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Abstract—Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) is becoming the de-facto data format and streaming
solution for over-the-top (OTT) video on-demand streaming.
The underlying HTTP transport has its limitations and known
penalties in slow start, under-utilization, and other inefficiency.
An alternate approach to DASH is the new transport schemes
like HTTP/2.0 and WebSocket. In this work, we explore WebRTC
as a streaming transport to carry DASH data and demonstrate
that it is competitive in serving low delay streaming applications
with fast channel switching, with proper video data coding and
streaming signaling/control solutions.

Index Terms—DASH, WebRTC, Low Delay, Video Streaming

I. INTRODUCTION

Along with the increasing network traffic for video on-
demand streaming services, the demand for an efficient video
transfer standard has been raised over the years. Traditional
video streaming protocols such as Real-Time Streaming Proto-
col (RTSP) and HTTP progressive downloading are not bitrate
adaptive and network bandwidth is not fully unitized under
erroneous user request.

MPEG-DASH or DASH [1] is one of the most popular
MPEG standards and is designed to improve media transfer
efficiency over the HTTP. In DASH, media such as video
and audio is stored in various bitrate segments. A media
presentation description (MPD) file is used to represent the
media meta information. Inside of an MPD file, each media
segment is associated with an HTTP-URL. DASH clients
use the MPD file to fetch proper media segments based
on the current network condition. It always tries to provide
the best user experience with the best bitrate it can fetch
from the media server. While DASH improves the media
streaming quality in various network environments, it bears
the disadvantage from the underneath transport protocol of
HTTP. Since each DASH client segment request is an HTTP-
GET request. Each communication between a DASH client
and media server has an HTTP meta data overload. It does
not perform well in certain media streaming applications. The
current implementation of DASH is over HTTP/1.1. Each
DASH client can only request one HTTP-URL at a time and
does not support bi-directional communication.

The current work-in-progress protocol of DASH over
HTTP/2.0 is still under experimentation. It defines two

core experiments (CE): the DASH over Full Duplex HTTP-
compatible Protocols (FDH) [2] and Server And Network
Assisted DASH [3] (SAND). In this definition, server push is
enabled instead of just pulling from the client compared with
DASH over HTTP/1.1. The DASH client and media server
can communicate through a WebSocket server. MPD files are
delivered over a WebSocket sub-protocol. The push signals’
messages are carried in the WebSocket channel. While the
new protocol can theoretically improve the DASH segment
transfer rate, it uses TCP for media transfers. The well-known
TCP issues, such as slow-start and window collapse, are still
limit the DASH media transfer rate.

A popular browser-based web real-time communication pro-
tocol (WebRTC) has provided a set of API [4] that is defined
by the World Wide Web Consortium (W3C). It provides a
peer-to-peer communication channel between two browsers.
The WebRTC protocol is defined by Internet Engineering Task
Force (IETF) [5]. It supports real time media including video
and audio media as well as data transfer for binary data using
its DataChannel [6]. The advantage of WebRTC data transfer
protocol is that it can use either TCP or UDP as a transport
layer protocol depending on your current network setup and
application character. It only uses UDP when web applications
use WebRTC for data transfer.

In this work, we explore the low delay WebRTC data chan-
nel as a transport vehicle for carrying DASH video sessions,
and deploy our own sender side pacing solution for low delay
DASH streaming. Simulation over a relay network using the
NS-3 platform, demonstrates the significant improvement in
end-to-end QoE delivery and reduction of start up and channel
switching delays.

The paper is organized in to the following sections, in
section II discuss the related work. In Section III, we discuss
the current issues and on-going work with the MPEG-DASH
group addressing low delay streaming. In Section IV, we
introduce the WebRTC transport infrastructure and our DASH
over WebRTC system setup. In Section V, the simulation setup
and results are discussed. Finally, we discuss the performance
and outline future work.



