically
expanded to the east (figures 2(a), (b)). The mean
spread rate of SA fires was 0.56±0.20 km h−1 along
the major axis and 0.36±0.20 km h−1 along the
minor axis; these rates were more than twice those of
non-SA fires (p<0.001; n=30 and 26). Both SA and
non-SA fires spreadmost rapidly aroundmidday, with
SA fires consuming 1094±564 ha h−1 and non-SA
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fires 295±127 ha h−1 (figure 2(c)). SA fires lasted
4.9±2.5 days on average, and often consumed half of
the final burn area within the first day. Non-SA fires
lasted longer (13.0±9.7 days), and consumed only
20% of the final area during the first two days. SA fires
were more intense than non-SA fires, especially at
night (116±8 versus 94±7Wm−2) (figure 2(d)).

3.2. Contrasting fuel controls onfire
SA fire probability was not correlated with stand age;
about 1% of the undeveloped area in each age class
burned annually in SA fires (figure 3(a)). In contrast,
non-SA fire probability significantly increased with
age from 0.7±0.2% for stands younger than 20 years
to 1.5±0.8% for the 40–60 year and 60 year plus

classes. We calculated the mean age distribution
within the areas burned for SA and non-SA fires
greater than 100 acres, and within the 1 km buffered
areas outside of fire perimeters, separately. Only a
slightly higher (and non-significant) percentage of
young fuels were found outside of SA fire perimeters.
In contrast, a statistically significant higher percentage
of ecosystems with stands younger than 20 years was
found outside of the non-SA fire perimeters. These
results indicated that stand age plays amore important
role in limiting the growth of non-SA than SAfire.

We investigated the spatial correspondence
between final burn perimeter and barriers such as
non-flammable land cover, recent burns, roads, and
ridgelines. About 64% of SA and 54% of non-SA

Figure 2. Fire behavior for Santa Ana and non-Santa Anafires observed by Terra andAqua satellites during 2002–2009. The
distributions ofmean fire spread rate and direction for (a) SAfires (n=30) and (b)non-SA fires (n=26) greater than 2500 ha and
withmore than 7measured thermal anomalies from activefires (SI). Amean diurnal cycle of fire spread rate (c)was estimated from
the distribution of active fries detected 4 times daily by TerraMODIS at 10:30 am and 10:30 pmandAquaMODIS at 1:30 pmand
1:30 am. Error bars represent the 95% confidence intervals. (d)Meandiurnal cycle offire intensity was derived from satellite-derived
estimates offire radiative power for SA and non-SA fires. SAfires had slightly but significantly higherfire intensities
(143.0±5.9 W m−2) (n=6007) than non-SA fires (138.3±4.9 W m−2) (n=8753), when averaged over all activefires detected
with high confidence.
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perimeters coincided with existing roads; these roads
presumably acted as fuel breaks and facilitated access
for suppression (Narayanaraj and Wimberly 2011).
Another 12% of SA and 5% of non-SA perimeters
were located in interface areas between wildland and
non-flammable land cover, such as urban, agriculture,
water, or barren (figure 3(b)). Areas in transitions
along the perimeter from older stands to ones that
burnedwithin the last 20 years accounted for 6−7%of
the perimeter of both fire types. Ridgelines, which

provide a favorable location for constructing fire
breaks (National Wildfire Coordinating Group 1996),
accounted for 8% of SA and 13% of non-SA peri-
meters. Roads were slightly more effective at limiting
the spread of non-SA fires; approximately 72% of the
road length within a burned area created a barrier to
additional non-SA fire growth, compared with 56%
for SA fires. Likewise, younger stands and ridgelines
were significantlymore effective at stopping the spread
of non-SAfires than SAfires (figure 3(c)).

