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Abstract—Video streaming over HTTP is becoming the de facto
dominating paradigm for today’s video applications. HTTP as
an over-the-top (OTT) protocol has been leveraged for quality
video traversal over the Internet. High user-received quality-of-
experience (QoE) is driven not only by the new technology, but
also by a wide range of user demands. Given the limitation of
a traditional TCP/IP network for supporting video transmission,
the typical on-off transfer pattern is inevitable. Dynamic adaptive
streaming over HTTP (DASH) establishes a simple architecture
and enables new video applications to fully utilize the exiting
physical network infrastructure. By deploying robust adaptive
algorithms at the client side, DASH can provide a smooth
streaming experience. We propose a dynamic adaptive algorithm
in order to keep a high QoE for the average user’s experience.
We formulated our QoE optimization in a set of key factors. The
results obtained by our empirical network traces show that our
approach not only achieves a high average QoE but it also works
stably under different network conditions.

Index Terms—QoE, Adaptive Algorithm, DASH, ExoPlayer

I. INTRODUCTION

Today, video streaming over the Internet has been causing
major network traffic [1]. Many video providers are facing
a great chanllenge in order to keep a high QoE for their
subscribers. Many recent studies have elaborated on the traffic
crisis and proposed new approaches to mitigate this situation.
MPEG-DASH [2], as one of the promissing solutions, has
caught significant attentions by both industrial and academic
researchers.

DASH uses an adaptive bitrate streaming (ABR) schema.
The ecosystem toward DASH utilizes HTTP/TCP as its trans-
porting protocols. This enables a large deployment in current
network infrastructure. DASH video segments are stored under
various bitrates with different playback lengths. By delivering
appropriate bitrate segments, user QoE can be guanranteed.
A high user-perceived QoE is a combination of many factors:
available bandwidth, available video bitrates, and rebuffers.
The key is to keep a balance among those factors.

DASH primarily uses a client pull based paradigm for
fetching video segments from the server. Many efforts focus on
designing a client side ABR algorithm. In this work, we argue
that a DASH user has high expections for a smooth streaming
experience, especially in a quite unstable network condition
such as using a mobile data plane or an undesirable Wi-Fi
environment. Users’ concerns include, but are not limited to
(1) if there is any buffering period during playback; and (2) the
overal bitrate quality, which includes video bitrate switchover

magnitude and frequency. Given limited bandwidth resources,
the key to achieve such a goal is to understand how a DASH
client detects changes in a network channel as well as how
to properly respond. Our primary focus is that we collect a
set of fine-grained streaming QoE metrics, and conduct real
network traces and data collection using our testbed. We take
an average QoE approach and propose a dynamic, moving
average algorithm.

In this work, we propose a dynamic bitrate adaptive algo-
rithm and try to improve an average QoE. Our work is inspired
by the existing adaptive approach with DASH. By designing
our video streaming QoE metrics, we can improve QoE in
many dimensions under various network conditions. In the
rest of this paper, we first give a brief overview of the related
work in Section II, then introduce our system model, QoE
metrics and problem formulation in Section III. Section IV
describes our proposed algorithm. Section V presents our test
environment, considered use cases, and empirical evaluation
results. We conclude the paper in Section VI.

II. RELATED WORK

Providing a high standard of user streaming QoE towards
DASH falls in to two research areas: (1) how to define a set
of QoE metrics and (2) how to optimize the client side ABR
algorithm.

Users’ perspectives of a high quality of experience can vary
by each individual. However, in a nutshell it can be quantified
by a combination of many metrics. For example, rebuffer is
the most undesirable case based on [3]. A high bitrate will
provide the user a better streaming quality. However, if the
bitrate changes frequently from a higher bitrate to a lower
one, a sudden bitrate improvement can not represent a smooth
experience. However if the bitrate switches gradually inside
one quality catagory, such as between a standard definition
range or a high defintion range, it might not cause a noticeable
difference for the user. Similar findings are in [4]–[8].

Recent work shows that client side ABR algorithm de-
velopment takes two different approaches: bandwidth-based
and buffer-based. The representatives of the bandwidth-based
approach are PANDA [9], Elastic [10], and Festive [11]. The
performance of this approach can be affected by its bandwidth
estimator’s accuracy. Bandwidth estimation and prediction are
known to be tough tasks [12], [13]. A buffer-based approach
such as the recent BOLA [14] proposal and others in [15],



[16] avoid the inaccuracy of bandwidth estimation and use
a system buffer as a main factor for bitrate switching. Most
proposed buffer-based algorithms assume that the buffer size is
relative large, and thereby makes it unsuitable for short videos.
Except that BOLA [14] uses a buffered-based approach to gain
a average user experience and provide theoretical proof.