II. RELATED WORK

DASH is becoming the de-facto data format and streaming
solution for the video on-demand streaming applications.
Video streaming traffic over a web browser is continuously
growing. High-quality user experience is an increasing trend.
This paper explores a broad range of recent studies including
DASH implementation, improvement, and WebRTC use cases.
The standard contributions for MPEG-DASH can be found
in [7]. The standard video segmentation in DASH has been
explored in [8] and [9]

The number of DASH implementation use cases [10] [11]
[12] have been shown the benefit of DASH as a video services
method. The exiting DASH improvement recommendation has
been studied with the standard DASH definitions. Suggestions
for improvement of DASH user experiences have been raised
by various media playback rate adaption algorithms [13] [14].
A dynamic HTTP streaming adaption algorithm is proposed
in [15]. In our work, we proposes a new DASH segment
switchover using a sub-representation segmentation descrip-
tion.

Our approach of utilizing WebRTC as a transport layer
protocol is focusing on its DataChannel. A use case such
as WebRTC P2P application is studied in [16]. Performance
of WebRTC has been explored by many studies in web
browsers [17] [18] as well as for mobile users [18]. In this
work,we propose to use WebRTC to transfer DASH segment
over the network and explore the benefits of a WebRTC dat-
achannel compared with a traditional DASH segment transfer.

Further more, to improve the granularity of QoE/QoS
operating points, spatio-temporal quality layer signaling has
been proposed in [19] for the MPEG Multimedia Transport
(MMT) solution, which is the next generation media transport
replacing MPEG TS for broadcasting and IP network delivery.
In this work, new fine granular quality layering and signaling
are introduced, capitalizing on the new spatio-temporal quality
metrics supported by the ISOBMFF quality metric work [20].
More fine granular operating points improve the robustness
of the streaming, and offer more choices at the time of
congestion. They also allow for a lower delay streaming start
and channel switching.

The studies mentioned above mainly discuss the DASH
and WebRTC performance problems by various usage cases.
There are other studies that focus on WebRTC congest control
algorithm design [17] [21] [22] [23] that aggressively explore
new measurements and new congestion models to improve the
utilization and delay performance. The streaming applications
like DASH on top of the WebRTC data channel, can take
advantage of this new quality. They also introduce APIs to
expose more congested state information to pace the quality
layer scheduling and transmission of the data segments.

III. LOW DELAY DASH STREAMING OVER HTTP

By offering multiple representations of the same media
content, DASH clients can independently choose a proper
media segment based on current network throughput observed
by itself and mostly from the measurement of content round

trip time (RTT) between DASH clients and the content server.
In a wide network area environment, media content servers are
most likely to be hosted at content delivery networks (CDN).
DASH content is replicated on the CDN edge servers to
minimize the RTT to the clients they are serving. Sophisticated
HTTP Caching and CDN traffic optimization and localization
are employed to improve overall QoS. However, due to client
pulled operation and inherent slow start of TCP, the DASH
streaming solution (in general) requires a much longer initial
delay than the traditional broadcasting and linear IPTV expe-
rience.

The standard DASH allows clients to pull media content by
requesting pre-defined media meta information files called Me-
dia Description Presentation (MPD) files. Any communication
between DASH clients and servers is HTTP Assisted; meaning
it uses the HTTP protocol for data transfer control. DASH
over HTTP/1.1 supports client side pulling. This client-driven
approach allows clients to make decisions for the next segment
of downloading. It adapts to continual change of network
throughput, which in turn provides a better user experience.
However, it brings new challenges, such as: (1) how to make
sure of the media server’s reliability; (2) how to improve
content delivery efficiency; (3) how to control advertisement
placement during video playback, etc.

In order to address these issues, two core experiments on
standard DASH have been introduced (a) SAND-Server and
Network Assisted DASH and (b) DASH over Full Duplex
HTTP-compatible protocols (FDH). Both SAND and FDH are
still HTTP-based; they introduce server side push methods to
assist standard DASH.

SAND introduces network middle boxes that allow DASH
clients to send feedback and coordination messages to accel-
erate the DASH sessions. It defines DASH Aware Network
Elements (DANE) as network entities capable of sending
and/or receiving SAND messages. During the SAND Core
Experiment, actual experiments were conducted to bring evi-
dence of the usefulness of network assistance. It enables fast
convergence after a DASH session starts. The fast network
bandwidth estimation is around 15 times faster compared with
the traditional DASH based on [24].