Figure 3.Effects of stand age and fuel breaks onfire probability. In panel (a),fire probability was calculated as the percent of area
burned for each age group over the total available vegetated land area for the same age group in each year during 1959–2009. Panel (b)
shows the percentage of fire perimeter length affected by non-flammable land cover types, stands 20 years or younger, roads, and
ridgelines. Non-flammable land cover types included urban, agriculture, and ocean/lake, and additionally deserts and high elevation
barren areas for non-SA fires. The effectiveness of a potential barrier (c)was calculated as the percentage of its presence in the 1 km
buffered area outside of thefire perimeter over the total within fire-affected and buffered areas.
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3.3. Patterns of structure loss and fatalities
SA fires often encroached into densely populated
coastal areas, putting a large number of structures at
risk (figure 1, table 1). SA fires affectedmore than 9000
people and threatenedmore than 3400 structures in an
average year, with a cumulative value of at least $20
billion during 1990–2009. By contrast, non-SA fires
typically occurred in sparsely populated inland areas,
resulting in impacts for these indicators that were
typically about 7 to 8 fold lower than those for SA fires,
even though both types of fire burned similar total
areas. Civilian fatalities and the number of structures
destroyed or damaged followed similar patterns, with
the impact of SA fires far exceeding that of non-SA
fires. Fires over 5000 ha accounted for a dispropor-
tionate fraction of total damage and risk for both SA
and non-SA fires. The 33 largest SA fires out of a total
of 196 accounted for more than 80% of total fatalities
and structures destroyed during 1990–2009. Similarly,
the 32 largest non-SA fires out of 642 accounted for
over 43%of structures destroyed.

For the binary prediction of the properties
destroyed, the sequential logistic model for both SA
and non-SA fires had a prediction accuracy of about
68%, calculated as a ratio of number of fires that were
predicted correctly with an assignment of ‘yes’ or ‘no’
for structures destroyed relative to the total number of
fires. Housing at risk, RH, FS, distance to minor road,
and population at risk were significant explanatory
variables, and no variables related to stand age was

significant in explaining if there were structures
destroyed for SA fires (n=151). For non-SA fires
(n=411), increasing FS and FFWI increased the pos-
sibility of structures being destroyed; reduced pre-
cipitation during a couple of consecutive years and
older stands within the area burned also promoted the
likelihood of structure loss.

We log-transformed the total number of the struc-
tures destroyed, and regressed it against various envir-
onmental drivers using a stepwise regression method
for all fires with structures destroyed. The total num-
ber of houses at risk within the fire perimeters was the
most significant variable for both fire types, explaining
47% of variance in the number of structures destroyed
by SA fires and 25% by non-SA fires (table 2). Distance
to minor roads explained additional 7% for SA fires,
with fires occurring further away from roads having
more structures destroyed, probably as a consequence
of difficulty of access for initial suppression. FFWI and
elevation explained another 12% and 7% for non-
SAfires.

3.4. Fire suppression expenditures
Money spent fighting an average SA fire during
1995–2009 ($6.7±2.2 M) was roughly the same as
that spent for a non-SA fire ($6.3±3.1 M) (table 1).
The expenditures per area burned were considerably
lower for SA fires ($792 per ha) than for non-SA fires
($1522 per ha). Similarly, the cumulative amount
spent fighting SA fires during 1995–2009 ($390M)

Table 1. Socio-economic impacts of Santa Ana (SA) and non-Santa Ana (non-SA)fires.

Annualfires and impactsa (per year) Allfires Fires>=5000 ha

SA non-SA SA non-SA

Number offires (>=100 acres) 9.8 32.1 1.7 1.6
Burned area (103 ha) 37.2 41.4 31.2 27.8
Structures at risk 3409.2 439.6 2832.0 139.1
Population at risk 9073.1 1085.8 7631.4 325.8
Housing value at risk (M$) 1015.5 142.6 808.3 22.1
Structures destroyed 515.8 112.0 422.7 48.5
Structures damaged 68.5 7.5 37.6 4.6
Fatalities (fire personnel) 0.5 0.4 0.4 0.2
Fatalities (civilian) 1.6 0.1 1.4 0.1
Fires with damages: number 3.2 3.4 1.3 0.9
Fires with damages: area (103 ha) 29.7 24.9 26.7 21.6
Housing value destroyed (M$) 156.4 38.5 118.3 6.7
Suppression costb (M$) 29.5 63.0 17.8 32.1