The DASH client also plays an important roles for a smooth
playback. Players such as DASHIF [17], Akamai [18], and
others in [19]–[21] aim to provide a smooth video rendering
feature and a flexible interface for programmers.

Stream QoE optimization has been investigated in a wide
range of proposals. HTTP-based adaptive streaming optimiza-
tion in [22]–[25] has defined a wide range of QoE metrices.
Our work in this paper is inspired by the previous proposals
and by taking an moving average approach to achieve a high
streaming experience using our QoE metrics with a bandwidth-
based approach. By running emirpical network traces, we can
prove that our proposed dynamic algorithm can provide a high
average user-received QoE.

III. VIDEO STREAMING QOE METRICS

Our approach toward an average QoE focuses on both the
DASH server and client sides. We consider the situation where
a client fetches video segments from a DASH server using
the HTTP-GET protocol. The communication channel between
client and server uses a configurable network environment.
The user’s QoE is measured by a set of defined variables; see
Table I.

TABLE I
QOE METRICS

QoE Metrics Name Definition

Bitrate
Switch
Count

ρ, Avg.
Change Frequency

∑
(Nnot/N)

m, Avg.
Change Magnitude

∑
(Mi/N),

i = 1, 2, 3..N
rebuffer
Count

Tfi, Count Tfi ∈ 0, 1, 2, ...

TR, Duration TR =
∑
Tfi,

i ∈ 0, 1, 2, ...
Estimated
Bitrate

r, Single Bitrate ri, i ∈ 0, 1, 2, ...
γ, Avg. Bitrate

∑
ri/N

Video
Quality

Qsd, Avg. SD
∑

(Qsi/N)
Qhd, Avg. HD

∑
(Qhi/N)

Qtotal, Avg. Total Qsd +Qhd

Buffer Status
TB , Buffered Time Tq ∗ ti,ti ∈ 1, 2, .4..
Tq , Buffered Queue Tq ∈ 1, 2, 3, ..

DASH client. The DASH client is responsible for fetching
the proper video bitrate based on current network discrete
bandwidth r and captures QoE metrics when streaming a
video over the channel. We define N as the total downloaded
video segments. The bandwidth moving average γ is refreshed
for each download. The playback video segment duration
ti(s) ∈ 1, 2, 4, ...T . Each downloaded segment falls into a
bitrate quality catagory that either belongs to Qsd or Qhd,
where Qsd represents the average of the standard definition
video count and Qhd represents the average of the high
definition video count. We define Qsd equals

∑
(Qsi/N),

where Qsi is the total standard definition video count at

download number i (∈ 0, 1, ...N ). Qtotal is the average of the
total video segment quality. The bitrate switchover is captured
in two levels: average change frequency ρ =

∑
(Nnot/N),

where Nnot is the number of unchanged bitrates, and the
average change magnitude m =

∑
(Mi/N), where Mi is

the average magnitude after each download. Both ρ and m
represent the smoothness of the video playback. The client
buffer status is represented by TB , which is the buffered time,
and Tq , which is the buffered queue size. The total buffered
time equals

∑
(Tq ∗ ti), where ti represents the video segment

length.
The rebuffer is measured by the rebuffer frequency Tfi and

the rebuffer duration TR for each Tfi, where i ∈ Z+. The
system buffered time TB and queue size Tq are important in-
dicators of rebuffer occurance. Given an available bandwidth,
the QoE optimization problem can be expressed as follows:

Minimize

{
Bitrate Switchover: ρ,m
rebuffer: Tf , TR

(1)

and

Maximize

{
Buffer: TB , Tq
Quality: Qtotal

(2)

Network Profile. We design various network profiles based
on available bandwidth to simulate different network on-off
patterns. The bandwidth r is simulated by the increasing and
decreasing percentage Pi where i ∈ (1, 2, ..., Np), and Np

is the bandwidth change frequency. The bandwidth changing
magnitude Pdiff = (Pi − Pi−1) represents the stable of
the given available bandwidth at a specific time T . The
combination of Np and Pdiff represents a network profile.

IV. PROPOSED DYNAMIC AVERAGE QOE ALGORITHM

Our dynamic average QoE adaptive algorithm takes a band-
width based approach. The estimated bandwidth is captured
by the weighted sliding window based bandwidth estima-
tor: Sliding Percentile (SP). A overview of how SP runs is
elabrated in Algorithm 1. The performance of SP shows a
slow convergence when Pdiff and Np are relatively large and
frequent. The percentile p for each captured bandwidth r and
recycle bin size B can be altered to be suited for an unstable
network.