FDH exploits the new HTTP/2.0 transport protocol that
supports bi-directional traffic by minimizing the number of
DASH clients requests. It is investigating the problem of
delivering media segments with shorter delay and/or reducing
the request processing at the HTTP server. The technologies
considered are HTTP/2 and WebSockets. The main idea is that
once a client is interested in streaming a particular content
(e.g., a live channel), it may be beneficial not to send an
individual GET request for each segment to the network.
The network may keep sending segments once they become
available to the client for a predetermined amount of time or
until the client tells the server to stop. This is known as the K-
Push operation mode in DASH FDH. It minimizes the number
of client content GET messaging overhead, and prevents the
TCP window collapse resulting in a slow start recovery.

The current proposed SAND message carrier implementa-



tionand FDH is still using HTTP that still bares the HTTP
payload but does not perform well in time-sensitive streaming
situations and other existing drawbacks such as no support of
bidirectional communication for SAND between the client and
server.

IV. LOW DELAY DASH STREAMING OVER
WEBRTC

In our work, the datachannel function of WebRTC is
utilized as a media pipeline for DASH traffic. The WebRTC
datachannel can be used as a peer-to-peer data transfer
channel. The way of finding a peer is through a signaling
process. Signaling can be done by a signal gateway like
WebSocket, Socket.io and XMPP to exchange peer network
information such as session initiation protocol (SIP), session
control messages (SDP), network configurations as ICE can-
didates, and other control messages. The WebRTC protocol
itself can also solve issues caused by NAT or firewalls using
various signaling server designs such as WebSocket.

The goal of WebRTC is to simplify the development of
real time data transfer and communication over networks by
providing standard web APIs, which are defined by IETF
and W3C. The main target of WebRTC is for peer-to-peer
multimedia streaming, including video-on-demand (VOD) and
living videos. It supports client-server data transfer paradigms
as well as a multiplexing peer-to-peer data channels. The web
server such as WebSocket/socket.io acts as a rendezvous server
for signaling purpose to build a peer-to-peer communication
channel. Because the WebRTC architecture does not mandate
any particular protocol/server types between peers, it leaves
much large freedom when deploying WebRTC over a WAN
network.

Our approach of utilizing WebRTC as a transport pro-
tocol for DASH segment transfers focuses on WebRTC’s
datachannel function. It is created between peers using the
RTCPeerConnection, a starter function to build a communi-
cation channel with a particular peer and using an underlying
transport built as the Stream Control Transmission Protocol
(SCTP) over Datagram Transport Layer Security (DTLS) over
UDP.

Congestion control over WebRTC is still not finialized. The
WebRTC datachannel provides the best effort real time data
transfer services. Any congestion control algorithm implem-
netation needs to work well with SCTP to prevent SCTP
starving [25]. It also needs to make sure to keep a low delay,
packet loss, and reasonable fairness between flows. Google
GCC [23] is the only built-in congestion control algorithm
for WebRTC. The basic concept of the GCC is to have two
controllers located at sender (A,) and client side (A,). The A,
probes the available bandwidth and A, computes the ’Client
Estimated Maximum Bitrate” in order to limit the sending
rate from A,. The GCC improves WebRTC real time data
transfer rate by fine tuning the server and client’s sending and
receiving rates. The server will push data to the client based
on the computed rate.
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Fig. 1. DASH Over WebRTC

Traditional DASH is a pull based video streaming solution
over the HTTP, which suffers from inefficiency and under-
utilization of the underlying TCP transport. Periodic pull based
streaming further exacerbates the TCP slow start problem. In
this work, we investigate the WebRTC real time data transfer
mechanism and propose a sender pacing technique to further
improve DASH segment transfer rate and enable low delay
DASH streaming.

With WebRTC based solution, which is RTP based, we
are not suffering from TCP under-utilization. However this
comes with a cost because the sender needs to take over the
congestion avoidance logic and pacing the transmission. We
use a sender self-timing transmission scheme, with underlying
webRTC congestion signals exposed via WebRTC APIs to
help avoid congestion. Fig. 1 shows our system architecture.
A server serves DASH MPD files and segment data. A
DASH client communicates with the server through a WebRTC
datachannel. How WebSocket creates a WebRTC datachannel
among all peers will be explained in Section V-B.