Impacts (per fire or burned area)
Housing value destroyed (M$perfire) 16.0 1.2 71.7 4.2
Suppression costb (M$perfire) 6.7±2.2 6.3±3.1 18.0±5.2 28.8±16.6

Housing value destroyed ($ per ha) 4203.2 928.2 3786.1 239.9
Suppression costb ($ per ha) 600.2 1040.4 460.2 965.1

a The population and structures at risk within each individual fire polygon during 1990–2009 were calculated
based on the 2000 US. Census Bureau’s block and block-group data. The population at risk was estimated as
the number of people livingwithin the boundaries of thefinalfire perimeter.
b Fire expenditures were assembled and summarized for fires available during 1995–2009. A regression
analysis (SI text)was done to extrapolate expenditure data record to 1990–2009.
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was well below that spent on non-SA fires ($743M).
These patterns were amplified for the largest fires,
where expenditures for a SA fire ($13.7±4.2 M per
fire) were significantly lower than for a non-SA fire
($22.2±11.4 M). The suppression investment per
housing value destroyed was ten times greater for non-
SA fires than for SA fires (table 1), although fire
suppression efforts are influenced by a range of
objectives, many of which are unrelated to protection
of housing value.

The westward expansion towards the urbanized
coastal zone, faster rate of fire spread, and greater
intensity of SA fires were probably the main drivers of
the disproportionate economic impact of thisfire type,
whereas the longer duration of non-SA fires likely
increased suppression costs. The rapid growth and
short duration of SA fires may limit opportunities to
deploy resources that might prevent damage, and
explains, in part, why suppression costs were relatively
low for thisfire type.

3.5. Future projectionswith climate change
Separate regression models were built to predict fire
occurrence and size as a function ofmeteorology using
contemporary time series of meteorology and fires as
shown in Jin et al (2014) (figure S3). Here we forced
thesemodels with climate projections for themid-21st
century that were created by dynamically downscaling
output from five climate model simulations for the
representative concentration pathway 8.5 (RCP8.5)
(figure S4). The combined models predicted shifts in
fire number, size and total area burned for both SA
and non-SA fires (figures 4 and S5). Four of the five
climate models predicted more intense SA events,
which are expected to increase SA FS, mostly by
reducing RH and secondly by increasing wind speed
(figures S5 and S6). The overall area burned by SA fires
increased 64% on average (95% CI: −12%–140%) by
2041–2060 relative to 1981–2000.

In parallel, the area burned by non-SA fires in
May–September was estimated to increase by 77%
(95% confidence intervals (CI) of 32%−121%;

figure 4). The increase in non-SA burn areawasmainly
driven by increases in FS with a warmer and drier cli-
mate. All five climate models predicted strong warm-
ing under the RCP8.5 scenario, especially in summer,
with 2–4 °C warming in August (figure S4). Shifts in
precipitation also influenced the projections of non-
SA fires in our statistical climate-fire model, likely by
controlling fine fuel amount and fuel connectivity
from locations such as roads to areas with dense fuel
(Jin et al 2014). CNRM-CM5, one of the CMIP5mod-
els, projected significant increases in wet season pre-
cipitation, which contributes to an increase in the
number of non-SA fires in this projection (figures 4, S5
and S6). The other four climate models predicted
reduced wet season precipitation, which presumably
decreased fuel load and connectivity and thus counter-
acted the impacts of summer warming for the number
of non-SAfires (Figure S6).