Our proposed algorithm is in Algorithm 2. In order to
smooth the estimated bandwidth and allow fast convergence
in the case of dramatic network changes when using SP as
the bandwidth estimator, we add bandwidth history Rhis to
keep track of bandwidth change. Ravg is the moving average
of the estimated bandwidth. Immediate bandwidth change
α = Rhis[−2]/Rhis[−1] is utilized in order to enable and
accurately detect network changes and avoid false positive
bandwidth estimations. Together ∆ = Ravg[−2]/Ravg[−1]
and α will decide how the bandwidth changes as well as
the changing magnitude. To mitigate the SP slow convergence
problem, compensators: ω and ε are being added to the SP
algorithm.

Buffered time based threshold indicators, Tin and Tde, are
also used for returning the final bitrate Rnext for downloading



Algorithm 1: SlidingPercentile
input : MaxWeight W , percentile p, SampleSet Set,

SampleSize Sets, Recycle Bin B, BinSize Bs

output : A weighted Bandwidth r
parameter : Download ByteSize Ds

// Save data into Sets and Keep it under W
for i ⊂ Ds do

if Bs > 0 then
Set.add

(
B[-1]

)
;

else
Set.add

(√
i
)

;

while Sets >= W do
excessWeight ← Sets −W ;
if excessWeight >= Set[0] then

Sets − = Set[0];
Sets.remove(0);
for j ← Bs do

B.add(Set[0]);

else
W − = excessWeight

// Return Weighhted Bandwidth r
for i ← Set do

if
∑
i >= Sets * p then

return ri;

where Tin and Tde represent the threshold for bitrate upgrades
and downgrades, respectively. By allowing Rnext to follow
Ravg and with constraints of buffer threshold indicators, it
can mitigate the rebuffering occurance and improve average
QoE.

V. IMPLEMENTATION AND EMPIRICAL EVALUATION

In this section, we conduct our empricial network traces
using our dynamic algorithm to evalute the QoE metrics.
Google ExoPlayer [26], as the first Android-based mobile
DASH player, is being used as our reference player. We com-
pare our algorithm performance with ExoPlayer’s reference
bitrate adaptive algorithm.

TestBed Setup. We run our network traces in a controlled
network environment. Video sources are stored in an Apache
Server running Ubuntu 14.04 LTS. A network shaper is also
deployed at the server side to simulate different network pro-
files. Fig. 5 shows the reference network profile recommended
by Chrome’s [27] web browser. The ExoPlayer will download
video segments from the server while the network shaper tries
to control the server side bandwidth throughput.

The video source used in our trace is from ”Big Buck
Bunny” [28] and has 20 video representations, see Table II.
The duration of each video segment is 4s. The quality of each
downloaded video segment is grouped into standard (Qsd)
and high (Qhd) definitions based on the segment bitrate and
resolution. In our definition, Qsd includes a segment that has
a bitrate less than 0.783mbps and the resolution is less than
1280 ∗ 720(720p). Qhd includes a segment that has a bitrate
greater than and equal to 0.783mbps and a resolution that

Algorithm 2: Proposed Dynamic Average QoE Algorithm
input : Estimated Bandwidth r, Buffer Time TB , BitRate

Increase Threshold Tin, BitRate Decrease
Threshold Tde Aviable Bitrate Rmpd, current
Bitrate Rcurrent, percentile p, Recycle Bin B,
BinSize Bs, Bandwidth History Rhis, Immediate
Bandwidth Change α = Rhis[−2]/Rhis[−1],
Bandwidth Moving Average Ravg ,
BandwidthChangePencentage
∆ = Ravg[−2]/Ravg[−1], BandwidthState
Rstate, Bandwidth factor ζ, Percentile factor ω,
Bin factor ε

output : Next Bitrate Rnext

System Initialization;
for each r evaltion cycle do

Recalculate Ravg, Rhis, α,∆;
// Calculate Rnext

;
if ∆ > 1 and α > 1± ζ then

Rstate is in decreasing mode;
p = 0.1± ω, Bs = 2± ε;
for i ← Rmpd do

if Rcurrent <= i then
Return Rnext = i± 1 ∼ 2;

else if
(

∆ > 1 and α < 1± ζ
)

or
(

∆ < 1 and

α < 1± ζ
)

then
Rstate is in increasing mode;
p = 0.5± ω, Bs = 5± ε;
Return Rnext <= Ravg[−1];

// Double Check if Rnext = i is The proper
One Based on TB

if Rnext > Rcurrent then
if TB >= Tin then

Return Rnext

else
Return Rcurrent

else if Rnext < Rcurrent then
if TB >= Tde then

Return Rnext

else
Return Rcurrent

else
return Rnext

is greater than and equal to 720p. We argue that high Qhd

represents one important factor of a user’s QoE.
Understand QoE Metrics Collection with an Example.

QoE metrics collection while playback is presented here by
runnning a network trace example. We use a sample video
source that is 150s long. Since we desire to test our dynamic
algorithm within a relatively unstable network condition, we
simulated the bandwidth in a steep on-off pattern. Fig. 3 shows
that the available bandwidth starts with 5mbps for 10s, then
drops to 2G for 35s, and continues a similar pattern until the
playback stops. By keeping a low available bandwidth for a
relative longer time, we try to create rebuffer cases.