WebRTC has a concept called the maximum chunk size
that represents the maximum data chunk it supports for each
data transfer. When a client requests an MPD file, the server
locates the correct media content and pushes each DASH
segment to the client using the WebRTC datachannel. For
example, when a client requests an MPD file that describes a
segment file of 10 seconds. Based on the supported maximum
chunk size (ex. 1 KB), then our sender pacing method will
send segments by 100 frames every 10 seconds. The server’s
sending rate (r) is controlled by both the sender rate controller
Ay and receiver rate controller A,. to achieve an optimal DASH
segment transfer rate. User experience can then be further
improved.

Section V shows our experiments and comparisons between
standard DASH and our proposed WebRTC as a transport layer
for standard DASH.

V. EXPERIMENTATION AND PRELIMINARY RESULT

In this work, we conduct our experiments on both DASH
and WebRTC using an NS-3 simulated network. In order to
run the simulated network with anexisting DASH.js player and
WebRTC applications, we deploy two Linux containers using
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Fig. 2. Experiment Setup

a Linux LXC library and Chrome as our test web browser.
The DASH.js player and WebRTC are deployed as user level
applications running on top of two different Linux containers
that are connected by tap devices using an NS-3 simulated
CSMA network. Figure 2 shows the topology setup using
NS-3. The NS-3 network link bandwidth is set to 1 Mbps.
The bandwidth of the simulated network is tested by the iperf
network tool. The average UDP link bandwidth was found to
be around 1 Mbps and the average TCP link bandwidth was
around 0.8 Mbps.

The benefit of using LXC in this work is two-fold: (1)
it can take full advantage of virtualized network topology
with various network conditions; (2) instead of rewriting any
existing applications, we can deploy existing ones. It also
is much more flexible compared with NS-3’s Direct Code
Execution (DCE) technique. Each LXC node has two network
interfaces. They are used for data transfers and WebRTC
signal control respectively. This allows us to use either a local
signaling server as well as a remote one such as Firebase.

A. DASH Client Playback

DASH streaming bitrate is driven by the client side. Based
on the available network bandwidth, the client requests the
next proper bitrate segment. Once the media server receives
the requests, it then sends the requested segment to the client.
The advantage of this approach is that the client has the full
control of the next segment needed. This client based, media
segment, pulling approach can avoid extended playback delay
and decrease jitter time in order to improve user experience
by downloading the adaptive bitrate segment. The media
server itself has no knowledge of network conditions; its main
function is to provide the various bitrate segments. In our
work, we propose to use WebRTC as a transport layer protocol
for segment transfers. In order to show the advantage of our
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approach, we set up a DASH environment to show how the
media playback bitrate changes and DASH segment pulling
performance at the DASH client side. We deployed a DASH.js
v2.1 player on one LXC container and a DASH segments’
Apache Server on the other end of the network topology (see
Fig. 3).

The simulated NS-3 network between the media server and
DASH client is a Carrier Sense Multiple Access (CSMA)
network with 1 ms delay between each simulated node. There
is no background traffic running when we conduct our tests.

Fig 4 shows the video playback bitrate changing for the
DASH client after a couple times of warmup running. The
maximum playback rate is around 0.8 Mbps. The playback
bitrate keeps changing and shows an ON/OFF pattern. The
initial requests start from a low bitrate segment and then go up
to the maximum bitrate segments. After a relative long period
of constant high bitrate segments requests and download,s
the network bandwidth is depleted and at the same time, the
DASH client detects that the network is now low in bandwidth
and decides to request a low bitrate segment in order to keep
receiving media segments from the server without causing any
playback delay and buffer.

A typical DASH client like DASH.js uses HTTP as the data
transport layer protocol that runs on top of the TCP that shows
a slow start pattern. Once the TCP window collapses, we can
see the client side playback rate drop dramatically. That is a
very obvious drawback of traditional DASH streaming using
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TCP protocol. In Fig. 4, one of the actual data throughputs
pulled by the DASH.js client is illustrated. It shows the
fluctuation of the channel utilization due to the client pull
based control.