To predict the number of structures and popula-
tion at risk as a consequence of FS increases in the
future, we built the regression models using the quad-
ratic terms as described in section 2.5. For SA fires, the
housing and population at risk typically scales well
with FS, and when structures (or population) at risk
and FS were log transformed, the correlation coeffi-
cient was 0.66 (p<0.0001). The dependence of struc-
tures and population at risk on FS was less significant
for non-SA fires, with correlation coefficients of 0.37
(p<0.0001) between the log-transformed structures
at risk and FS and 0.30 (p<0.0001) for FS and the log
transformed population at risk. Climate-induced
changes in SA fires by 2041–2060 were estimated to
increase the number of structures destroyed by 20%
(±7%) on average based on the stepwise regression
model we developed here, assuming all other condi-
tions remain constant. The number of structures
destroyed by non-SA fires was estimated to increase by
74% (±56%). The probability of structure loss was
estimated to increase by 92% (±23%) for an average
SA fire, and by 65% (±57%) for a non-SA fire, pri-
marily as a consequence of the projected increases
in FS.

Table 2.Variables affecting the number of structures destroyed (log-transformed) by individual fires during 1990–2009, based on the step-
wise regression analysis.

ln (number of structures
destroyed) Coefficient SE pval cumuR2 RMSE Intercept

Santa Anafires (n=62) 0.072
ln (housing at risk) 2.4460 0.7669 0.003 0.47 1.6
Distance tominor roads 2.3723 0.9753 0.019 0.54 1.5
ln (population at risk) −1.7839 0.7467 0.021 0.59 1.4

Non Santa Ana
fires (n=66)

−2.420

ln (housing at risk) 0.4500 0.0715 0.000 0.25 1.4
ln (FFWI) 1.0023 0.3981 0.010 0.37 1.3
Elevation (m) 0.0013 0.0005 0.007 0.44 1.2
Precedingwinter and spring pre-
cipitation (mm)

−0.0024 0.0012 0.044 0.49 1.2
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4.Discussion and implications

Separation of Southern California wildfires into SA
and non-SA components using high resolution
meteorology creates a framework for better under-
standing Southern California’s contemporary and
future fire regime (Jin et al 2014). This partitioning
resolves some of the long-standing debate over the
relative importance of meteorology and fuels in
controlling the spread of Californian wildfires (Min-
nich 1983, Keeley et al 1999). Meteorology was clearly
the dominant factor controlling SA fires; the spatial
and temporal variability of SA FS was well correlated
withmeteorological drivers, including RH andwind as
modulated by terrain (see also figure S3). This finding

is consistent with past work showing the probability of
burned area in high wind corridors is elevated
compared to other areas (Moritz et al 2010). SA fire
probability did not depend on stand age, and we did
not find evidence that age-dependent flammability
limits SA fire spread, contrary to the fine-grain age
patch model (Minnich and Chou 1997). On the other
hand, fuels played a comparatively important role in
controlling non-SAfires.We found a positive relation-
ship between fire probability and stand age in areas
affected by non-SA fires. Additionally, younger stands
were a more effective barrier to the growth of non-SA
fires, and the mean age within large non-SA fires was
comparatively older than that of smaller fires (table
S1). These results have implications for management

Figure 4.The response of SA and non-SA fires to climate change during themiddle part of the 21st century for the RCP8.5 scenario.
Separatemeteorology-firemodels for SA and non-SA fires were optimized from59 years offire history and 6 km climate output from
a regional climatemodel constrained by reanalysis observations. High resolution present (1980–2000) and future (2040–2060)
climate, including Santa Ana frequency and intensity, was derived fromdynamic downscaling of theNARR reanalysis data and 5
global climatemodel simulationswith theWeather Research and Forecasting (WRF)model.
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and the likely efficacy of strategies to reduce fuels,
including the use of prescribed fire. Our results suggest
fuel abatement strategies are more likely to succeed in
areas dominated by non-SA fires because these fires
were found to be more sensitive to variations in stand
age, and stand age is known to be a primary driver of
fuel amount and composition (Barbour and Bill-
ings 2000). The effectiveness of fuel treatments also are
likely evolving a consequence of climate-induced
changes in fire weather, and thus an adaptive approach
is needed for evaluating the success of these
investments.