Fig. 4 (a) shows the system buffer detail. Both the buffered
time and queue size show the state of the client. If either the
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Fig. 1. BenchMark sample run Fig. 2. Rebuffer comparison for various network profiles

buffered time or queue size drops to and near 0, the player
stops playing and rebuffering happens. For each downloaded
segment, the video quality is stored in a buffered queue in
bitrate. Fig. 4 (b) captures the bitrate as Qsd and Qhd. In this
run, Tin is set to 10s and Tde is 25s, which means the next
downloadable bitrate will not: (1) increase to a higher bitrate

TABLE II
TEST VIDEO BITRATE INDEX

Index Bitrate
(mbps) Resolution Index Bitrate

(mbps) Resolution

0.1 0.045 320x240 1.1 0.783 1280x720
0.2 0.089 320x240 1.2 1.0 1280x720
0.3 0.129 320x240 1.3 1.2 1280x720
0.4 0.177 480x360 1.4 1.5 1280x720
0.5 0.218 480x360 1.5 2.1 1920x1080
0.6 0.256 480x360 1.6 2.4 1920x1080
0.7 0.323 480x360 1.7 2.9 1920x1080
0.8 0.378 480x360 1.8 3.3 1920x1080
0.9 0.509 854x480 1.9 3.6 1920x1080
1.0 0.578 854x480 2.0 3.9 1920x1080
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Fig. 3. A sample run of network traces using our dynamic algorithm
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Fig. 4. System buffered details: (a) Buffered time and queue size (b) Buffered
bitrate quality and queue number

if Tin is less than 10s (2) decrease to a lower bitrate if Tde is
greater than 25s.

Empiricial Result. We compared our dynamic algorithm
with ExoPlayer’s reference adaptive algorithm. We imple-
mented our proposed algorithm in ExoPlayer. Our approach
for achieving a high average QoE is described in Section III. A
benchmark scenario (Fig.1) is created for the purpose of giving
a best case scenario for a playback. In the benchmark use case,
the network shaper simualtes a constant 5mbps bandwidth
using the same video source in Table II. The achieved QoE is
expected to be higher compared with our simulated network
profiles.

After a 150s playback, a rebuffer metric comparison is
shown in Fig. 2. With our dynamic algorithm, no rebuffering
occurs in any network condition except in the initial buffering
stage (∼ 0.35s) that happens on each case. The worst case
happened in a 2G network profile using ExoPlayer’s reference
adaptive algorithm. Rebuffer Tf occured 5 times and the
total duration was 76s, represented by TR =

∑
Tfi, where

i ∈ {1, 2, 3, 4, 5}. In the same network profile, our dynamic
algorithm only had an intital buffer. When we improved the
network condtion from 2G to 3G, the reference algorithm
reduced the Tf and TR, accordingly. However, rebuffering
still occured for each case. Even under the benchmark test,
the reference algorithm still remained in two rebuffer cases.
That happened because even though the network condition was
stable, the reference player greedily downloaded the highest
bitrate with no concern for TCP protocol’s on-off nature (see
in Fig. 1). Our dynamic algorithm kept a moving average
approach and gradually increased or decreased to the next
downloadable bitrate and remained a smooth playback.

The bitrate changing metric is shown in Fig.6. The reference
algorithm always has a higher bitrate switchover frequence ρ
and change magnitude m compared with our dynamic one
in the same network profile. For example, in a 2G network
profile, dynamic ρ = 0.2 < reference ρ = 0.28 and dynamic
m = 0.28 < reference m = 0.64.

The average downloaded high definition video quality Qhd

also keeps a higher number compared with the referenced
algorithm. The video quality increases more slowly when the
network profile changes from 2G to 3GR because the band-
width changes (in a relative small range) from 0.45mbps to
0.75mbps. Video quality quickly improves when the network
profile changes to 3GG since bandwidth increases to 1.5mbps.



Fig. 5. Network Profile for Testing Environment [27] Fig. 6. Comparsion in Video Bitrate Switchover Frequence, Magnitude and Video
Quality between propose dynamic and ExoPlayer Reference Algorithm

But in any case, our dynamic algorithm keeps a higher video
quality in terms of the average number of high definition video
segments (Qhd), lower average bitrate switchover rate (ρ) and
change magnitude (m).

VI. CONCLUSION AND FUTURE WORK

Our main contributions are summarized by (1). We propose
a generic dynamic bitrate adaptive algorithm that can be
utilized in both bandwdith and buffer based approachs (2).
Investigate the average QoE approach for improving DASH
performance under various network profiles. In the future, we
will test our algorithm with various network topologies using
mulitple clients and video sources.
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