In this work, we measured the downloaded segment chang-
ing pattern over a simulated network. Fig. 5 shows the DASH
segment changing pattern. We can see bitrate changes at the
client side by downloading different bitrate segments.

While we see how the DASH client can adaptively keep
changing the segment bitrate and keep a high user experience,
its drawback is also very clear, because the nature of the extra
HTTP payload and TCP window collapse.

B. WebRTC Datachannel As a Transport Layer Protocol

Our approach of using WebRTC as a transport layer protocol
for a DASH segment transfer can mitigate the issues of
the current DASH implementation. We use the datachannel
function of WebRTC. It uses the UDP protocol for any binary
data transfers.

In this work, we implemented a WebSocket server for
signaling purposes between two WebRTC datachannel appli-
cations that are deployed based on Fig. 6. Two WebRTC peers
are connected by the simulated NS-3 network. The WebRTC
running data transfer application using a Chrome browser.

Fig. 7 shows the workflow for the signaling process between
peers and the WebSocket server. The first peer (Peer-1) initi-
ates the datachannel creation process and sends the requests to
the WebSocket server. The server approves them upon request
and sends the created datachannel back to the initiator and then
waits for any connection from the other peers. Peer-2 sends
the join request to the previously created datachannel by peer-
1. Upon receiving the joining requests, the server broadcasts
that message to all the other joined peers. In our experiment,
the other peer is peer-1. Peer-1 then starts to send SDP and
ICE information to the WebSocket server and tries to make an
agreement with the joining peer. Once both peers agree with
each other’s connection information, a bi-directional WebRTC
datachannel is created.

When using WebRTC datachannel transfer media binary
data, we implemented a push based, self-pacing transport
control, which is different from the DASH.js client’s pull
based control logic. We used the default 16KB chunk size and
the “bufferedamountlow” event for sender side flow control.
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By calculating the DASH representation rates, the proper
packet sending rates can be calculated and the self pacing
sender pushing session can be executed. This results in a high
utilization of the underlying link capacity. Fig. 8 shows the
receiver keeping the maximum throughput, which is around
0.9 Mbps. The initial receiving time difference between the
sender and receiver is 170 ms, which is not shown in the
graph.

By comparing the behavior of the DASH.js client, which
is the DASH-IF-Reference client implementation, and our
WebRTC based DASH client side playback performance,
WebRTC shows a much lower initial streaming start delay, and
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a very high link capacity utilization, resulting in a significant
constant high bitrate data segment transfer without showing
an ON/OF'F pattern like DASH; all very desirable features
for supporting very low delay DASH streaming. It validates
that use of WebRTC as a transport layer protocol can bring a
noticeable advantage for the DASH segment data transfer. By
properly exposing the underlying WebRTC congestion mea-
sure and control scheme, and integrating with the QoE metric
signaling in DASH MPD, a much better QoE driven/optimal
low delay DASH streaming solution can be developed.

VI. CONCLUSION & FUTURE WORK

In this work, we utilized the WebRTC data channel to
develop a push based streaming solution for carrying low delay
DASH content to clients. New protocols and signaling over
WebSockets were utilized for the signal plane, while WebRTC
data channel was used for content transport. Initial simulation
demonstrated very high link utilization and a low delay for
DASH over WebRTC as compared with a typical DASH.js
client over the HTTP link. In the future, we will further
invest and expose the underlying WebRTC congestion model
to support better QoS adaptation and introduce new sptaio-
temporal QoE metrics to MPD to facilitate better end-to-end
QoE optimization. Also, it will be interesting to introduce
a thin middleware layer plug-in that enables WebRTC based
peer-to-peer DASH streaming.

Furthermore, due to the wide spread deployment of We-
bRTC in both Firefox and Chrome browsers, a de-facto real
time end-to-end transport infrastructure is ripe for further
development into a peer assisted video multicasting system,
for which several leading industry players and standardization
bodies have expressed interest. We will extend our experiments
to provide more WebRTC related server and application de-
signs.
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