Our economic analysis of SA and non-SA fires rai-
ses, but does not resolve, the issue of whether current
firefighting resources are allocated optimally by fire
type. We found that SA fires placed considerably more
structures and human lives at risk (with more than 7
fold higher impacts than non-SA fires), whereas sup-
pression expenditures were slightly lower for this fire
type. While this may appear to argue for investing
more resources into SA fire suppression, we lack the
information to evaluate whether additional invest-
ments would yield measureable benefits. In particular,
more information is needed on how FS and damages
are controlled by prevention and suppression expen-
ditures, and on the marginal benefit that would accrue
with increased resources by fire type (US Goverment
Accoutability Office 2007). For example, it is possible
that an increase in allocation to SA fire suppression
would have little benefit (Safford 2007), given the
strongmeteorological control we found for these fires,
as well as the short time interval between ignition and
struture loss. The identification and characterization
of fire impacts by type raises the possibility of an
improved allocation of resources, but a better under-
standing of the effectiveness and potential benefits of
fire management strategies is needed to determine
whether a shift in allocation is justified (Department of
the Interior 2012, Gebert and Black 2012, Houtman
et al 2013, Thompson et al 2013).

Recognition of the two different fire types in
Southern California also carries implications for
efforts to predict and prepare for future changes. Our
analysis indicated changes in SouthernCalifornia’sfire
regime with climate change will be greatest for non-SA
fires. The two types of fire are spatially and temporally
distinct, and the controlling climate factors diverge
(Jin et al 2014), suggesting that an increase in non-SA
fires carries different implications fromwhat would be
expected for SA fires. Non-SA fires occur primarily
during summer, whichmay increase competition with
other regions for firefighting resources as fire activity
throughout the western US is expected to increase
during this season (Westerling et al 2003, McKib-
ben 2014). Summer fires may contribute to interac-
tions between heat and air quality, exacerbating
climate-driven health risks across the western US
(Kinney 2008, Buckley et al 2014). Non-SA fires are
concentrated inland, often at higher elevations (table

S1), and cause significant tree mortality in montane
forests. Semi-arid forests in the southwestern US are
already prone to catastrophic crown fire as a legacy of
fire suppression since the beginning of the 20th cen-
tury and subsequent fuel accumulation (Hurteau
et al 2013, Safford and van de Water 2014, Taylor
et al 2014). Increasing incidence of summer fire will
likely amplify this risk and may increase the chance of
an upslope shift in vegetation distribution and type
conversion from montane forest to shrubland at
higher elevations (Nagel and Taylor 2005, Kelly and
Goulden 2008), with implications for the goods and
services provided by these ecosystems.

The statistical climate-fire models developed and
used for future fire projection here did not include
stand age as a dependent variable, and thus were not
able to resolve a possible negative feedback from fuel–
fire interactions.We recognize that there would be less
fuels available as fire frequency increases in the future,
especially in the case of non-SA fires, which may limit
the fire activity, especially at the later part of mid-21
century. Our models considered the impact of pre-
cipitation change on fires, presumably by regulating
fuel amount and connectivity. A fully coupled
dynamic vegetation model simulation is needed to
further understand the climate-fuel feedback and the
co-evolution of the landscape and fire risk. Predicting
future housing density and its spatial pattern is also a
critical next step for understanding economic losses
associatedwith SAfires.

The SA wind events studied here are examples as
dry and hot Foehn winds; these winds occur in the lee-
side of the mountain ranges and are associated with
the elevated fire danger in many other parts of the
world, including Europe and Australia (Sharples
et al 2010). Thus, the meteorological downscaling and
fire partitioning approaches developed here may
enable more quantitative assessments of economic
impact and future change in other regions. Within
Southern California and the Western US, an impor-
tant next step is to integrate risks from changing wild-
land fires with information on other climate change
impacts to more effectively design management solu-
tions that preserve diversity, ecosystem function, and
services.
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